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Abstract 

An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly dur-
ing the past decades. However, few papers systematically review these researches. By analyzing existing literature, this 
paper summarizes the process of fixture layout optimization and the methods applied. The process of optimization 
is made up of optimization objective setting, assembly variation/deformation modeling, and fixture layout optimiza-
tion. This paper makes a review of the fixture layout for thin-walled parts according to these three steps. First, two 
different kinds of optimization objectives are introduced. Researchers usually consider in-plane variations or out-of-
plane deformations when designing objectives. Then, modeling methods for assembly variation and deformation are 
divided into two categories: Mechanism-based and data-based methods. Several common methods are discussed 
respectively. After that, optimization algorithms are reviewed systematically. There are two kinds of optimization 
algorithms: Traditional nonlinear programming and heuristic algorithms. Finally, discussions on the current situation 
are provided. The research direction of fixture layout optimization in the future is discussed from three aspects: Objec-
tive setting, improving modeling accuracy and optimization algorithms. Also, a new research point for fixture layout 
optimization is discussed. This paper systematically reviews the research on fixture layout optimization for thin-walled 
parts, and provides a reference for future research in this field.
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1  Introduction
With the characteristics of lightweight and easy form-
ing, thin-walled parts are widely used in automobiles, 
ships, aircraft, and many manufacturing industries [1]. 
According to the different research objects, research-
ers also call thin-walled parts, sheet metal, or compli-
ant parts. In these fields, thin-walled parts with different 
shapes and sizes are usually assembled to construct outer 
shells, such as body in white (BIW), ship hull, and fuse-
lage, which provides necessary space for passengers and 

cargoes. The BIW and hull are made of sheet metal, while 
the fuselage may be made of composite sheets. However, 
no matter what their materials are, they all have common 
characteristics that their thickness is much less than their 
length and width.

In the assembly process of thin-walled parts, the fix-
ture layout plays a critical role in the assembly quality 
improvement [2–4]. The assembly processes of BIW, ship 
hull, and fuselage are typical multi-stage assembly pro-
cesses. Any dimensional variation of thin-walled parts 
or deformation from the designed shape at single-stage 
assembly can easily stack up to significant dimensional 
misalignments and then impact the assembly quality 
of the final products. A reasonable fixture layout can 
not only locate the position and posture of thin-walled 
parts but also restrict the deformation induced by grav-
ity or other forces in the assembly process. Therefore, an 
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increasing number of scholars have researched fixture 
layout optimization for thin-walled parts during the past 
decades.

Fixture layout optimization for thin-walled parts can 
be classified into optimization under the rigid and com-
pliant assumption. Under the rigid assumption, the 
part deformation induced by gravity or other forces is 
ignored. However, the assembly variation caused by the 
part manufacturing variations and fixture errors [5] will 
greatly threaten the assembly quality of the products in 
mass production. Thus, the researchers mainly focus on 
the robust design of fixture layouts to reduce the assem-
bly variation. Generally, the “3-2-1” locating principle is 
used when the thin-walled parts are considered as rigid 
parts. Figure 1(a) shows a “3-2-1” fixture layout. A thin-
walled part is held by three NC blocks and two pins. With 
the “3-2-1” locating principle, all 6 degrees of freedom 
can be restricted and the part can be completely located. 
In this locating frame, the robust design of fixture lay-
outs mainly aims to reduce the variation in the X-Z plane 
(shown in Figure  1(a)), called as in-plane variation, by 
optimizing the positions of NC blocks, the positions of 
pins, and the slot orientations.

Under the compliant assumption, the researchers 
mainly consider the out-of-plane deformation. The low 
ratio of thickness to length or width leads to low out-of-
plane stiffness for the thin-walled parts. Thus, the large 
dimensional thin-walled parts, such as compliant parts 
of hull or fuselage, are easy to deform under the action 
of gravity in the assembly process. The out-of-plane 
deformation will result in an assembly gap between the 
two parts to be assembled. Because thin-walled parts are 
generally assembled by welding or riveting, the assembly 
gap will greatly affect the quality of welding and riveting. 

In addition, the out-of-plane deformation in the previ-
ous assembly stage will also affect the assembly quality in 
the later stage. In order to reduce the out-of-plane defor-
mation for the thin-walled parts, Cai et al. [6] proposed 
the “N-2-1” (N>3) locating principle. Figure  1(b) shows 
a typical “N-2-1” fixture layout. More than three fixtures 
are located on the main datum plane to reduce the out-
of-plane deformation. In this locating frame, the fixture 
layout optimization mainly optimizes the positions and 
the number of “N” locators.

Figure 2 shows the development of fixture layout opti-
mization for thin-walled parts. It counts the quantity 
of academic achievements in the field since 1991 based 
on the search results of the web of science. As the fig-
ure illustrates, there have been an increasing number of 
researches in this field. Especially after 2016, the num-
ber of published results has increased significantly. Thus, 
scholars’ research on fixture layout optimization is deep-
ening. It also shows the development of modeling meth-
ods for the relationship between the assembly quality 
and the fixture layout and optimization methods used in 
fixture layout optimization. As for modeling methods, 
many of them are based upon mechanism. Among them, 
the finite element method (FEM) was first applied to fix-
ture layout optimization. In the middle and late 1990s, 
the Jacobian matrix method and state space method were 
successively used for modeling. With the development 
of computer technology, data-based modeling methods 
appeared around 2000. The early data-based method 
was mainly response surface methodology (RSM), and 
then researchers tried other regression models. With the 
development of artificial intelligence technology, artifi-
cial neural network (ANN) method comes into being. In 
terms of optimization algorithms, the algorithms used 
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Figure 1  Fixture layout for thin-walled parts under different assumptions: (a) A typical “3-2-1” fixture layout under rigid assumption, (b) A typical 
“N-2-1” fixture layout under compliant assumption
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in the early researches are the traditional nonlinear pro-
gramming algorithms. Over time, these traditional non-
linear programming algorithms are almost replaced by 
various heuristic algorithms. Representative heuristic 
algorithms include ant colony optimization (ACO), par-
ticle swarm optimization (PSO), and genetic algorithm 
(GA). After 2010, many other heuristic algorithms have 
been applied.

Researchers have done a lot of researches in the past 
few decades. Based on past researches, we find that fix-
ture layout optimization can usually be accomplished 
with the following three steps:

(1)	 Problem formulation. In this step, researchers 
transform the practice assembly problem into a 
mathematical expression and construct an optimi-
zation problem including optimization objectives, 
constraints, and decision variables.

(2)	 Modeling. Researchers use different methods to 
build the relationship model between optimization 
objectives and the fixture layout.

(3)	 Searching for an optimum solution. In this step, 
several optimization strategies will be applied to 
find an optimized fixture layout.

Based on these three steps, pieces of literature related 
to developments of the fixture layout optimization for 
thin-walled parts are reviewed. The following is how the 
rest of this paper is organized. Different optimization 
objectives in thin-walled part assembly are discussed 
in Section  2. Section  3 summarizes different modeling 
methodologies for the relationship between optimiza-
tion objectives and fixture layout. In Section  4, several 
commonly used optimization algorithms used in fixture 
layout for the thin-walled parts are introduced. In Sec-
tion  5, we discuss the limitations of current researches 

Figure 2  Development of fixture layout optimization for thin-walled parts
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and future challenges. At last, this paper is summarized 
in Section 6.

2 � Optimization Objectives of Fixture Layout 
Optimization in Thin‑Walled Part Assembly

For the sake of optimizing the fixture layout for thin-
walled parts, actual engineering problems have to be 
transformed into mathematical problems. An optimiza-
tion problem always contains three elements: optimiza-
tion objectives, constraints, and decision variables. In 
fixture layout optimization, the decision variables are 
usually fixture position coordinates or node numbers. 
Constraints are set according to the actual situation, usu-
ally including non-interference between fixtures, selec-
tion only within a certain range, etc. The overall goal of 
optimizing fixture layout is to improve quality. As the in-
plane variations and out-of-plane deformations are inde-
pendent of each other [7], researchers usually consider 
either of them when setting specific objectives, which will 
be discussed in this section. Then the comparative analy-
sis of different optimization objectives will be conducted.

2.1 � Considering In‑Plane Variations
When considering in-plane variations, the thin-walled 
parts are usually assumed to be rigid, which means that 
they will not deform under force. Considering the in-
plane variations, researchers have done a lot of studies 
on the robust design of fixture layouts for the thin-walled 
parts. The robust design means minimizing part varia-
tions caused by source variations including part manu-
facturing variations and fixture errors [5]. In 1999, Rikard 
Söderberg et al. [8] highlighted the importance of robust 
locating scheme design in their paper. Furthermore, 
Camelio et al. [9] gave an example to verify the influence 
of fixture layout on thin-walled part assembly variation 
in 2004.

Minimization of the in-plane variations is one kind 
of optimization objective. Variations of the key prod-
uct characteristics (KPCs) are adopted to represent the 
in-plane variations. Cai [5] proposed a novel method to 
achieve this objective. Only the locations of pins and slots 
were optimized. Different from considering the case of 
single-station in this article, Masoumi et al. [10] consid-
ered the minimization of in-plane variations in the case 
of multi-station. The objective was to minimize the sum 
of squared standard in-plane deviations for KPCs. They 
optimized the assembly sequence and the fixture layout 
of each station to achieve the goal.

Minimization of the sensitivity of the part to source 
variations is the other kind of optimization objective. 
Kim and Ding [11] conducted fixture layout design for 
parts assembled in multiple stations. They used the 
E-optimality criterion to minimize the upper sensitivity 

bound of the fixture layout. The decision variables were 
the positions of principal locating points. Li et  al. [12] 
was aimed at minimizing the square root of the condition 
number of the sensitivity matrix they obtained, but the 
E-optimality criterion has been adopted more frequently. 
Tian et al. [13] chosed minimizing the sensitivity of final 
variation to fixture errors as the objective. The slot ori-
entations as well as the positions of pins were selected 
to achieve the optimization objective. Huang et  al. [14] 
modeled an automotive floor pan assembly process and 
conducted the fixture layout design. A case of a three-
station assembly process was studied by Xie et  al. [15]. 
From these studies, we can find that the fixture layout 
optimization considering in-plane variations is mainly 
to improve robustness. For thin-walled parts, the out-
of-plane deformation is another critical problem in the 
assembly process. Therefore, many scholars have consid-
ered out-of-plane deformations when designing optimi-
zation objectives.

