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Abstract 

Four-wheel independently driven electric vehicles (FWID-EV) endow a flexible and scalable control framework 
to improve vehicle performance. This paper integrates the torque vectoring and active suspension system (ASS) 
to enhance the vehicle’s longitudinal and vertical motion control performance. While the nonlinear characteristic 
of the tire model leads to a relatively heavier computational burden. To facilitate the controller design and ease 
the load, a half-vehicle dynamics system is built and simplified to the linear-time-varying (LTV) model. Then a model 
predictive controller is developed by formulating the objective function by comprehensively considering the safety, 
energy-saving and comfort requirements. The in-wheel motor efficiency and the power loss of tire slip are treated 
as optimization indices in this work to reduce energy consumption. Finally, the effectiveness of the proposed 
controller is verified through the rapid-control-prototype (RCP) test. The results demonstrate the enhancement 
of the energy-saving as well as comfort on the basis of vehicle stability.

Keywords  Four-wheel independently driven electric vehicles, Tire nonlinearity, Linear-time-varying (LTV) model, 
Model predictive control, Rapid control prototype

1  Introduction
Electric vehicles are regarded as a promising solution 
to deal with the increasing emissions and high energy-
efficiency requirements [1–3]. Nowadays, four wheel 
independently driven electric vehicles (FWID-EVs) 
with a modular powertrain layout have attracted lots of 
attention from academic and industrial researchers [4, 
5]. Thanks to the simple mechanical structure and short 
transmission chain, FWID-EVs can quickly respond to 

the execution command through the in-wheel motor 
torque output. Moreover, four independently driven 
motors provide a considerable enhancement for vehicle 
stability with a flexible control mode [6–8]. However, the 
frequent acceleration/deceleration behaviors in urban 
conditions would affect the vehicle’s vertical motion, 
especially when the torque outputs increase/decrease 
rapidly. The driver’s comfort cannot be guaranteed. To 
this end, this work integrates the torque vectoring and 
active suspension system of FWID-EVs focusing on the 
straight-ahead driving condition. It aims to improve the 
overall performance on the premise of ensuring vehicle 
stability.

The four in-wheel motors could generate different 
torque outputs according to designed torque vectoring 
strategies [9]. It brings a novel control scheme for the 
direct yaw moment system rather than only depending 
on the braking force [10]. By taking the energy efficiency 
into consideration, the energy consumption can also be 
reduced [11, 12]. Comprehensively considering the motor 
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efficiency and tire slip energy consumption of FWID-
EVs, Zhang et  al. [13] propose a torque distribution 
method based on discrete adaptive sliding control, which 
effectively reduces the energy loss of vehicles. For the 
active suspension system, the vehicle heave, pitch, and 
roll motions can be adjusted with differential active 
forces [14–16], which is related to ride comfort, road 
holding stability, and roll prevention.

It is widely accepted that the integration of these sub-
systems is better to realize holistic control [17, 18]. Many 
studies focus on longitudinal and lateral integrated control 
by combining active front wheel steering (AFS) and direct 
yaw moment control (DYC). An adaptive controller based 
on a Lyapunov method is employed to coordinate AFS and 
DYC in Ref. [19]. The adaption law is designed to deal with 
the uncertain cornering stiffness. A multi-agent system-
based control framework is proposed in Ref. [20] to realize 
the integration of AFS and DYC, in which these subsys-
tems are treated as agents and realize the cooperation 
by Pareto-optimality theory. Considering the time delay 
of the vehicle network, a novel H∞ controller combined 
with a delay-tolerant linear quadratic regulator is designed 
in Ref. [21] to improve vehicle stability based on AFS and 
DYC. Furthermore, to handle the tire nonlinear character-
istic, some studies present the Takagi-Sugeno (TS) fuzzy 
and polytope methods to build the vehicle model, based on 
which the robust controller is developed. Jin et al. [22] pro-
pose a robust state-feedback controller to ensure the vehi-
cle handling performance, in which the T-S fuzzy method 
is used for the nonlinear Brush tire modeling. Zhang et al. 
[23, 24] adopt the polytope to describe the uncertainties in 
the model. A robust gain-scheduled controller is designed 
to enhance the vehicle’s lateral stability. It is worth men-
tioning that an inappropriate Lyapunov function would 
lead to being conservative of robust controller when han-
dling the tire’s nonlinear characteristic [16, 25].

