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Abstract 

Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently 
under the human-robot interaction condition. However, due to unknown model parameters such as the mass, 
moment of inertia and mechanical size, the dynamic model of exoskeletons is difficult to construct. Hence, 
an enhanced whale optimization algorithm (EWOA) is proposed to identify the exoskeleton model parameters. 
Meanwhile, the periodic excitation trajectories are designed by finite Fourier series to input the desired position 
demand of exoskeletons with mechanical physical constraints. Then a backstepping controller based on the identi-
fied model is adopted to improve the human-robot wearable comfortable performance under cooperative motion. 
Finally, the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform. 
The knee joint motion achieves a steady-state response after 0.5 s. Meanwhile, the position error of hip joint response 
is less than 0.03 rad after 0.9 s. In addition, the steady-state human-robot interaction torque of the two joints is con-
strained within 15 N ·m . This research proposes a whale optimization algorithm to optimize the excitation trajectory 
and identify model parameters. Furthermore, an enhanced mutation strategy is adopted to avoid whale evolution’s 
unsatisfactory local optimal value.

Keywords  Parameter identification, Enhanced whale optimization algorithm (EWOA), Backstepping, Human-robot 
interaction, Lower limb exoskeleton

1  Introduction
The key aspects of the current exoskeleton research are 
focused on quality, security, and stability. Reliable exo-
skeleton control and cooperative motion realization 
require an accurate dynamic model [1, 2]. Meanwhile, 

the advanced controllers such as position, speed and 
torque loop also depend on model accuracy to improve 
the cooperative motion performance. The wearable com-
fortable performance is determined by the time-varying 
torque of human-robot interaction, which should be real-
time constrained in a tiny range by the designed control-
ler [3, 4]. In addition, many robot manufacturers do not 
provide these model parameters or only obtain partial 
parametric information [5]. Due to the irregular bionic 
structure, the exoskeleton’s physical parameters such as 
centroids, moments of inertia and mechanical size are 
difficult to measure in practice. Hence, parameter identi-
fication is an effective approach to obtaining an accurate 
exoskeleton model before the controller design.
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It is well recognized that the model identification 
method is commonly used in mechanical motion plants. 
There are several approaches to estimating the dynamic 
parameters. For instance, the maximum likelihood esti-
mation methods [6, 7] and least squares estimation meth-
ods are popular methods to obtain the high-accuracy 
original model [8, 9]. The statistical parameter is fit by 
these two methods, but not to be suitable for very com-
plex models, such as exoskeleton dynamic models. Some 
other methods include the extended Kalman filter [10] 
and Bayesian neural networks [11, 12] are also used in 
robot and grey-box thermal models. Furthermore, many 
other estimation methods are also proposed to address 
model uncertainty and external load based on least 
squares, such as the total least squares [13], weighted 
least squares [10, 14] and the online recursive estimation 
method [15]. In these methods, joint angle and torque 
can be directly measured, but joint velocity and accel-
eration must be pre-estimated. The designed observer 
and estimators [16], especially the zero-phase bandpass 
filter [17, 18] are commonly used to improve the output 
performance.

The design of excitation trajectory is necessary for 
general robot identification [19] due to plant physical 
constraints. The excitation trajectory is provided to suf-
ficiently estimate the accurate model parameters under 
unknown disturbances [20]. Han et  al. [21] proposed 
an iterative approach with the weighted least squares 
(WLS). This method iteratively used the least squares to 
address the nonlinear friction model constrained by lin-
ear matrix inequality (LMI). Hence, the measurement 
noise can be properly rejected in controller design. Lee 
et  al. [22] presented a parameter identification method 
to generate a random excitation trajectory of a robot 
manipulator joint based on recursive least squares (RLS). 
Gao [23] used an iterative identification process based 
on the least square method and obtained more than 80% 
reduction of motion uncertainty. Most of these methods 
are designed for industrial robots and acquire appropri-
ate identification parameters. However, the exoskeleton 
cannot be accurately modeled due to a strong human-
robot coupling system with a fast cooperative motion 
response [24, 25].

In this study, a 2-DOF lower limb exoskeleton was con-
structed to realize the human-robot cooperative motion. 
This 2-DOF rehabilitation exoskeleton is primarily geared 
towards patients with subacute or early-stage problems. 
Although some problems with muscle contraction and 
coordination have been observed, this group of patients 
still has the ability to move. It can be used to complete 
cooperative human-machine rehabilitation training. 
Inspired by previous studies about the identification and 
control method, the exoskeleton’s active control mode 

is studied to improve the wearable comfortable perfor-
mance between the operator and exoskeleton. The main 
contributions of this paper are twofold.