2.2 � Considering Out‑of‑Plane Deformations
When considering out-of-plane deformations, the thin-
walled parts are usually assumed to be compliant, which 
are usually called compliant parts. The thin-walled parts 
will deform due to their low out-of-plane stiffness. The 
assembly gap caused by out-of-plane deformations will 
have an adverse impact on the assembly process and 
reduce the assembly quality. In addition, the deformation 
in the previous assembly process will also be transferred 
to the next station, resulting in the accumulation of devi-
ations. Therefore, the reduction of part deformation is 
the main optimization objective.

Minimization of the deformation of KPCs is one com-
mon optimization objective. Generally, the deformation 
perpendicular to the surface is taken into consideration 
while deformations in other directions are not consid-
ered. In the earliest works, researchers would like to min-
imize the total deformation of thin-walled parts [6]. They 
meshed the plate and expressed the total deformation by 
adding together the squares of deformations which are 
perpendicular to the surface at the grid nodes. The for-
mulation is as Eq. (1):

where wi(X) represents the deformations perpendicu-
lar to the part surface at the i th node. The loading that 
caused deformations can be resistance spot welding force 
or any other forces applied onto the surface of the parts. 
This method can effectively control the deformations 
perpendicular to the surface, but ignores the influence of 
the deformations in other directions.

(1)F(X) =
∑m

i=1
wi(X)

2
,
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Therefore, some other researchers use strain energy to 
express deformation [16–19]. When a force is applied to 
the body and causes deformation, the work done by the 
force is stored in the body. This is strain energy. Defor-
mations in all directions can be taken into consideration 
with the help of strain energy. The total strain energy is 
calculated as Eq. (2):

where σ and ε are the stress and strain vectors, U is the 
strain energy, and V  is the body’s volume. Ahmad et  al. 
[16] chose to minimize the total strain energy as the opti-
mization objective. Then, Refs. [17, 18] proposed differ-
ent methods with this optimization objective. A method 
for designing discrete fixture layout under multiple loads 
was presented by Bi et  al. [19]. They linked the strain 
energy to the fixture layout and wanted to reduce it. The 
above two are conventional optimization objectives.

There are also some innovative optimization objec-
tives according to different practical needs. De Meter 
[20] intended to reduce the maximum displacement-to-
tolerance ratio of KPCs. Minimization of the rigid body 
displacements owing to elastic deformation of loaded 
fixture–part contacts was considered by Li and Melkote 
[21, 22]. A method presented by Du et al. [23] aimed to 
reduce dimensional gaps along with the interface of two 
parts. This objective considered that the gaps would 
affect the seam welding quality. Considering the expense 
of part production and assembly quality of parts, Aderi-
ani et al. [24] aimed to minimize the expense of part pro-
duction and satisfy the requirement of assembly at the 
same time. The above content introduces the common 
optimization objectives in fixture layout optimization. 
Designing appropriate objectives is the basis of fixture 
layout optimization. Therefore, determining the optimi-
zation objectives according to the actual needs is the first 
step of optimization.

2.3 � Comparative Analysis of Different Optimization 
Objectives

Based on the previous introduction, we compare and 
analyze the optimization objectives mentioned above 
(shown in Table  1). There are four main expressions of 
optimization objectives considering in-plane variations. 
Two of them directly aim to minimize the statistics of 
variations of KPCs, while the other two aim to minimize 
the sensitivity of source deviation. Their common point 
is to improve the robustness of fixture layout. The opti-
mization objectives considering out-of-plane deforma-
tions are changeable. Researchers have different choices 
according to different practical needs. Ref. [6] chosed to 

(2)U =
1

2

∫

V

{σ }T{ε}dV ,

minimize the sum of squares of deformations at nodes, 
Refs. [16–19] chosed to minimize strain energy, and 
Ref. [20] chosed to minimize the ratio of profile error 
to tolerance. All of them directly control the deforma-
tion of parts. In addition to these optimization objec-
tives that directly take deformations as the criterion, 
some researchers have considered other effects caused 
by deformations. Refs. [21, 22] considered that deforma-
tions would cause positioning deviations, so they hoped 
to minimize the impact of elastic deformations on posi-
tioning accuracy. Based on the engineering practice of 
ship plane welding, Ref. [23] took the minimization of the 
assembly gap between two parts caused by deformations 
as the optimization goal, and improved the welding qual-
ity. Considering the cost of controlling deformations, Ref. 
[24] aimed to reduce the cost on the premise of meeting 
the dimensional requirements. Considering the indirect 
influence of out-of-plane deformations, these references 
do not directly control the deformation, but put forward 
diversified optimization objectives from the perspective 
of practical demands.

2.4 � Epilog
This section lays emphasis on the selection of optimiza-
tion objectives in two different situations, considering 
in-plane variations or considering out-of-plane deforma-
tions. When considering in-plane variations, research-
ers focus on robust design of fixture layout. On the other 
hand, when considering out-of-plane deformations, 
expressions of optimization objectives have more forms. 
Researchers considered the influence of out-of-plane 
deformations either directly or indirectly. This section 
introduces several common optimization objectives and 
compares them. For fixture layout optimization, deter-
mining appropriate optimization objective is the first 
step. Subsequently, research on how the fixture layout 
influences the objective will be conducted.

3 � Modeling Methods of Assembly Variation 
or Deformation for Fixture Layout Optimization

After determining the optimization objectives, we should 
model the relationship between optimization objectives 
and fixture layout. There are many different modeling 
methods and they consist of two categories: Mechanism-
based and data-based modeling approaches, which will 
be discussed in Section 3.1 and Section 3.2, respectively. 
After that, we compare the advantages and limitations of 
these modeling methods.

3.1 � Mechanism‑Based Modeling Methods
Mechanism-based modeling of thin-walled part assembly 
is to get the causal relationship between assembly varia-
tion and variation source, find out the rules reflecting the 



Page 6 of 25Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:17 

Ta
bl

e 
1 

Co
m

pa
ris

on
 o

f d
iff

er
en

t o
pt

im
iz

at
io

n 
ob

je
ct

iv
es

O
bj

ec
tiv

es
Ph

ys
ic

al
 m

ea
ni

ng
En

gi
ne

er
in

g 
si

gn
ifi

ca
nc

e
Re

fe
re

nc
es

Co
ns

id
er

in
g 

in
-p

la
ne

 v
ar

i-
at

io
ns

M
in

im
iz

e 

F
(X
)
=

1
√
2
N
K
P
C

√
∑

N
K
P
C

i=
1
[σ

2
(δ
x 0
) i
+

σ
2
(δ
y 0
) i
]

σ
(δ
x 0
) i
,σ

(δ
y 0
) i
:  

Th
e 
i  t

h 
KP

C
’s 

va
ria

tio
ns

 
in

 th
e 

x 
an

d 
y 

di
re

ct
io

ns
N
KP
C

 : N
um

be
r o

f K
PC

s

M
in

im
iz

in
g 

th
e 

po
ol

ed
 s

ta
nd

ar
d 

de
vi

at
io

n 
of

 re
su

lta
nt

 e
rr

or
s 

at
 a

ll 
KP

C
s

M
in

im
iz

in
g 

va
ria

tio
ns

 c
au

se
d 

by
 s

ou
rc

e 
va

ria
-

tio
ns

 a
nd

 im
pr

ov
in

g 
ro

bu
st

ne
ss

Ca
i [

5]

M
in

im
iz

e 
F
(X
)
=

∑
m i=

1
ST
D
2 x
(i
)
+

ST
D
2 z
(i
)

ST
D
x , 
ST
D
y
:  S

ta
nd

ar
d 

de
vi

at
io

ns
 in

 th
e 

X 
an

d 
Z 

di
re

ct
io

ns

M
in

im
iz

in
g 

th
e 

su
m

m
at

io
n 

of
 s

qu
ar

ed
 s

ta
nd

ar
d 

in
-p

la
ne

 d
ev

ia
tio

ns
M

as
ou

m
i e

t a
l. 

[1
0]

M
in

im
iz

e 
S m

a
x
=

�
m
a
x
(D

T
D
)

D
:  a

 s
en

si
tiv

ity
 in

de
x 

re
fle

ct
s 

th
e 

re
la

tio
ns

hi
p 

be
tw

ee
n 

th
e 

fin
al

 v
ar

ia
tio

n 
an

d 
so

ur
ce

 v
ar

ia
tio

ns

M
in

im
iz

in
g 

th
e 

sq
ua

re
 o

f t
he

 2
-n

or
m

 o
f s

en
si

tiv
-

ity
 m

at
rix

M
in

im
iz

in
g 

th
e 

se
ns

iti
vi

ty
 o

f t
he

 p
ar

t t
o 

so
ur

ce
 

va
ria

tio
ns

 a
nd

 im
pr

ov
in

g 
ro

bu
st

ne
ss

Ki
m

 a
nd

 D
in

g 
[1

1]
, T

ia
n 

et
 a

l. 
[1

3]
, 

H
ua

ng
 e

t a
l. 