In addition to the vehicle longitudinal and lateral 
motion control, some studies also integrate vertical 
motion. Zhao et al. [17] develop a hierarchical framework 
to coordinate AFS, ASS and DYC, thereby improving 
the overall performance. A trigger mechanism is estab-
lished to decide the working regions of different subsys-
tems based on the tire reserve forces. Hussein et al. [18] 
propose a high-order sliding model method to realize a 
global chassis control. The results show the effectiveness 
of enhancing the vehicle stability and ride comfort. Qin 
et al. [26] investigate the couplings between the dynamic 
vibration-absorbing structures and in-wheel motors. 
A particle optimization method is adopted to enhance 
the vertical dynamics performance. Nevertheless, the 
energy-saving is seldom considered in the integration 
of these subsystems. The researches in Refs. [1, 27, 28] 
demonstrate that energy consumption can be reduced 

through a reasonable torque vectoring strategy, as well as 
improving the vehicle stability.

Meanwhile, model predictive control (MPC) has 
been increasingly used in the vehicle dynamics control 
[29, 30]. The MPC does not adopt a constant global 
optimization target, but repeatedly optimizes online in 
a rolling method to obtain a global sub-optimal solution. 
It has strong adaptability to complex and changeable 
driving environments, and can meet the needs of real-
time online optimization control under multi-objective 
compound constraints. Hence, a model predictive 
controller is proposed in this paper to integrate the 
torque vectoring and active suspension system by 
comprehensively considering safety, energy-saving and 
comfort. A non-linear model predictive controller is 
applied to improve the stability of distributed drive 
electric vehicles under critical driving scenarios [29]. The 
experiments on the snowy road validate the feasibility. 
The path-tracking problem is transformed into a 
standard MPC optimization problem in Ref. [30]. Multi-
constraints are also considered in the solver.

The main contributions of this paper are as follows. 
First, a half-vehicle dynamics model is employed to 
describe the vehicle’s longitudinal and vertical motions, 
in which the nonlinear tire dynamics is described by 
an LTV model. It facilitates the controller design and 
reduces the computational load. Then, a model predictive 
controller is developed by optimizing the multi-
objectives, including energy-saving, vehicle safety, and 
comfort. The RCP experiments are conducted to validate 
the effectiveness of the proposed method.

The remainder of this paper is organized as follows. A 
half-vehicle system combined with a tire dynamics model 
is built in Section 2. In Section 3, the MPC controller and 
the test bench are discussed. The optimization objective 
functions are given in detail. Section  4 shows the test 
results of the proposed controller. Finally, Section  5 
presents the conclusion.

2 � Vehicle System Modeling
This work focuses on vehicle control for the straight-
ahead driving condition. Hence, the vehicle’s longitudinal 
motion and vertical motion are investigated in this 
section. A half-vehicle model is established. Moreover, 
the nonlinear characteristic of the tire model is fully 
considered and simplified to facilitate the controller 
design.

2.1 � Wheel Dynamics
Considering the effect of vehicle vertical motion on the 
straight line driving, the vehicle longitudinal dynamics 
model can be expressed as:
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where m and ms represent the total mass and sprung 
mass of the vehicle, respectively. Vx and Vz are the vehicle 
longitudinal and vertical velocities. θ is the vehicle pitch 
angle. Fxf  and Fxr denote the longitudinal forces of the 
front and rear tires, respectively, which are generated by 
the torque inputs of the in-wheel motors. Furthermore, 
the wheel dynamics as shown in Figure 1 is given by:

where Jw and re are the inertia moment and rolling radius 
of wheel, respectively. Twi is the torque input of the 
in-wheel motor i . wi is the rotational speed of the wheel 
i , i = f , r ; f  represents the front tire, and r represents the 
rear tire. When the vehicle runs in the linear region, the 
tire longitudinal force can be represented by:

where Kxi is the tire longitudinal stiffness, which is 
related with the vertical load, tire type and tire pressure, 
etc. �i is the tire longitudinal slip ratio. It can be further 
expressed as:

 
For Eq. (3), when the vehicle is in the nonlinear region, it 

would be invalid if using the longitudinal tire stiffness Kxi 
obtained by the linear state. A conventional method is to 
adopt the tire fitting formulas and calculate the tire force 
in real time [31]. This can guarantee the model’s accuracy. 
However, the tire force is directly employed in the system. 
Due to the strong nonlinearity, it would cause a large com-
putational burden for the optimization. Hence, a modi-
fied tire longitudinal stiffness K ′

xi is defined in this work to 
ensure accuracy while reducing the computational burden 
through the linearization method. The tire longitudinal 