(1)	 The periodic excitation trajectories are designed 
by a finite Fourier series to consider the mechani-
cal physical constraint of human-robot coopera-
tive motion. A whale optimization algorithm is 
presented to optimize the excitation trajectory 
and identify model parameters. Furthermore, an 
enhanced mutation strategy is adopted to avoid 
whale evolution’s unsatisfactory local optimal value. 
To the authors’ best knowledge, the enhanced whale 
optimization algorithm (EWOA) is a new method 
to identify the exoskeleton model parameters.

(2)	 The backstepping controller is designed to realize 
the active control mode of the exoskeleton based on 
the identified dynamic model to improve the wear-
able comfortable performance of the operator. The 
dynamic and steady-state response is guaranteed 
by the proposed control scheme in a two-DOF exo-
skeletons platform.

The remainder of this paper is organized as follows. 
The exoskeleton dynamics and its transformed model are 
constructed in Section 2. The excitation trajectory design 
and the EWOA algorithm are described in Section  3. 
Then the parameter identification, the backstepping con-
troller and experimental verification are introduced in 
Section 4. Finally, the conclusions are drawn in Section 5.

2 � Identification Model Framework
2.1 � Model Identification and Control Scheme
This study presents an identification method using an 
enhanced whale algorithm to identify the model param-
eters of the exoskeleton. Then a backstepping controller 
is designed based on the identification model as shown 
in Figure 1.

Firstly, the Lagrange model of exoskeleton is con-
structed to separate unknown parameters and the meas-
ured information, such as joint torque and angle obtained 
by some sensors. Subsequently, a finite Fourier series is 
used to design the periodic excitation trajectory based 
on the physical constraints of the exoskeleton. Then 
the EWOA is applied to optimize the parameters of the 
excitation trajectory. In the presence of unknown model 
parameters, PID control is initially employed in excita-
tion experiments to acquire Input/Output (I/O) datasets. 
Using these datasets, the EWOA is employed to identify 
the model parameters. Finally, based on the identified 
dynamic model, a backstepping controller is designed to 
manipulate the exoskeleton to follow a random demand 
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trajectory with satisfactory wearable comfortable 
performance.

2.2 � Lagrange Modeling
This theoretical and physical model of the lower limb 
exoskeleton is shown in Figure  2. The exoskeleton is a 
typical second-order state feedback system, which is 
mainly composed of controllers, sensors, actuators, and 
various auxiliary devices. The centroid positions of thigh 
and calf in Cartesian coordinate system are expressed by 
(X1,Y1) , (X2,Y2) , and the related variables are shown in 
Table 1.

According to the geometric relationship, the relation-
ship between joint coordinates and its centroid is given 
by
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Figure 1  Model identification and backstepping control scheme
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Figure 2  The theoretical and physical model of the lower limb exoskeleton system

Table 1  Parameters and definitions in exoskeleton

Parameter Definition Unit

θ1 Rotation angle of hip joint rad

θ2 Rotation angle of knee joint rad

ath Length of thigh m

ash Length of calf m

mth Quality of thigh kg

msh Quality of calf kg

lth Distance from hip joint to thigh centroid m

lsh Distance from knee joint to calf centroid m

Im1 Inertia of the thigh kg/m2

Im2 Inertia of the calf kg/m2

g Acceleration of gravity m/s2

θ = [θ1, θ2] Position information of exoskeleton joints –
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The Lagrange equation of exoskeleton yields that

where L represents the total energy of Lagrangian system, 
K represents the system’s kinetic energy, P represents the 
potential energy, and τ represents the external torque of 
the joint.

The driven torque of exoskeleton is described as

where τhip, τknee represent the toque of hip and knee, 
respectively.

The dynamic equation of the two-DOF lower limb exo-
skeleton is constructed as

where H(θ)θ̈ ,C(θ , θ̇ ),G(θ) are inertial matrix, Corio-
lis matrix, gravity matrix, respectively. They can be 
expressed as

In addition, the friction force exists in the exoskeleton 
dynamic model, which mainly considers the Coulomb 
friction and viscous friction items as

where k11, k21 represent the coulomb friction coefficients 
of the exoskeleton thigh and calf, respectively; k12, k22 
represent the viscous friction coefficient; sgn is the sym-
bolic function.

Therefore, the whole exoskeleton model can be 
expressed as

(1)






X1 = lth cos(θ1),

Y1 = lth sin(θ1),

X2 = ath cos(θ1)+ lsh cos(θ1 + θ2),

Y2 = ath sin(θ1)+ lsh sin(θ1 + θ2).

(2)






L = K − P,

τ =
∂

∂t

∂L

∂θ̇
−

∂L

∂θ
,

(3)τ = [τhip, τknee]
T,

(4)H(θ)θ̈ + C(θ , θ̇ )θ̇ + G(θ) = τ ,

(5)






H =

�
H11

H21

H12

H21

�
,

C =

�
C11

C21

C12

C22

�
,

G =

�
G1

G2

�
.