[1
4]

, X
ie

 e
t a

l. 
[1

5]

M
in

im
iz

e 
F
(X
)
=

√
c
o
n
d
(S

T
S)

S
:  a

 s
en

si
tiv

ity
 in

de
x 

re
fle

ct
s 

th
e 

re
la

tio
ns

hi
p 

be
tw

ee
n 

th
e 

fin
al

 v
ar

ia
tio

n 
an

d 
so

ur
ce

 v
ar

ia
tio

ns

M
in

im
iz

in
g 

th
e 

sq
ua

re
 ro

ot
 o

f t
he

 c
on

di
tio

n 
nu

m
be

r o
f t

he
 s

en
si

tiv
ity

 m
at

rix
Li

 e
t a

l. 
[1

2]

Co
ns

id
er

in
g 

ou
t-

of
-p

la
ne

 
de

fo
rm

a-
tio

ns

M
in

im
iz

e 
F
(X
)
=

∑
m i=

1
w
i(
X
)2

w
i(
X
)
:  t

he
 d

ef
or

m
at

io
n 

pe
rp

en
di

cu
la

r 
to

 th
e 

pa
rt

 s
ur

fa
ce

 a
t t

he
 i

 th
 n

od
e

M
in

im
iz

in
g 

th
e 

su
m

 o
f s

qu
ar

es
 o

f n
od

al
 d

ef
or

-
m

at
io

ns
M

in
im

iz
in

g 
de

fo
rm

at
io

ns
 c

au
se

d 
by

 fo
rc

es
 

an
d 

re
du

ci
ng

 a
ss

em
bl

y 
er

ro
rs

 c
au

se
d 

by
 d

ef
or

-
m

at
io

ns

Ca
i e

t a
l. 

[6
]

M
in

im
iz

e 
F
=

∑
n i=

1
u
i

u
i : 

st
ra

in
 e

ne
rg

y 
of

 th
e 
i  t

h 
fin

ite
 e

le
m

en
t

M
in

im
iz

in
g 

th
e 

su
m

 o
f s

tr
ai

n 
en

er
gy

 o
f fi

ni
te

 
el

em
en

ts
A

hm
ad

 e
t a

l. 
[1

6−
18

], 
Bi

 e
t a

l. 
[1

9]

M
in

im
iz

e 
F
=

m
a
x

{
ei T
i
fo
r
i
=

1
,·
·
·
,M

}

ei
:  p

ro
fil

e 
er

ro
r o

f t
he

 i
 th

 p
oi

nt
T
i  : 

pr
ofi

le
 to

le
ra

nc
e 

of
 th

e 
i  t

h 
po

in
t

M
in

im
iz

in
g 

th
e 

m
ax

im
um

 ra
tio

 o
f e

rr
or

 to
 to

le
r-

an
ce

D
e 

M
et

er
 [2

0]

M
in

im
iz

e 
F
=

(∑
N i=

1
�

i)
T
(∑

N i=
1
�

i)

�
i
:  t

he
 ri

gi
d 

bo
dy

 m
ot

io
n 

at
 th

e 
i  t

h 
fix

tu
rin

g 
po

in
t

M
in

im
iz

in
g 

th
e 

to
ta

l r
ig

id
 b

od
y 

m
ot

io
n

M
in

im
iz

in
g 

po
si

tio
ni

ng
 e

rr
or

s 
ca

us
ed

 b
y 

el
as

-
tic

 d
ef

or
m

at
io

ns
 a

nd
 im

pr
ov

in
g 

po
si

tio
ni

ng
 

ac
cu

ra
cy

Li
 a

nd
 M

el
ko

te
 [2

1,
 2

2]

M
in

im
iz

e 
H
(x
)
=

∑
m

0

i=
1
ϕ
i(
x)
/
m

0

ϕ
i(
x )

: t
he

 d
im

en
si

on
al

 g
ap

 a
t n

od
e 
i  

al
on

g 
th

e 
in

te
rf

ac
e 

be
tw

ee
n 

th
e 

co
m

pl
ia

nt
 

pa
rt

s 
to

 b
e 

as
se

m
bl

ed
m

0
:  t

he
 n

um
be

r o
f t

he
 n

od
es

 a
lo

ng
 th

e 
as

se
m

-
bl

y 
in

te
rf

ac
e 

be
tw

ee
n 

tw
o 

pa
rt

s

M
in

im
iz

in
g 

th
e 

av
er

ag
e 

di
m

en
si

on
al

 g
ap

 
al

on
g 

th
e 

in
te

rf
ac

e 
be

tw
ee

n 
th

e 
co

m
pl

ia
nt

 
pa

rt
s 

to
 b

e 
as

se
m

bl
ed

Re
du

ci
ng

 th
e 

as
se

m
bl

y 
ga

p 
be

tw
ee

n 
tw

o 
pa

rt
s 

an
d 

im
pr

ov
in

g 
th

e 
w

el
d 

qu
al

ity
D

u 
et

 a
l. 

[2
3]

M
in

im
iz

e 
f
=

C
C
m
a
x
+

∑
K k=

1
p
(C

p
u
k
)

C
 : t

ot
al

 c
os

t o
f p

ro
du

ct
io

n
C
p
u
: u

pp
er

 p
ro

ce
ss

 c
ap

ab
ili

ty
 in

de
x

p
( C

p
u
k

)
:  a

 p
en

al
ty

 fu
nc

tio
n 

re
la

tiv
e 

to
  C
p
u
 

of
 th

e 
k  t

h 
KP

C

M
in

im
iz

in
g 

th
e 

ex
pe

ns
e 

of
 p

ro
du

ct
io

n
Re

du
ci

ng
 th

e 
ex

pe
ns

e 
w

hi
le

 m
ee

tin
g 

qu
al

ity
 

re
qu

ire
m

en
t

A
de

ria
ni

 e
t a

l. 
[2

4]



Page 7 of 25Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:17 	

internal mechanism, and then establish the mathemati-
cal model of the rules. Three common mechanism-based 
modeling methods in fixture layout optimization are the 
Jacobian matrix method, state space method, and FEM. We 
will introduce them respectively in the following.

3.1.1 � Jacobian Matrix Method
Jacobian matrix is composed of all partial derivatives of a 
vector function. Usually, people use Jacobian matrix for 
coordinate transformation.

If f  is a vector function of n equations with n variables, 
then the Jacobian matrix is obtained by taking the first-
order partial derivatives of f  . That is, consider the set of 
vector functions such as Eq. (3):

Then, the Jacobian matrix is as shown in Eq. (4):

The Jacobian matrix is used for the robust fixture layout 
design for rigid parts. Cai et  al. [25] proposed using the 
Jacobian matrix modeling method to optimize fixture lay-
out. Although what they studied were 3D parts, the mod-
eling method is significant for thin-walled parts. Then, Cai 
[5] used this method to help robust layout design for thin-
walled parts. Through these two papers, we can clearly 
know how the Jacobian matrix works. Three locators are 
needed to locate the part deterministically as shown in 
Figure 3. The variations at any KPCs can be expressed as a 
vector in Eq. (5) [5]:

where the Jacobian is expressed as Eqs. (6) and (7):

(3)





y1
y2
y3
.
.
.

yn




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.

.

.
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(4)
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.

(5)δq0 = −J−1
ΦRδR,

(6)J =




−n1x −n1y n1yx1 − n1xy1
−n2x −n2y n2yx2 − n2xy2
−n3x −n3y n3yx3 − n3xy3



,

(7)ΦR =


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n1x
0

0

n1y
0

0

0

n2x
0

0

n2y
0

0

0

n3x

0

0

n3y



,

and δR ≡
[
δx1 δy1 δx2 δy2 δx3 δy3

]
 represents the 

deviations of fixture points. ni ≡ [ nix niy ]
T , i = 1, 2, 3 

represents the vector perpendicular to surface of each 
point. So that the variation δq0 is associated with the 
source variations δR . Then we select fixture positions to 
reduce the δq0.

Xing et  al. [26] and Lu et  al. [27] conducted their 
research with the Jacobian matrix method respectively. 
Their research objects were both thin-walled parts and 
the number of locators was greater than three. The opti-
mization process consisted of two stages. Firstly, they 
considered the robustness and geometry stability to 
determine three fixture locations on the datum surface. 
This step was taken under the rigid assumption. Then 
they used other methods to attain the best location for 
the fourth fixture. In the first stage, the Jacobian matrix 
was used to construct the model. They constructed the 
Jacobian matrix according to the method described 
above, and found three suitable nodes to place the fixture. 
This method greatly reduced the complexity of optimiza-
tion and improved efficiency. Recently, Jacobian matrix 
has been used to analyze part positioning errors caused 
by fixture layout. Liu et al. [28] used Jacobian matrix to 
analyze the influence of pin position deviation on part 
position and orientation. Tang et  al. [29] used Jacobian 
matrix to help build a linearized model, which is then 
derived to convey the relationship between the errors of 
locating points and errors. Nevertheless, Jacobian matrix 
method is suitable for solving single-station assembly. For 
multi-station assembly, the common modeling method is 
the state space method, which will be introduced next.

3.1.2 � State Space Method
State space modeling method was proposed by Jin and 
Shi [30]. This method is suitable for multi-station assem-
bly. In a multi-station assembly process, the positions of 
the fixtures will be reused on different stations. The reus-
ing of fixture locating holes will lead to variation propa-
gation from station to station. This means that variations 
could arise at every station, and they will be propagated 

Figure 3  A deterministically located part
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between each station. In the end, it will accumulate on 
the final assembly.

Figure 4 shows an N-station assembly line. The vector 
xk means the variation accumulated to station k , which 
is composed of translations and rotations of the parts. uk 
represents the fixture deviation and wk represents other 
un-modeled deviations. In addition, considering that the 
measured value and the ideal value cannot be the same, 
the noise item is added as vk . The state space model can 
be expressed as Eq. (8) [11, 13–15]:

Ak−1 means the re-orientation influence in station k 
caused by station k − 1 and Bk describes the influence of 
fixture layout at station k . Ck represents KPCs at station 
k . The variation at station k is represented by yk . Ak−1 , 
Bk , and Ck are all described in detail in Refs. [30, 31].

Based on the above method, Zhang and Shi [32, 33] 
conducted variation modeling for compliant composite 
part assembly. First, they discussed variation modeling 
for parts assembled in single station. The fixture position 
error and manufacturing error were considered. Then 
a variation propagation model was developed with the 
intention to carry out variation analysis. This model took 
many factors into account, including relocation-induced 
error, fixture position error, and part manufacturing 
error. They linked the final variation to source variations 
with the state space model. Their model was proved by 
a two-station assembly process of three composite lami-
nated plates.