(1)mV̇x +msVz θ̇ =
∑

i=f ,r
Fxi,

(2)Jwẇi = Twi − reFxi,

(3)Fxi = Kxi�i,

(4)�i =
wire − Vx

Vx
.

force Fxi is calculated by the Magic formula. Then the modi-
fied tire longitudinal stiffness K ′

xi is calculated by Eq. (3) in 
real-time and presented by a time-varying parameter. The 
K ′
xi would change according to different driving conditions. 

By introducing the modified parameter K ′
xi into the Eq. (2), 

the wheel dynamics can be rewritten as:

The Magic formula [32] fitting the tire longitudinal force 
is given by:

where µ is the road-tire friction coefficient. Bx, Cx and Dx 
are obtained through the parameter fitting method. Fzi is 
the vertical load of the i-wheel, which can be calculated by:

where lf  and lr are the distances from the vehicle centre 
of gravity (CoG) to the front and rear axles. h and ax are 
the height of CoG and vehicle longitudinal acceleration, 
respectively.  g is the gravitational acceleration. To show 
the accuracy of the Magic formula, the fitting tire longi-
tudinal forces under different vertical loads (i.e., 2.1 kN, 
6.1 kN and 10.1 kN) are compared with the real test data. 
The detailed results are shown in Figure  2. During the 
straight driving condition, the tire slip angle α is 0.

From the test results, it can be seen that the fitting tire 
longitudinal force is closely approaching the test data. Con-
sequently, the tire longitudinal force Fxi is obtained through 
the Magic formula in this work. Here, the tire test data are 

(5)�̇i = −
r2e

JwVx
K ′
xi�i +

re

JwVx
Twi.

(6)
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Figure 1  Wheel dynamics model

Figure 2  Tire longitudinal force fitting results
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collected from a high-fidelity vehicle model (CarSim). Then 
the modified tire longitudinal stiffness K ′

xi is obtained in 
real-time based on Eq. (3). Eq. (1) can be expressed as:

2.2 � Vehicle Vertical Dynamics
The vehicle would have obvious heave and pitch motions 
when existing frequent acceleration/deceleration behav-
iors. To describe the vehicle vertical motion, a 4-degree-of-
freedom (4-DoF) half-vehicle active suspension system as 
shown in Figure 3 is used to establish the vehicle vertical 
dynamics model. Ff  and Fr are active suspension forces, 
which are generated by the actuators. The roll motion is 
ignored due to the straight line driving. With the assump-
tion of a small pitch angle. The heave motion of the sprung 
mass and unsprung mass can be represented by:

(9)mV̇x +msVz θ̇ = K ′
xf �f + K ′

xr�r .

(10)

ms

(

z̈o − Vx θ̇
)

=

[

− ksf
(

zsf − zuf
)

− bsf
(

żsf − żuf
)

+Ff

− ksr(zsr − zur)− bsr(żsr − żur)+ Fr

]

,

(11)muf z̈uf =

[

ksf
(

zsf − zuf
)

+ bsf
(

żsf − żuf
)

− Ff − ktf zuf

]

,

It should be noted that the road excitation is not 
considered in this study. zo is the vertical displacement of 
the vehicle CoG. ksf  and ksr are the equivalent stiffness of 
the front and rear suspensions, respectively. bsf  and bsr are 
the equivalent damping of the front and rear suspensions. 
ktf  and ktr are the equivalent stiffness of the front and 
rear wheels, respectively.  zsf  and zsr are the vertical 
displacements of the front and rear sprung mass. zuf  and 
zur are the vertical displacements of the front and rear 
unsprung mass, respectively. Ff  and Fr are the active force 
inputs of the front and rear suspensions, respectively. muf  
and mur are the unsprung mass of the front and rear wheels, 
respectively. Furthermore, the vertical displacements of the 
front and rear sprung mass can be expressed as:

The pitch motion of the suspension system can be 
described by

where Iy is the vehicle inertia moment around the y-axis.

Combining Eqs. (1)–(17), the vehicle system model for 
the straight-ahead driving condition is given by

where x =
[

Vx, �f , �r , θ , θ̇ , zo, żo, zuf , zur , żuf , żur
]T
,

u =
[

Tf ,Tr , Ff , Fr
]T

,

(12)murz̈ur =

[

ksr(zsr − zur)+ bsf (żsr − żur)

− Fr − ktrzur

]

.

(13)zsf = zo − lf θ ,

(14)zsr = zo + lrθ .

(15)Iyθ̈ = −lfℜf + lrℜr ,

(16)ℜf=− ksf
(

zsf − zuf
)

− bsf
(

żsf − żuf
)

+Ff ,

(17)ℜr=− ksr(zsr − zur)− bsr(żsr − żur)+Fr .

(18)ẋ(t) = Ax(t)+ Bu(t),
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Figure 3  4-DoF vehicle vertical dynamics model
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a22 = −K ′
xf ∗ re ∗ re/(Jw ∗ Vx), a33=− K ′

xr ∗ re ∗ re/(Jw ∗ Vx),

a54 =
(

−ksf ∗ lf ∗ lf − ksr ∗ lr ∗ lr
)

/Iy , 
a56 =

(

ksf ∗ lf − ksr ∗ lr
)

/Iy , 
a55 =

(

−bsf ∗ lf ∗ lf − bsr ∗ lr ∗ lr
)

/Iy

a57 =
(

bsf ∗ lf − bsr ∗ lr
)

/Iy , a58 = −ksf ∗ lf /Iy , 
a59 = ksr ∗ lr/Iy , a5,10 = −bsf ∗ lf /Iy , a5,11 = bsr ∗ lr/Iy , 
a74 =

(

ksf ∗ lf − ksr ∗ lr
)

/ms , 
a75 =

(

bsf ∗ lf − bsr ∗ lr +ms ∗ Vx

)

/ms

,a76 =
(

−ksf − ksr
)

/ms , a77 =
(

−bsf − bsr
)

/ms , 
a78 = ksf /ms,a79 = ksr/ms , a7,10 = bsf /ms,a7,11 = bsr/ms , 
a10,4 = −ksf ∗ lf /muf  , a10,5 = −bsf ∗ lf /muf  , 
a10,6 = ksf /muf  , a10,7 = bsf /muf

,a10,8 =
(

−ktf − ksf
)

/muf  , a10,10 = −bsf /muf  , 
a11,4 = ksr ∗ lr/mur , a11,5 = bsr ∗ lr/mur , a11,6 = ksr/mur , 
a11,7 = bsr/mur , a11,9 = (−ktr − ksr)/mur , 
a11,11 = −bsr/mur.

It could be found that the model (18) is a continuous-
time nonlinear system. The parameter matrices A and B 
exist time-varying state variables, including longitudinal 
velocity Vx and modified tire longitudinal stiffness K ′

xi . 
Here, to facilitate the model predictive control (MPC) 
design and reduce the computational burden. A linear-
time-varying (LTV) discrete model is established. The 
state variables in the parameter matrices are treated as a 
constant during the sampling time, which would update 
at different sampling time. The sampling time is given by 
Ŵ . Then based on the Eular method, the continuous sys-
tem (18) at time step k can be discretized as:

where x(k) and u(k) represent system states and inputs at 
time step k , respectively.

The handling of model linearization and discretization 
simplifies the system and facilitates the controller design 
[33]. Meanwhile, the tire characteristic can also be 
guaranteed.

B =
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(19)x(k + 1) = Acx(k)+ Bcu(k),

(20)



















Ac = eAŴ ,

Bc =

(k+1)Ŵ
�

kŴ

eA[(k+1)Ŵ−t]
Bdt.

3 � Optimal Control Design
The schematic integrated control framework for torque 
vectoring and active suspension system is shown in Fig-
ure 4. It includes the wheel dynamics model, nonlinear tire 
model, 4-DoF vehicle vertical dynamics model, reference 
model and MPC optimal controller. The MPC controller is 
proposed to realize the integrated control of vehicle longi-
tudinal and vertical motions. A combination of multi-per-
formance indices, including energy saving, vehicle safety, 
and comfort, are considered during the controller design. 
The relaxation factors are introduced to dynamically mod-
ulate the weight coefficients of different control objectives. 
Furthermore, to better verify the controller control effect, 
the rapid-control-prototype test bench is also described.