As the state space method can show the relationship 
between fixture deviations and final part variations, 
it was applied to illustrate the complex propaga-
tion of fixture adjustments from station to station by 
Chaipradabgiat et al. [34]. The objective was to reduce 
total production expense. A case of assembly in multi-
ple stations proved that the approach was practicable. 
Kim and Ding [11] applied this method to a four-station 

(8)
xk = Ak−1xk−1 + Bkuk + wk ,

yk = Ckxk + vk ,

k = 1, . . . ,N .

assembly process for an automotive side-frame. They 
only considered the variations caused by the fixtures, 
which is expressed by ŷ  . The sum of product devia-
tions, ŷTŷ  , was used to evaluate whether the product 
dimension is qualified. Their goal was to get a fixture 
layout which made the part quality insensitive to fixture 
errors, so they defined a sensitivity index as:

Apparently, DTD plays an important role. Therefore, 
the measure of DTD was used to define the sensitivity 
index. After comparing several optimality criteria, they 
chose E-optimality, which is the square of the 2-norm 
of design matrix D , to represent the upper sensitivity 
bound of the fixture layout. Then they adopted an effi-
cient algorithm to find a suitable fixture layout. Their 
method is helpful to enhance the robustness of the fix-
ture layout. However, they did not take the influence 
of the slot orientations into consideration. Tian et  al. 
[13] presented a method which could design pins’ posi-
tions and slot orientations. In this study, the assembly 
process of the automotive inner panel was utilized to 
explain how to design a robust fixture layout. Consid-
ering that slot orientations can be any value between 
0° and 180° and they are not always the same with the 
angle between the global and local coordinate systems, 
Tian et al. modified the matrix which transformed the 
fixture error to the part locating error. This modeling 
method was proved to be effective in experiments. 
After this study, the state space modeling method 
was used in the fixture optimization by several other 
researchers [10, 14, 15, 35]. These researchers have 
made the state space modeling method more than 
just stay in the theoretical research stage. State space 
method is widely used in variation modeling of multi 
station assembly. This method focuses on variations 
rather than deformations. FEM introduced next mainly 
focuses on the deformation of parts.

(9)S ≡
ŷTŷ

uTu
=

uTDTDu

uTu
.

Figure 4  A generic N-station assembly system
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3.1.3 � Finite Element Method
FEM is a very accurate way to calculate the part defor-
mation. It divides the thin-walled part into element grids 
to form the model of the actual part. Each element has 
a simple shape (such as square and triangle). Then, con-
straints and loads are added to make the finite element 
model close to reality as much as possible. In this way, 
we can get the stiffness matrix of each element. The 
unknown quantity on each element is the displacement of 
each node. These nodes are the connection points of the 
elements. We can combine the stiffness matrices of these 
individual elements to form the total stiffness matrix of 
the whole thin-walled part. Then we give the known force 
and boundary conditions to obtain the unknown dis-
placement. The stress in each element can be calculated 
from the change of displacement on the node.

Due to its good performance in analyzing deformation, 
FEM is usually used for fixture layout optimization. It 
was applied to the fixture design and synthesis by Haynes 
and Lee [36]. Then the FEM was utilized by DeVries and 
Menassa [37]. They described how the FEM played a 
role in computing the deflections of the part. Then they 
proved this method with three different loading cases. 
Zhong and Hu [38] presented a method to express the 
part geometric variation. The static variation was calcu-
lated using the finite element analysis (FEA) software. 
The method could be generalized to the case with N 
fixtures.

When using FEM, linear elastic deformation assump-
tion is adopted, so the global stiffness equation for the 
thin-walled part can be written as:

where f  means force vector, u means displacement vec-
tor, and K  means the global stiffness matrix. Research-
ers usually calculate and analyze displacement directly in 
the FEA software without deriving the stiffness matrix. 
In other words, the calculation process is a black box. 
We input constraints and forces and get deformation 
results without considering the intermediate process or 
the modifications of the stiffness matrix. The FEA soft-
ware ANSYS is widely used. Chen et  al. [39] calculated 
the deformation of machined surfaces of parts with the 
help of ANSYS. Researchers wrote parameters includ-
ing the clamping force and the fixture positions to a text 
file. These parameters can then be read and calculated 
by ANSYS. Then the results turned into fitness values in 
the GA procedure. The method that combines ANSYS 
and MATLAB is popular. Liao et al. [40] and Vishnupri-
yan et al. [41] adopted this method to find the best loca-
tions of fixtures or optimize fixture layout and clamping 
forces simultaneously. In the optimization process, 
ANSYS environment for assembly variation computation 

(10)Ku = f ,

and MATLAB environment for optimization procedure 
exchange data directly. Kumar and Paulraj [42] pre-
sented the optimization of the locations of clamps and 
locators using GA with ANSYS parametric design lan-
guage (APDL). Wu et al. [43] used ANSYS to reduce the 
deflections of the flexible blade. Meanwhile, ABAQUS is 
another finite element software. Hajimiri et  al. [44] cal-
culated the part deformation under clamping and other 
forces using ABAQUS software. Xiong et  al. [45] and 
Yang et  al. [46] fixed the parameters of the FEA model 
with Python.

In papers mentioned above, researchers only thought 
about static or quasi-static forces. They did not take the 
dynamic response of the part into account. Considering 
the dynamic forces, Dou et  al. [47] employed APDL to 
compute the objective function to find an optimal fixture 
layout. For the composite fuselage, Wen et al. [48] real-
ized the control of the fuselage shape through FEA. They 
used ANSYS to build the finite element model, calibrated 
the model through the actual measurement results, and 
then optimized the actuators’ positions to realize shape 
control.

In addition to calculating the deformation directly in 
the FEA software, some researchers also chose to derive 
and modify the stiffness matrix to calculate the defor-
mation. Such behavior can be summarized as building a 
finite element solver. Du et  al. [23] adopted direct stiff-
ness method to obtain the deformation of each node. 
They modified the stiffness matrix according to modifica-
tion rules proposed by Wu et al. [49], and then obtained 
the deformation according to Hooke’s law. Liu and Hu 
[50] adopted the method of influence coefficients (MIC) 
to deal with stiffness matrix. Aderiani et al. [51] also uti-
lized MIC to optimize parameters including the loca-
tion and number of clamps, slot orientation, and type 
and location of hole and slot simultaneously. In order to 
reduce the amount of calculation by FEM, Sayeed et  al. 
[52, 53] proposed a linear mixed-integer programming 
formulation. They utilized a statically reduced finite ele-
ment model and used indicator variables to find the con-
nection between the boundary conditions of the finite 
element model and the fixture positions. The compu-
tational efficiency was improved with the use of these 
variables because researchers did not have to reduce and 
inverse the stiffness matrix repeatedly.

FEA is the most common modeling method. Through 
FEA, the deformation of the part can be known accu-
rately. However, dividing the part into multiple small 
elements also means that the amount of calculation 
increases, thus the calculation time increases and the 
efficiency of fixture layout optimization decreases. To 
enhance optimization efficiency, data-based modeling 
methods are applied.
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3.2 � Data‑Based Modeling Methods
In addition to mechanism-based modeling methods, 
there are data-based modeling methods. The data are 
mainly obtained by FEA. There are two typical kinds of 
data-based methods: regression modeling methods and 
ANN methods. Regression modeling is a traditional 
method to find the relationship among variables. Mul-
tiple groups of data are obtained through experiments, 
and the type of regression model is determined accord-
ing to the data distribution. Then the model parameters 
are estimated, and finally the mathematical relation-
ship between the dependent and independent variables 
is obtained. The ANN is a new modeling method with 
the development of machine learning, it is made up of 
an input layer, one or more hidden layers and an output 
layer. The ANN method can represent the complex rela-
tionship between multiple inputs and outputs. In this 
section, we will introduce and analyze the regression 
modeling methods and ANN methods.

3.2.1 � Regression Modeling Methods 
Different kinds of regression methods have been used to 
solve fixture layout optimization problems, such as RSM, 
support vector regression (SVR), and partial least squares 
regression (PLSR).

RSM is a method which combines mathematics and 
statistics. For the problems where there are many design 
parameters, RSM is an effective tool [54]. In the response 
model, the expected response can be linked to the inde-
pendent variables with Eq. (11):

where y is the expected response. In fixture layout opti-
mization problem, y is generally the quantity related to 
the optimization objective, such as the maximum defor-
mation or the variation of the part. f  means the response 
function. x1, x2, x3, . . . , xn are the position where the fix-
tures are located. ǫ means the fitting error. What’s more, 
f  appears as a surface when plotted. A two-stage RSM 
was developed by Li et al. [55] according to the data from 
FEA to optimize the fixture layout. An enhanced polyno-
mial RSM was presented to improve the model’s preci-
sion. The method was applied to the robust fixture design 
for thin-walled parts which were assembled with resist-
ance spot welding [56]. Sundararaman et  al. [54] used 
RSM to model part deformation. They tested the model 
they proposed and the results of the model matched the 
simulated data very well. Then they continued to use this 
method to reflect the relationship between fixture layouts 
and maximum deformation of the part [57]. Xia et al. [58] 
built up models based on RSM and 3DCS. RSM was used 
in the welding process of high-speed train body sidewall 

(11)y = f (x1, x2, x3, . . . , xn)± ǫ,

as well [59]. RSM may have overfitting problems. With 
the aim to improve generalization ability of the model, 
SVR is proposed.

Support vector machine (SVM) was first proposed by 
Vapnik [60]. Its regression version, named SVR, intro-
duces Vapnik’s ε-insensitive loss function into SVM. SVR 
can solve nonlinear regression problems conveniently. 
The training data can be mapped to a higher dimen-
sional feature space by SVR. Eq. (12) links the input to 
the output:

where ϕ(X) represents the feature which is mapped 
from X nonlinearly; W  and b are the adjustable coeffi-
cients. X is the normalized fixture position and it is the 
input value. F̂(X) is the output value, usually the quantity 
related to the deformation of the part. The way to adjust 
the coefficients was described in Refs. [61–63]. A SVR-
based approach was developed by Su et al. [61] to figure 
out the influences of the clamps and the temperature 
on the surface shape error of the production. Yang et al. 
[62] established the relationship models between overall 
deformation and fixture layout and between maximum 
deformation and fixture layout respectively. The effect of 
SVR relies on the kernel function, so researchers should 
select parameters cautiously when constructing regres-
sion model.