3.1 � Multi‑objectives Function
The control objective of energy saving can be represented 
as follows:

where

where T i =
[

Tf Tr

]T
,  F i =

[

Ff Fr
]T
,  Q1 ∈ ℜ1×1 , 

Q2 ∈ ℜ2×2 , R1 ∈ ℜ2×2 , and R2 ∈ ℜ2×2 are the positive 

(21)J1 = J11+J21+J31 ,

(22)J11=

Np−1
∑

t=1

∥

∥Tf (k + t
∣

∣k )− Tf ,ref

∥

∥

2

Q1
,

(23)J21=

Np−1
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∥Fx,i�iVx
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2

Q2
,

(24)

J31=
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(

∥

∥T i

(
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∣

∣k
)∥

∥

2
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(
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Figure 4  Schematic integrated control framework for torque 
vectoring and active suspension system
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diagonal matrices, which represent the weight param-
eters. Np is the predictive horizon. In this work, the pre-
dictive horizon is equal to the control horizon. Tf ,ref  is 
the reference torque inputs of the front in-wheel motor. 
The optimization objective (21) is a combination of dif-
ferent energy consumption. The cost function (22) 
considers energy saving through improving the motor 
efficiency, based on optimizing the torque inputs. To 
reduce energy consumption, the selection principle of 
the reference torque inputs is to provide a high-efficiency 
zone for in-wheel motors. The efficiency map for the in-
wheel motor is given in Figure 5, in which the test data 
is collected from a Protean PD-18 in-wheel motor. A 
wheel speed-motor efficiency mapping table is designed 
to obtain the reference torque inputs Tf ,ref  by matching 
the wheel speed. Under some specific driving conditions, 
the torque inputs of the in-wheel motors may deviate 
from the high-efficiency zone. In this case, the energy 
consumption would be reduced if matching the high-
efficiency zone for some in-wheel motors first. Simulta-
neously when rear tires approach the saturation state, a 
small lateral force could cause the vehicle sideslip. Con-
sidering the longitudinal stability control, the in-wheel 
motors of the front axle would satisfy the high-efficiency 
state in priority. The cost function (23) is the power loss 
of the longitudinal slip for the front and rear tires. It can 
be further represented by:

 
For Eq. (24), it denotes the energy consumption 

caused by the actuators. The control objective of the 
vehicle safety can be expressed by

where

(25)J21=

Np−1
∑

t=1

∥

∥

∥
K ′
xi�

2
i

(

k + t
∣

∣k
)

Vx

(

k + t
∣

∣k
)

∥

∥

∥

2

Q2

.

(26)J2 = J12+J22 + J32 ,

where �i =
[

�f �r

]T,  zsi =
[

zsf zsr
]T,  zui =

[

zuf zur
]T . 

W 1 ∈ ℜ2×2 , W 2 ∈ ℜ2×2 and W 3 ∈ ℜ1×1 are the positive 
diagonal matrices. The cost function (27) aims to mini-
mize the tire slip ratio and improve the vehicle safety. In 
addition, as designed in the cost function (22), the front 
in-wheel motors are endowed with the high priority to 
match the efficiency zone, thereby guaranteeing the vehi-
cle longitudinal stability. Furthermore, to enhance the 
vehicle vertical safety, the cost function (28) is presented 
by a soft constraint to depress the suspension deflections, 
which should also satisfy the hard constraint [34] shown 
as follows:

where ρ = [1 1]T, zmax is the permitted maximum value 
of the suspension deflection. As for the cost function 
(29), it represents the speed control requirement of 
drivers. When the vehicle speed is lower than the drivers’ 
intention, drivers would have an acceleration behavior 
and increase the torque inputs. Conversely, drives have 
a deceleration behavior. Therefore, the weight parameter 
W3 has a bigger value to follow the reference speed and 
satisfy the drivers’ demand. The control objective of the 
comfort is expressed as follows:

where

where C = [0 0 0 a74 a75 a76 a77 a78 a79
a7,10 a7,11 ],

Here, the vertical displacement and acceleration of 
vehicle CoG, and pitch angle are employed to quantify 
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Figure 5  Efficiency map of in-wheel motors
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and describe the ride comfort. The cost functions (32) 
and (33) aim to suppress the vehicle heave motion and 
vertical motion, thereby improving the drivers’ comfort. 
Combining Eqs. (21)–(33), the global optimization objec-
tive function is expressed as follows:

where ϑ1 and ϑ2 are relaxation factors to balance the 
performance indices between energy-saving, ride 
comfort and safety control. The vehicle safety should be 
put in the first place during some extreme conditions. 
In this work, the slip ratio �i is selected to evaluate the 
vehicle longitudinal stability, which also satisfies Eq. (35):