Kriging is also used to model the relationship between 
optimization objectives and fixture layout. It occurred 
in geo statistics for the first time while Sacks et  al. [64] 
popularized its use. The basic form of the Kriging model 
is described as:

where y(X) expresses the deterministic response, which 
is generally represented by the part deformation. X 
expresses input variables. In fixture layout optimiza-
tion problem, it means the position of fixtures. F(β ,X) 
means a linear regression of β , and z(X) means the fit-
ting error. Concrete expressions of F(β ,X) , and z(X) can 
be seen in Ref. [64]. Yang et al. [65] built the kriging sur-
rogate model to express the relationship between fixture 
layouts and thin-walled part deformations. Through FEA 
and Latin hypercube sampling, they obtained the training 
data and test data. After that, they constructed Kriging 
model and BPNN respectively. By comparing the errors 
between the predicted and real value, it was found that 
the Kriging model has higher accuracy. Therefore, they 
constructed the objective function through the Kriging 
model. To make the model more accurate, Yue et al. [66] 
considered unquantified uncertainty, modeling uncer-
tainty, part uncertainty, and actuator uncertainty. They 

(12)F̂(X) = Wϕ(X)+ b,

(13)y(X) = F(β ,X)+ z(X),



Page 11 of 25Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:17 	

built up the model to control the shape of the fuselage. 
Kriging method considers the relationship among known 
data, so it has high accuracy.

When there are few sampling data or under the con-
dition of serious multiple correlations of independent 
variables, PLSR can be used. Bi et al. [19] established the 
multivariate exponential regression model regarding the 
strain energy as response variables and the fixture layout 
parameters as predictor variables. PLSR was used to help 
establish the fundamental relationship considering the 
multicollinearity among design parameters. The PLSR 
method was introduced in Ref. [67] in detail.

In addition, grey prediction model is another kind of 
model used to model the relationship between optimiza-
tion objectives and fixture layout. As a popular method, 
the grey model has been applied in many fields since it 
was presented by Deng [68]. Yang et al. [69] constructed 
the grey model to link the maximum deformations of the 
parts to the number of fixtures.

The advantage of the regression modeling method is 
that the results can be obtained without a large amount 
of data, which reduces the work required to collect data 
compared with the ANN method. Also, through the anal-
ysis of the regression model, we can know how the design 
parameters affect the deformation. However, when more 
fixture locating parameters are involved, the regres-
sion model can hardly reflect the complex relationship 
between fixture locating parameters and responses. Thus, 
many researchers applied ANNs in the modeling for the 
fixture layout optimization.

3.2.2 � Artificial Neural Network Methods
Since machine learning is developing rapidly, a great 
number of ANNs are used in the modeling for the fixture 
layout optimization. ANNs are inspired by the human 
brain. The typical architecture of a neural network is 
shown in Figure  5. It is necessary for networks to have 
input and output layers, and at least one hidden layer. In 
fixture layout optimization process, common input data 
includes fixture position coordinates, fixture position 
nodes, clamping force and other parameters. Input data 
is received by the cells of the input layer. The processing 
of data is done by the cells of the hidden layer. Then the 
processed data is given by output cells. Usually, research-
ers take the statistics of deformation at each node of the 
part as the output. In order to make the network models 
available, the models need to be trained and tested. Basi-
cally, data of training dataset and test dataset come from 
FEA and designed sampling. Through learning from rep-
resentative datasets, ANNs link the output(s) to the fix-
ture layout parameters.

With the continuous development of technology, 
more ANN models have been created, among which the 

representative one is the feed-forward neural network 
model. There are two commonly used networks. They are 
radial basis function neural network (RBFNN) and back-
propagation neural network (BPNN).

Back propagation is an important step in neural net-
work training. With back propagation, the weight of 
neural network is adjusted according to the error rate 
obtained in the previous iteration. By properly adjust-
ing the weight, the generalization ability of the model is 
improved. This method is helpful to calculate the gra-
dient of a loss function relative to all the weights in the 
network. Selvakumar et al. [70] proposed an ANN-based 
method. They utilized a trained BPNN to estimate the 
maximum deformations for different fixture layouts. Rex 
and Ravindran [71] established an ANN–based model 
to estimate the part deformation for possible fixture lay-
outs. Qin et al. [72, 73] used BPNN to obtain the clamp-
ing deformation from multiple fixturing parameters. 
Ramachandran et al. [74] used BPNN to approximate the 
elastic deformation in order to find an optimal fixture 
layout for the engine mount bracket.

Compared with BPNN, RBFNN has faster convergence 
speed, and it is easier to obtain the best approximation 
than BPNN. Therefore, in recent years, some research-
ers chose to build RBFNN to reflect the relation between 
part deformation and fixture layout parameters. Wang 
et al. [75, 76] proposed an RBFNN model to help optimi-
zation of fixture layout. Ma et al. [77] combined GA with 
RBFNN to find an optimal fixture layout.

With the support of a large amount of data, ANNs 
have a better modeling effect and can better reflect the 
actual situation. They can reflect the complex relation-
ship between deformation and multiple fixture design 
parameters. However, we cannot know how the design 
parameters affect the deformation because the relation-
ship function obtained by the ANN is a black box.

3.3 � Comparative Analysis of Different Modeling Methods
Based on Section  3.1 and Section  3.2, we compare and 
analyze the mentioned modeling methods, as shown in 

Figure 5  Architecture of a typical neural network
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Table  2. There are two kinds of modeling approaches: 
Mechanism-based and data-based modeling approaches. 
The commonly used mechanism-based modeling meth-
ods include Jacobian matrix method, state space method 
and FEM. Their application scenarios are different. For 
single-station assembly, under the rigid assumption, only 
the variations caused by fixture errors are considered. To 
enhance the robustness of fixture layout, the Jacobian 
matrix method is applied to directly reflect the influence 
of fixture errors through simple calculation. However, 
Jacobian matrix method is only suitable for rigid assump-
tion. It cannot be used to solve complex problems. The 
state space method is suitable for multi-station assembly. 
With this method, researchers can build a variation prop-
agation model which can show how the source variations 
of each station affect the final variation. When modeling 
with state space method, various variations including 
part manufacturing error and fixture deviation can be 
considered. One of its advantages is that it is suitable for 
multi-station assembly. In addition, due to the considera-
tion of multiple source variations, the result is closer to 
the real situation. However, its derivation process is com-
plicated and is not suitable for solving complex problems. 
FEM is a major method in fixture layout optimization. 
Under the compliant assumption, the force and defor-
mations of parts are considered. Its advantages are that 
its principle is simple and easy to understand, and it can 
directly represent the deformations at the mesh nodes. 
Its limitation is that when too many meshes are divided, 
its computation will increase greatly.

When the size of parts and number of fixtures is large, 
using mechanism-based modeling methods will make 
the amount of calculation increase. Therefore, data-
based modeling methods are widely used. Regression 
model methods and ANN methods are typical data-
based modeling methods. The regression models men-
tioned above include RSM, SVR, Kriging, PLSR and grey 
model. Each model has its own advantages. In general, 
the advantage of using regression model is that the rela-
tionship between fixture layout and part deformation 
can be obtained through a small amount of data, which 
greatly reduces the amount of calculation. However, the 
model’s precision relies on the selection of data and coef-
ficients of the model. Therefore, to establish a model with 
high accuracy, researchers need to carry out reasonable 
experimental design and scientific data sampling for the 
thin-walled parts’ assembly in the early stage. To enhance 
the model’s precision, algorithms are needed for optimiz-
ing the parameters. This work is time-consuming and 
difficult.

Since the computer technology has developed a lot, 
ANN methods, such as BPNN and RBFNN, are used 
in fixture layout optimization. The advantage of ANN 

methods is that they can express the complex relation-
ship between the multi-inputs (fixture layout) and multi-
outputs (assembly variation or deformation). However, 
the limitation is that training an ANN with high accuracy 
requires a large amount of data, which means we need 
collect enough assembly variation or deformation data 
and corresponding fixture layout. What’s more, due to 
the complexity of its structure, an ANN needs long train-
ing time.

Through comparative analysis, we found the scope of 
application of each modeling method, their advantages 
and limitations. When choosing the modeling method, 
we should consider the optimization objectives and 
design variables of the research problem. Moreover, we 
should consider the accuracy requirements and time 
cost, and select the appropriate method.

3.4 � Epilog
This section introduces several modeling methods com-
monly used in fixture layout optimization, which con-
sist of mechanism-based and data-based modeling 
approaches. Among the former, Jacobian matrix and state 
space method are suitable for single-station and multi-
station, respectively. The FEM is suitable for the out-
of-plane deformation analysis. Because the calculation 
of FEM is complex and it is hard to show the influence 
of several design parameters on the results, data-based 
modeling methods came into being. The data are from 
sampling and FEA. Regression modeling methods and 
ANNs are two different data-based modeling methods. 
At last, we compare and analyze several modeling meth-
ods. Through modeling, we get the relationship between 
fixture layout parameters and optimization objectives, 
which lays a foundation for subsequent optimization 
using algorithms.

4 � Algorithms for Fixture Layout Optimization
For fixture layout optimization, the last step is to select 
the appropriate optimization algorithm to find an opti-
mum layout strategy. Optimization algorithms basically 
consist of two categories: Traditional nonlinear pro-
gramming and heuristic algorithms. Traditional nonlin-
ear programming algorithms mainly use mathematical 
programming techniques to describe the quantitative 
relationship of logistics systems. Different from tradi-
tional nonlinear programming algorithms, heuristic algo-
rithms are based on intuition or experience. A heuristic 
algorithm gives a feasible solution to the optimization 
problem with limited computing time and space. But the 
feasible solution may not be the same as the optimal solu-
tion. In addition, there are other methods that can solve 
the optimization problems [78–81], but they are specific 
to the problems and are not the mainstream methods in 
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the fixture layout. In this section, we will make a detailed 
analysis of the application of traditional nonlinear pro-
gramming and heuristic algorithms in the fixture layout 
of thin-walled part assembly and make a comparative 
analysis of them.

4.1 � Traditional Nonlinear Programming Algorithms
Fixture layout optimization problems are usually 
regarded as nonlinear programming problems. There are 
one or several nonlinear functions in the objective func-
tion or constraints. The basic form of nonlinear program-
ming is as follows:

where F(X) is the optimization objective, and X means 
the decision variable. In fixture layout optimization, deci-
sion variables are usually related to the fixture position.

There are many methods to solve nonlinear program-
ming problems. Generally, there are two categories. One 
is to reduce the objective function in the feasible region. 
The other is to construct the augmented objective func-
tion to make constrained problem unconstrained. The 
representative of the first kind is the feasible direc-
tion method. The initial feasible solution then changed 
into a better feasible solution. Li and Melkote [21] used 
Zoutendijk’s method of feasible direction to reduce dis-
placements caused by part locating error. In this study, 
in addition to fixture position, clamping force and rigid 
body motion were taken as decision variables because 
they are uniquely determined by fixture layout.

Typical examples of the second kind are sequential 
quadratic programming (SQP) and Lagrange method. 
DeVries and Menassa [37] applied the Broyden-Fletcher-
Goldfarb-Shanno method to design the optimal posi-
tions of fixtures. The SQP technique is also employed 
to help optimization. An optimization software named 
VMCON, employs SQP technique [6]. Li and Melkote 
[22] improved the SQP algorithm. They designed an iter-
ative synthesis algorithm. Firstly, the algorithm searched 
for the optimal clamping force and layout under the 

(14)

min F(X),

s.t.,AX ≤ b
(
Linear inequality constraints

)
,

Aeq · X = beq
(
Linear equality constraint

)
,

C(X) ≤ 0
(
Nonlinear inequality constraints

)
,

Ceq(X) = 0
(
Nonlinear equality constraints

)
,

VLB ≤ X ≤ VUB

(Bounded constraint),

initial number of fixtures. It calculated the positioning 
error, and observed whether it met the tolerance require-
ments. If not, the algorithm would increase the number 
of fixtures. Lagrange method is another method to elimi-
nate constraints. Its basic idea is to introduce Lagrange 
multipliers to transform constraints into variables. Li 
et  al. [12] used the Lagrange conditional extremum 
method. In their research, they constrained the loca-
tion of selectable points for fixtures and the square root 
of the maximum eigenvalue of the sensitivity matrix. 
Then these constraints were eliminated by introduc-
ing Lagrange operator. Considering that the large-scale 
workpieces are commonly used in practical engineering, 
Zhang et al. [82] came up with a method on the basis of 
augmented Lagrange method. They formulated a multi-
constrained fixture layout optimization problem. The 
constraints consisted of two parts: equality constraints 
and inequality constraints. The equality constraints were 
obtained by kinematic analysis and kinetic analysis, and 
the inequality constraints were obtained by the coulomb 
law and surface quality requirements. Then, the pro-
posed method was used to transform the problem into an 
unconstrained one.

Traditional algorithms can only effectively solve small 
and medium-sized problems. However, the amount of 
calculation generally increases exponentially with the 
increase of the problem scale, such as the increase of fix-
ture number and the dimension of the thin-walled parts, 
which will lead to the exponential explosion problem. 
Considering the rapid development of artificial intelli-
gence technology, the traditional algorithms only suitable 
for small-scale calculation are gradually replaced by heu-
ristic algorithms.

4.2 � Heuristic Algorithms
For the large size thin-walled parts, such as ship hull 
and fuselage, the number of “N” locators will increase 
dramatically. When we optimize the fixture layout for 
these parts, the scale of problem exponentially increases, 
the amount of calculation and storage space required to 
solve the optimal solution of these problems will grow 
very fast, which makes it almost impossible to obtain the 
optimal solution through various traditional algorithms 
under the existing computing power. In this case, heuris-
tic algorithms came into being. Heuristic algorithms are 
suitable for solving large-scale problems and are widely 
used in layout optimization [83–85]. In this section, we 
will discuss some commonly used methods, such as GA 
and PSO.

4.2.1 � Genetic Algorithm
The GA simulates the natural evolution of biological 
creatures to search for an optimal solution. Several 
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fundamental operations are consisting of the GA mech-
anism, such as reproduction, crossover, and muta-
tion [86]. In fixture layout optimization problems, the 
numbers of finite element grid nodes are usually used 
to represent the position of the fixtures. At this time, 
integer coding or binary coding is used to represent the 
variables. In addition, some researchers prefer directly 
using coordinates to represent the fixture position. In 
this case, real number coding is generally used to rep-
resent variables. After determining the coding mode, 
multiple groups of fixture layouts are initialized, and 
the fitness value is calculated. Then, new solutions are 
generated through reproduction, crossover and muta-
tion. The process continues until the maximum num-
ber of iterations or other termination conditions are 
reached. More details about reproduction, crossover 
and mutation are introduced in Ref. [87]. After sev-
eral iterations, the solution satisfying the conditions is 
obtained, and then the feasible solution is decoded into 
fixture layout parameters.

Krishnakumar and Melkote [88] proposed a GA-based 
method. They compared GA with traditional nonlin-
ear programming methods and discussed the proposed 
method’s advantages. GA can be used to solve problems 
without a clear mathematical expression that link the 
objective function to the decision variables. Vallapuzha 
et  al. [87, 89] compared several fixture layout optimiza-
tion methods from three aspects of solution quality, solu-
tion repeatability, and computation time. They found that 
GA had the best overall performance. Rex et al. [90] used 
a discrete GA with mixed integer-discrete variables to 
optimize the fixture layout. Researchers have applied GA 
to fixture layout optimization of different kinds of parts, 
such as flexible aerospace parts [45], car dashboards [91, 
92], and near-net-shaped jet engine blades [93, 94]. With 
the hope to make the algorithm perform better, Cheng 
et al. [95] improved the GA. They discussed the genetic 
and ants manipulations respectively, and connected these 
two parts to enhance the performance of their method 
in fixture layout optimization. To improve the compu-
tational efficiency, Xing et  al. [96, 97] proposed the fil-
tering methods based on manufacturing constraints so 
that there would be a smaller candidate pool for locating 
points. The improved GA can also solve the multi-objec-
tive optimization problem. Yang et al. [62] used the elitist 
nondominated sorting GA to conduct the optimization 
with multiple objectives. The two optimization objectives 
were to minimize the overall deformation and maximize 
the deformation. In addition to the above optimization 
problems considering deformations, GA can also be 
used for robust fixture design. Tian et al. [13] presented 
a methodology on the basis of GA for the robust fixture 
layout design.

The above literature takes the fixture position as the 
decision variable. In addition to the fixture position, 
some researchers also considered the simultaneous opti-
mization of other design parameters. Kulankara et al. [98] 
optimized clamping force and fixture layout with GA. 
They proposed an iterative algorithm by changing the 
clamping force and fixture layout alternatively. Another 
fixture design parameter is the number of fixtures. Liao 
[99] proposed a GA-based methodology to optimize 
the number and positions of fixtures. Chen et  al. [39] 
developed a GA-based method. Their aim was to reduce 
deformation and make the deformation distribution as 
uniform as possible. Hajimiri et al. [44] improved the GA 
optimization method. They introduced fixturing regions 
and fixturing sequence into design variables.

All the above studies show that GA is a widely used 
optimization algorithm in the fixture layout optimiza-
tion. Because GA uses binary coding to represent vari-
ables, it is more suitable for solving discrete problems. 
In fixture layout optimization, sometimes the optimized 
parameters are continuous variables like fixture position 
coordinates. Therefore, a heuristic algorithm more suit-
able for solving continuous problems is needed.

4.2.2 � Particle Swarm Optimization
Different from the GA suitable for discrete problems, 
PSO is suitable for solving continuous problems. PSO 
was first proposed to solve optimization problems by 
Kennedy and Eberhart [100]. It uses a swarm of particles 
to conduct a search. Each particle represents a possible 
solution for the fixture layout and it updates its velocity 
and position in order to obtain the best particle. More 
details can be seen in Ref. [100]. In fixture layout optimi-
zation problems, the fixture position is generally repre-
sented by grid node index. When integer coding is used, 
each dimension of a particle represents the position of 
one fixture. If there are N  fixtures on a part, the parti-
cles will have N  dimensions. Some researchers use binary 
coding. In this case, a set of binary numbers represents 
the number of nodes where a fixture is located. Suppose 
there are N  fixtures waiting for positioning, then the 
dimension of a particle is N ×m , where m represents the 
number of bits of a set of binary numbers. Sometimes, 
coordinates are used to represent the fixture positions. At 
this time, real number coding is adopted. The dimension 
of particles is related to the number of fixtures and the 
number of coordinates required for the positioning of a 
fixture. As PSO can be helpful to find a suitable position 
in a multidimensional space, it is propitious to the locator 
positions optimization and has attracted many scholars’ 
attention.

Researchers utilized PSO to optimize positions of fix-
tures. Dou et al. [101] used a particle library to make the 



Page 16 of 25Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:17 

optimization more efficient. Then they improved the 
PSO algorithm by embedding the mutation operator to 
help PSO achieve better global optimization results [47]. 
By balancing global optimization capability and conver-
gence speed, the improved PSO was better than GA and 
unimproved PSO when solving the fixture layout optimi-
zation problems. Zhou et al. [102] applied PSO algorithm 
to the locator layout of the door of a car. Sundararaman 
et al. [57, 103] used RSM to connect the positions of loca-
tors and clamps to the maximum part deformation. GA 
and PSO were applied to optimize the developed model. 
Researchers compared different algorithms’ perfor-
mances. The result showed that the approach which inte-
grated RSM and PSO performed better. Xing et al. [104] 
improved the PSO algorithm to carry out the optimiza-
tion. The traditional discrete binary PSO algorithm was 
improved in the aspects of individual optimization func-
tion, cross-boundary particle processing, and reduction 
of searching area for locating layout optimization prob-
lems. A body floor assembly case was studied to explain 
the method developed by them. The shortcomings of 
PSO are that the convergence speed is too fast and the 
local search ability is weak. In order to get a better solu-
tion, many other heuristic algorithms are applied to assist 
fixture layout optimization.