To guarantee the vehicle stability when the available 
tire force is small, the relaxation factors is calculated by:

3.2 � Rapid‑Control‑Prototype (RCP) Test
The optimal problem is represented by:

Subject to umin ≤ u ≤ umax and hard constraint (30).
The rapid-control-prototype (RCP) test bench as 

shown in Figure  6 is built to validate the effectiveness 
of the proposed control method. It includes a real-time 
simulation system based on NI-PXI, a high-speed solu-
tion system based on dSPACE, and a high-fidelity vehicle 
system based on CarSim. In the RCP system established 
in this paper, a high-fidelity vehicle dynamic modeling 
business software (CarSim) is embedded into a real-time 
simulator (NI-PXI system). The optimal control solver is 

(34)J = ϑ1J1+ϑ2(J2 + J3),

(35)Fxi = K ′
xi�i ≤ µFzi.

(36)







ϑ2 = max

�

�

�

�

Kxi�i

µFzi

�

�

�

�

,

ϑ1 = 1− ϑ2.

(37)min
u

J .

downloaded to the dSPACE-1401(900  MHz, 16  MByte) 
and running in real time. Based on the vehicle state feed-
back from the CarSim, the dSPACE can calculate the 
optimal inputs, which would be sent to the NI-PXI sys-
tem and executed by the vehicle. The CAN bus is adopted 
to realize the data transmission. To avoid potential sys-
tem disturbances, the first sequence of the optimal inputs 
is employed in the system. In addition, the updating 
states in the LTV model (18) would also transmit to the 
controller at each sampling time.

4 � Test Results
This section validates the effectiveness of the proposed 
controller through the RCP test. The Economic 
Commission for Europe (ECE) is chosen as the test 
condition. To show the control performance visually, a 
part of the velocity profile for the ECE elementary urban 
cycle is adopted to test the stability and energy-saving 
with the proposed torque vectoring strategy, while the 
ECE extra-urban driving cycle with frequent acceleration 
behavior is to test the ride comfort with the proposed 
active suspension system. The vehicle parameters used 
in this work are given in Table  1. The RCP has been 
conducted through the GRAMPC optimization solver 
[35], which is adapted to the nonlinear MPC and can 
be employed in the dSAPCE through code generation 
technology. In addition, the LQR controller is set as 
a comparison test in this work. The road-tire friction 
coefficient is set by 0.5. The control horizon is 3 and the 
prediction horizon is 5.

4.1 � ECE Elementary Urban Cycle
The simulation results under the ECE elementary 
urban cycle are shown in Figure  7. Figure  7(a) shows 
the torque inputs of the in-wheel motors. Figure  7(b) 
is the velocity tracking performance with the different 

Figure 6  RCP test bench

Table 1  Vehicle parameters

Parameter description Value

Vehicle total mass m (kg) 1558

Sprung mass ms (kg) 1274

Unsprung mass at each corner of the chassis mu (kg) 71

Height from CG to roll center hs (m) 0.54

Inertia moment around the y-axis Iy (kg·m2) 1523

Distance between CG and front axle If (m) 1.016

Distance between CG and rear axle Ir (m) 1.562

Front suspension spring stiffness ksf  (N/m) 27000

Rear suspension spring stiffness ksr (N/m) 30000

Suspension damping stiffness bsi (N·s/m) 1856

Tire vertical stiffness kti (N/m) 228000
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strategies. It can be seen that the vehicle can track the 
reference velocities closely with the proposed control 
strategy, while there exists obvious overshoots and 
undershoots with the LQR controller. The maximum 
tracking errors with the two strategies are 0.05 m/s and 
1 m/s, respectively. This is because the tire longitudinal 
stiffness is a constant value when calculating the feed-
back control law for the LQR. However, the accurate 
time-varying tire longitudinal stiffness is obtained with 

the proposed controller in real time and used to calcu-
late the optimized torque inputs.