4.2.3 � Other Heuristic Algorithms 
Since artificial intelligence is developing, a great number 
of heuristic algorithms have been developed. ACO, social 
radiation algorithm (SRA), simulated annealing (SA) 
algorithm, and other heuristic algorithms including arti-
ficial bee colony algorithm [74], bat algorithm [76] and 
cuckoo search algorithm [46, 65] have been used to solve 
fixture layout optimization problems. Next, we introduce 
some applications of ACO, SRA and SA in the fixture lay-
out optimization.

ACO simulates the foraging behavior of ants [105]. 
Prabhaharan et  al. [106] used GA and ACO separately 
to reduce the form and dimensional errors of parts. 
Experiments showed that ACO reports faster and more 
accurate solutions. Padmanaban and Prabhaharan [107] 
employed ACO and GA so that the dynamic response of 
the part can be minimized. Padmanaban et al. [108] came 
up with an approach on the basis of ACO. The result 
showed that the ACO-based continuous method was 
superior to the discrete method. In order to adapt to dif-
ferent types of problems, researchers have improved the 
ACO. An augmented ACO was developed to optimize 
fixture layouts for rigid parts [15]. A case of a three-sta-
tion assembly process was studied and results displayed 
that the augmented ACO performed better than the basic 
ACO. Khodabandeh et al. [109] came up with an ACO-
based approach for a multi-objective problem. Their aim 

was to minimize deformation and number of fixtures 
simultaneously. Their method optimized the positions of 
fixtures and the number of clamps at the same time.

SRA is inspired by the development of human soci-
ety. Population of individuals with different capabilities 
and radiations are generated randomly. The individual 
can update its capability and radiation. Xing et al. [110] 
used SRA to optimize the locators’ positions and com-
pared the algorithm with GA. The results of the case of 
side frame assembly showed that the SRA was more effi-
cient. They used a non-domination sorting SRA to design 
a fixture layout which synchronously satisfied the quality 
requirements [111].

SA algorithm is another popular heuristic algorithm 
for optimization. SA simulates the annealing procedure 
of the metal working [112]. Du et al. [23] applied the SA 
algorithm to design an optimal fixture layout to reduce 
the assembly gap in the ship assembly process. Pan et al. 
[113] optimized the clamping positions with the adaptive 
SA, multi-island GA, and PSO algorithm. Their purpose 
was to minimize the deformation. The result showed that 
the adaptive SA performed better.

The application of heuristic algorithm makes it possi-
ble to solve large-scale optimization problems. But there 
is a common shortcoming of heuristic algorithm that it 
is easy to be trapped in local optimization zone. There-
fore, when using heuristic algorithm, we need to carefully 
adjust the parameters to improve the performance of the 
algorithm.

4.3 � Comparative Analysis of Different Optimization 
Algorithms Used in Fixture Layout

Based on the previous content, we compare and ana-
lyze different optimization algorithms. In Table 3, we list 
the feasible direction method, SQP, Lagrange multiplier 
method and three commonly used heuristic algorithms, 
including GA, PSO and ACO. Firstly, we analyze the tra-
ditional nonlinear programming algorithms. One of the 
advantages of the feasible direction method is that the 
fixture position found in each iteration meets the con-
straints. In addition, better fixture layout will usually 
be obtained using feasible direction method. SQP and 
Lagrange multiplier methods are more commonly used. 
SQP not only has global convergence, but also has super 
linear convergence rate. It is an effective algorithm to 
solve simple fixture layout optimization problems. Faster 
convergence rate means that the suitable fixture position 
can be found faster. The convergence rate of Lagrange 
multiplier method is affected by the selection of penalty 
function. It also has global convergence. In addition, by 
introducing Lagrange multipliers, constraints are trans-
formed into variables so that the constrained problem 
becomes an unconstrained problem. Fixture layout 
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optimization problem generally contains multiple con-
straints. Through this method, the optimization process 
is greatly simplified.

The common problem of traditional nonlinear pro-
gramming algorithms is that they are only suitable for 
solving small and medium-sized problems. However, 
most fixture layout optimization problems are large-scale 
problems. When the size of thin-walled parts becomes 
large or the number of fixtures is large, the calcula-
tion will become very complex when using traditional 
algorithms. In addition, this kind of algorithm is highly 
dependent on the initial solution, and the final solution 
has a close connection with the selection of the initial 
solution. In fixture layout optimization, the initial fixture 
positions are usually selected at random. In this way, the 
stability of the final solution will not be guaranteed. These 
are the two main limitations of this kind of algorithm.

Because of the limitations of traditional nonlinear pro-
gramming algorithms, heuristic algorithms are widely 
applied to optimize the fixture layout. There are many 
kinds of heuristic algorithms. At present, GA, PSO and 
ACO are widely used. The advantage of GA is that it has 
good global search ability and can be combined with 
other algorithms easily to enhance its performance. 
However, the convergence rate of GA is slow. In addi-
tion, when using GA, it is often necessary to encode and 
decode the fixture layout parameters, which is very cum-
bersome. Another commonly used heuristic algorithm 
is PSO. The variables of PSO are usually the sequence 
number of grid nodes. Different from GA, PSO has faster 
convergence speed and fewer parameters to be adjusted, 
so it is more convenient to use. However, too fast conver-
gence speed will make PSO easier to be trapped in local 
optimization zone. In addition, the local search ability 
of PSO is poor and thus the search accuracy is not high. 
In the fixture layout optimization problem, this means 
that the fixture layout found out is not optimal. ACO is 
also a commonly used algorithm in fixture optimization 
problem. Its advantages are that it can be combined with 
other algorithms conveniently and has good robustness. 
Therefore, the optimized fixture layout is rarely affected 
by the initial fixture layouts. Its limitations are that it 
has slow convergence speed. Thus, using ACO to find 
the optimized fixture layout will take more time. What’s 
more, it will be trapped in local optimization zone eas-
ily, which means that there is still difference between the 
found fixture layout and the optimal fixture layout.

To sum up, optimization algorithms applied in the fix-
ture layout optimization can be divided into traditional 
nonlinear programming algorithms and heuristic algo-
rithms. Traditional nonlinear programming algorithms 
are suitable for solving small and medium-sized problems 
while the actual fixture layout optimization problems 

are often large-scale. Fixture layout optimization usu-
ally involves multiple fixtures and many positions to be 
selected, so it is usually a large-scale problem, which 
means the heuristic algorithms are widely used. It is easy 
for heuristic algorithms to be trapped in local optimiza-
tion zone. Also, the quality of the obtained solution relies 
on the parameters of the algorithms. Therefore, research-
ers need to innovate and improve the algorithms all the 
time.

4.4 � Epilog
This section introduces the optimization methods com-
monly used in fixture layout optimization. The tradi-
tional nonlinear programming methods are suitable for 
small and medium-sized optimization. With the develop-
ment of artificial intelligence, heuristic algorithms have 
become the common optimization method for the fixture 
layout optimization. We introduce the application of sev-
eral heuristic algorithms in fixture layout optimization, 
including GA, PSO, ACO and so on. Finally, we compare 
and analyze the commonly used optimization algorithms.

5 � Discussion: Future Challenges of Fixture Layout 
Optimization for Thin‑Walled Parts

Because of the progressive technology and the deepen-
ing of the research on fixture layout optimization, more 
advanced technologies can be applied to assist optimiza-
tion. In this section, we discuss the limitations and the 
future challenges for the fixture layout optimization from 
three aspects: The selection of optimization objectives of 
fixture layout, modeling methods of assembly variation 
or deformation, and optimization methods applied in fix-
ture optimization. New research points are also put for-
ward to provide a reference for future research on fixture 
layout optimization. The future research trend is shown 
in Figure 6. The details will be discussed as follows.

5.1 � Selection of Optimization Objectives in Fixture Layout 
Optimization

Through the above literature review, we find that the 
researches on fixture layout optimization for thin-walled 
parts consist of two categories: considering in-plane 
variations and out-of-plane deformations. The exist-
ing research work has some limitations. When selecting 
optimization objectives, researchers usually select only 
a single optimization objective. In most cases, minimiz-
ing the deformation of the plate is regarded as the only 
optimization goal. Few researchers have studied multi-
objective optimization problems. However, there are 
many inconsistent objectives in the optimization pro-
cess, for instance, minimizing the overall deformation 
and maximum deformation of parts at the same time. In 
this way, although the optimized fixture layout meets the 
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requirements researchers raised, it may not improve the 
overall assembly quality of parts.

In the future research, we can consider the design of 
multi-objective optimization problem. Researchers can 
consider two conflicting objectives simultaneously. For 
example, some researchers tried to minimize the aver-
age deformation and maximum deformation at the same 
time. The optimization algorithm can be used to find the 
Pareto frontier, and then the optimal layout can be deter-
mined. Designing appropriate multiple objectives can 
make the results of theoretical research more suitable for 
practical needs.

5.2 � Modeling Methods and Ways to Improve Modeling 
Accuracy

In this review, there are two kinds of modeling methods: 
mechanism-based and data-based modeling approaches. 
When there are many fixture layout parameters as inputs, 
it is difficult for mechanism-based modeling methods 
to find the relationship between fixture layout param-
eters and part deformation. So, they are not convenient 
for large-scale problems. When mechanism-based mod-
eling methods are used to solve the problems with few 
variables, it is important to consider multiple variation 
sources, such as part manufacturing errors and fixture 
positioning errors. Using appropriate statistical methods 
to estimate these errors can effectively improve the mod-
eling accuracy. As there are usually multiple stations in 
thin-walled part assembly process, the variation arise at 
one station will influence the part deformation. There-
fore, to improve the modeling accuracy, it is important to 
consider the variation brought by previous stations and 
study the variation propagation law. The material prop-
erties of thin-walled parts will also affect the part defor-
mation, so they should be considered when modeling. 
For example, as the mechanical properties of composite 

materials are different from those of metal materials, the 
modeling processes are different when using mechanism-
based modeling methods. Many mechanism-based mod-
eling approaches are used under the assumption of linear 
elastic deformation. However, when the deformation is 
large, it may not be linear elastic. Therefore, when the 
deformation is large, it is necessary to consider the non-
linear deformation to build a high-precision model using 
mechanism-based methods.