The efficiency maps of the front in-wheel motor with 
different strategies are given in Figure  7(c) and (d). It 
is clear that with the proposed control strategy, the in-
wheel motor can work in a relatively high-efficiency 
zone, which basically maintains a level of 85%–95%. 
The motor efficiency of the LQR controller keeps low 
in some regions, which is between 40% and 55%. This 

Figure 7  The simulation results under the ECE elementary urban cycle: (a) Torque inputs of in-wheel motors, (b) Vehicle velocity, (c) Motor 
efficiency with the proposed controller, (d) Motor efficiency with LQR controller, (e) Front tire slip ratio, (f) Rear tire slip ratio
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proves that the proposed torque vectoring strategy 
can improve energy efficiency. It could be noted that 
the motor efficiency reduces when the torque input of 
the front wheel reaches − 300 N·m (i.e., 25–32 s) with 
the proposed controller. This can be attributed to the 

velocity tracking. As shown in Figure  7(b), the refer-
ence velocity drops quickly during 25–32 s. Hence, the 
torque inputs are reduced to track the reference veloc-
ities, which causes a lower motor efficiency zone.

Figure 8  The simulation results under the ECE extra-urban driving cycle with frequent acceleration behavior: (a) Vehicle velocity, (b) Active 
suspension force inputs, (c) Vertical displacements, (d) Vehicle pitch angle, (e) Vehicle vertical acceleration
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Figure  7(e) and (f ) are the longitudinal slip ratio of 
the front and rear tires. The tire slip ratio has a smaller 
value with the proposed controller compared to the 
LQR. This means that the vehicle can run in a more 
stable state with less power loss of the longitudinal 
slip. Some fluctuations can be seen in the tire slip ratio. 
This is because the MPC controller is a real-time opti-
mization solver. External disturbances, such as time 
delays in the data transmission, would have an effect 
on the optimization results, thereby affecting the sys-
tem states. According to these comparative test results, 
it can be concluded that the proposed torque vector-
ing can effectively guarantee the velocity tracking per-
formance while ensuring vehicle stability and energy 
efficiency.

4.2 � ECE Extra‑Urban Driving Cycle
The ECE extra-urban driving cycle with frequent accel-
eration behavior is employed to value ride comfort with 
different strategies. Figure 8 shows the test results. As 
shown in Figure  8(a), it can be found that the vehicle 
velocity is close to the reference value with the pro-
posed controller. Figure 8(b) represents the active force 
inputs of the front and rear suspensions, respectively. 
The vertical displacements of vehicle CoG with differ-
ent controllers are given in Figure 8(c). The maximum 
vertical displacements are 0.028 and 0.005  m, respec-
tively. This demonstrates that the vehicle has a smaller 
displacement with the proposed strategy, thereby 
improving the driver’s comfort. Meanwhile, it can be 
seen that when a vehicle has a positive displacement, 
the active suspension generates a negative force to 
reduce the vertical deformation.

Figure  8(d) illustrates the vehicle pitch angle. The 
maximum pitch angle with the proposed controller can 
be reduced by 78% compared to the LQR controller. 
The differential active suspension forces as shown in 
Figure 8(b) significantly depress the pitch angle. It can 
relieve the driver’s discomfort when suffering frequent 
acceleration/deceleration behavior. The vertical 
acceleration of vehicle CoG is shown in Figure  8(e). 
It is clear that the vehicle has a better performance to 
improve the vehicle’s vertical motion. These prove that 
the proposed control strategy is effective for the vehicle 
vertical dynamics control.

5 � Conclusions

(1)	 This paper applies the LTV-MPC controller 
to integrate the vehicle torque vectoring and 
active suspension system for the straight-ahead 
driving condition. The vehicle dynamics model 

considers the nonlinear characteristic of the 
tire. Then the fitting magic formula validated by 
the experimental data is used to obtain the tire 
longitudinal stiffness in real-time, based on which 
updating the system model parameters. To satisfy 
the tracking performance of the system states 
while guaranteeing vehicle safety, energy-saving 
and comfort, a combination of the optimization 
functions is formulated. Rapid control prototype 
tests are conducted to verify the proposed control 
strategy. The control effect of the LQR controller 
is compared with that of the proposed control 
strategy. The results show that compared with the 
LQR control strategy, the proposed control strategy 
can improve motor efficiency by nearly 73%.

(2)	 Two types of ECE test results show that the 
proposed controller can effectively guarantee the 
velocity tracking performance while ensuring 
vehicle stability and improving energy efficiency 
and comfort. In the future, the vehicle steering 
behavior is also expected to be combined in the 
system.
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