With the continuous development of computer tech-
nology, we can find that data-based modeling meth-
ods are widely applied for fixture layout optimization 
in recent years. The data-based modeling methods have 
the advantages of easy calculation and optimization. 
When there are multiple fixture layout parameters as 
input, data-based modeling methods can build a sim-
ple relationship between part deformation and multiple 
parameters.

The data-based modeling process is generally as fol-
lows. Firstly, a set of data including fixture layouts and 
corresponding part deformation are obtained through 
FEA and data sampling. Then, the model is obtained by 
interpolation or ANN method to predict the part defor-
mation with different fixture layouts. Common inter-
polation methods include cubic spline interpolation, 
inverse distance weight interpolation, Kriging interpo-
lation and so on. Among them, Kriging interpolation 
performs well in the modeling of fixture layout optimi-
zation problem. In fact, Kriging method has been used 
in assembly process. Yue et al. [115] used grouped Latin 
hypercube sampling for data acquisition, and then used 
Kriging interpolation method to build a model to pre-
dict the deformation of parts. The model they built laid 
a foundation for deformation control in the assembly 
process. Some machine learning methods are also used 
to help build models. Du et al. [116] developed a sparse 

Figure 6  Future research trend of fixture layout optimization
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learning model and the parameter estimation algorithm 
to help find optimal position of actuators. Then they used 
a new sparse-learning model to reduce the gap between 
two pieces of composite fuselage [117]. Qazani et  al. 
[118] combined machine learning methods with many 
different heuristic algorithms to predict the maximum 
workpiece deformation with different fixture layout. The 
method proposed in these papers was used in the fuse-
lage shape control, but it is also instructive for fixture lay-
out optimization. Machine learning methods and Kriging 
model have good performance in helping to build data-
based models and they are the future research directions 
in fixture layout optimization.

With the rise of intelligent manufacturing, the data in 
the manufacturing process can be obtained easily by the 
sensors, which also provides convenience for the con-
struction of data-based models. Therefore, data-based 
modeling methods will be more widely used. How-
ever, how to obtain an accurate model from these data 
is always a great difficulty. In the current researches, 
researchers used Latin hypercube sampling to select a 
set of FEA results for training the model. This method 
improves the accuracy of the model by improving the 
data set. This is effective, but the effect is limited. There-
fore, in the future research, researchers need to con-
sider how to improve the modeling accuracy. There are 
many ways to help make the model more accurate. With 
the development of machine learning, researchers can 
choose a variety of machine learning algorithms to help 
establishing the model. In addition, the parameters in 
the model can be adjusted by grid search, randomized 
search and other methods. Wang et al. [119] studied the 
calibration of model parameters. They introduced the 
concept of sensible (calibration) variables and developed 
a novel method to identify and determine appropriate 
values for the sensible variables. This method improved 
the accuracy of parameters. Yue et al. [120] proposed two 
new active learning algorithms for the Gaussian process 
with uncertainties to help build models. The proposed 
approach was proved to be effective in suppressing the 
impact of uncertainties. These methods are of great sig-
nificance to the fixture layout optimization. Ensemble 
learning is also a good method to make the model more 
accurate and available. We can build a better model by 
improving and absorbing experience from the traditional 
methods. When the relationship between fixture lay-
out parameters and part deformation or other outputs 
is complex, ANNs can help modeling. At present, few 
researches have been conducted about the influence of 
fixture layout on part deformation using ANNs. There 
are many types of neural networks, and their application 
in fixture layout optimization is also a direction worthy of 
research.

5.3 � Methods of Enhancing the Performance 
of Optimization Algorithms

In regard of optimization algorithms for the fixture opti-
mization, they are made up of two kinds: the traditional 
nonlinear methods and the heuristic algorithms. The 
solution obtained by the traditional nonlinear methods is 
easily influenced by the initial feasible fixture layout, and 
these methods are only used to solve small and medium-
sized problems. In fact, many fixture layout optimiza-
tion problems are large-scale problems. If the number of 
fixtures or the size of the part is large, or the meshes are 
thin, fixture layout optimization problems will become 
large-scale problems. Therefore, heuristic algorithms 
are commonly used. In fact, heuristic algorithms have 
many applications in the optimization of facility layout 
[83] and wind farm layout [85], which are worthy of ref-
erence. When applying heuristic algorithms, researchers 
often encounter the following problems. Multiple set-
ting parameters of the algorithms need to be manually 
debugged and matched according to the specific fixture 
layout optimization problem, which affects the solution 
efficiency. What’s more, the heuristic algorithms will 
fall into local optimization easily, resulting in a final fix-
ture layout which cannot effectively help reduce the part 
deformation. In addition, the convergence speed is also 
slow, especially when there are many candidate solutions.

To improve the performance of optimization methods, 
researchers can apply many other heuristic algorithms 
to optimize fixture layout, and compare them with tradi-
tional heuristic algorithms such as GA and PSO from the 
perspective of convergence speed and solution quality. 
With the development of computer technology, a great 
number of heuristic algorithms have been proposed, such 
as sine–cosine crow search algorithm [121], salp swarm 
algorithm [122], and equilibrium optimizer [123]. Com-
pared with GA, PSO and other classical algorithms, these 
new algorithms have their own advantages. When solv-
ing the fixture layout optimization problem, researchers 
can try to find the most suitable algorithm according to 
the specific problem.

Another major direction of future research is to 
improve heuristic algorithms. The algorithms can be 
improved from two aspects. One is to improve the initial 
population. In many cases, the initial positions of fixtures 
are generated randomly, which leads to great uncer-
tainty of the initial fixture layout. If the initial population 
selected randomly is not good, the algorithm is likely to 
be stuck at locally optimal value. Through pre-screening 
and other methods, the positions which are more suit-
able for the fixtures can be selected according to the 
engineering experience, so as to improve the ability of 
the fixture layout to restrain deformation. By improving 
the quality of initial fixture layouts, the performance of 
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the algorithm can be improved. The second is to add one 
or two optimization strategies in the iterative process to 
improve the algorithm’s search ability. The performance 
of algorithms is closely related to their own parameters. 
Appropriate optimization strategies can help find better 
parameters to improve the performance of algorithms. 
By adding optimization strategies, we can make up for 
the shortcomings of the original algorithm while retain-
ing the advantages of the original algorithm and improve 
the performance of optimization methods.

5.4 � Future Work
The current fixture layout optimization for thin-walled 
parts is mostly to optimize the positions of fixtures 
when the number of fixtures is determined. The num-
ber of fixtures is determined by engineering experience. 
In this way, the manufacturing cost may increase due to 
the excessive number of fixtures. At the same time, too 
many fixtures will also introduce more fixture positioning 
errors, which will make it difficult to accurately predict 
the deformation of the thin-walled parts. Therefore, it is 
necessary to consider reducing the number of fixtures 
while optimizing the fixture locations.

At present, some researchers have realized the impor-
tance of reducing the number of fixtures. But most 
of them use the trial-and-error method to reduce the 
number of fixtures. This method is to remove a fixture 
at random after optimizing the fixture layout, and then 
optimize the fixture layout again when the number of fix-
tures is reduced by one. Repeat the above process until 
the algorithm cannot find the required fixture layout 
within the specified time. This way is very time-consum-
ing. Therefore, how to quickly optimize the number and 
locations of fixtures at the same time is a challenge in the 
future. One idea is to take minimizing the number of fix-
tures as the optimization goal and take the requirements 
of part deformation as the constraints. After optimiza-
tion, the solution will not only meet the requirements of 
part assembly accuracy, but also reduce the number of 
fixtures.

6 � Conclusions
Fixture layout is a key factor that influences the assembly 
quality of thin-walled parts. Therefore, many research-
ers have studied the fixture layout optimization for thin-
walled parts. By classifying, comparing, and analyzing 
the literatures, this paper systematically introduces the 
development of fixture layout optimization for thin-
walled parts. After reviewing the researches, this paper 
provides suggestions for future research on fixture layout 
optimization for thin-walled parts. Conclusions are as 
follows:

(1)	 Selection of optimization objectives. The optimiza-
tion objectives can be divided into two categories: 
Considering in-plane variations and out-of-plane 
deformations. Designing multiple optimization 
objectives according to the actual engineering needs 
is a major trend in this field.

(2)	 Modeling methods of assembly variation or defor-
mation. There are two kinds of modeling methods: 
Mechanism-based and data-based modeling meth-
ods. Mechanism-based modeling methods have 
accurate results, but the amount of calculation is 
often large, which makes them not suitable for solv-
ing large-scale problems. As for data-based mod-
eling methods, they are easy to calculate, so they are 
widely used. How to build a high-precision model is 
the focus and difficulty for future research.

(3)	 Optimization algorithms. Optimization algorithms 
consist of traditional nonlinear algorithms and heu-
ristic algorithms. Traditional nonlinear algorithms 
are suitable for solving small and medium-sized 
problems. Heuristic algorithms are suitable for solv-
ing large-scale problems. They are widely used in 
the fixture layout optimization of large dimensional 
thin-walled parts with “N-2-1” fixture frame. How-
ever, heuristic algorithms are easy to be trapped in 
the zone of local optimization, and their perfor-
mance is related to the parameters and initial popu-
lations. It is worthy of further research for scholars 
to think about how to improve the performance of 
the algorithms.

(4)	 Current researches neglect the influence of the 
number of fixtures on the manufacturing cost. How 
to optimize the number and position of fixtures at 
the same time is a direction that can be studied in 
the future.
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