(6)f (θ̇) =

[
k11sgn(θ̇1)+ k12θ̇1

k21sgn(θ̇2)+ k22θ̇2

]
,

(7)H(θ)θ̈ + C(θ , θ̇ )θ̇ + G(θ)+ f (θ̇ ) = τ .

2.3 � Transformed Lagrangian Model
There exists an unknown parameter matrix � ∈ R

m involv-
ing mass, inertia, and mechanical size of exoskeleton. 
Here a linear relationship is firstly constructed between 
unknown parameters and the measured information, such 
as joint torque and angle obtained by some sensors, which 
is described as

where Y (θ , θ̇ , ξ , ξ̇ ) is a regression matrix, and ξ ∈ R
n is a 

differentiable vector.
For the exoskeleton robot, the state matrix Y and the par-

ametric vector � are expressed as

where

and �5 = k11,�
6 = k12,�

7 = k21,�
8 = k22 , the state 

matrix Y is expressed as Y 11 = θ̈1 + esinθ1 , Y 12
=

¨θ2

+esinθ1 , Y 13 = 2cosθ2θ̈1 + cosθ2θ̈2 − 2sinθ2θ̇1θ̇2 − sinθ2θ̇
2
2

+esin(θ1 + θ2),   Y 14 = esinθ1,  Y 15 = sgn(θ̇1),  Y 16 = θ̇1,   
Y 22 = θ̈1 + θ̈2,  Y 23 = cosθ2θ̈1 + sinθ2θ̇

2
1 + esin(θ1 + θ2),   

Y 27 = sgn(θ̇2),  Y 28 = θ̇2 , and Y 17,Y 18,Y 21,Y 24,Y 25,Y 26 
is 0 in Y, e = g/ath is the intermediate variable.

Hence, the model functions H, C, G are expressed as

According to Eqs. (7) and (8), the transformed Lagran-
gian model of exoskeleton is given by

(8)
H(θ)ξ̇ + C(θ , θ̇ )ξ + G(θ)+ f (θ̇) = Y (θ , θ̇ , ξ , ξ̇ )Φ ,

(9)Φ =

[
�1,�2,�3,�4,�5,�6,�7,�8

]
,

(10)Y =

[
Y 11,Y 12,Y 13,Y 14,Y 15,Y 16,Y 17,Y 18

Y 21,Y 22,Y 23,Y 24,Y 25,Y 26,Y 27,Y 28

]
,

(11)






�1
= Ith + Ish +mthl

2
th +msha

2
th +mshl

2
sh,

�2
= Ish +mshl

2
sh,

�3
= mshathlsh,

�4
= mthathlth − Ith −mthl

2
th,

(12)






H=

�
�1 + 2�3 cos θ2 �2 +�3 cos θ2
�2 +�3 cos θ2 �(2)

�
,

C =

�
−2�3θ̇2 sin θ2 −�3θ̇2 sin θ2
�3θ̇1 sin θ2 0

�
,

G =

�
�3e sin(θ1 + θ2)+ (�1

−�2
+�4)e sin θ1

�3e sin(θ1 + θ2)

�
.

(13)τ = Y (θ , θ̇ , ξ , ξ̇ )Φ ,
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(a) The parameters optimization of excitation trajectory
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(b) Optimization of dynamic model parameters
Figure 3  The comparison results of different optimization algorithms
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where � is the unknown parameters to be identified 
based on the regressive vector τ and the state matrix Y, 
which are obtained by sampling datasets.

3 � EWOA Optimization and Excitation Trajectories 
Design

3.1 � EWOA Optimization
The unknown parameters of the exoskeleton are sepa-
rated from the measured state in Section 2. In the litera-
ture, there are several optimistic algorithms to identify 
system parameters, such as Particle Swarm Optimization 
(PSO) [26] and Whale Optimization Algorithm (WOA) 
[27]. This study proposes the Enhanced Whale Optimi-
zation Algorithm (EWOA) to identify model parameters. 
The algorithm feature simulates the optimization pro-
cessing of the mathematical modeling related to hump-
back whale hunting [28].

In the whale algorithm, the position of each whale rep-
resents a feasible solution. Each whale has two behaviors 
during the hunting process: One is to surround the prey, 
which means all the whales move toward the prey. The 
other behavior is to create a bubble net, where the whales 
swim in a circle and eject bubbles to drive the prey away. 
Whales will randomly choose these two behaviors to 
hunt in each generation of swimming.

The position of each whale in the M-dimensional solu-
tion space is given by

As the whale swims towards the optimal position in the 
process of surrounding prey, the position can be calcu-
lated as

where Xbest is the current optimal whale position; the 
dimension of A is a random number uniformly, which is 
distributed in (−a, a). The initial value of a is 2, and it lin-
early decreases into 0 in the finite iterations number, C is 
a random number uniformly distributed in (0, 2).

After a group of whales swim towards the position of a 
random whale, the next iterative position is obtained as

(14)X = (x1, x2, x3, · · · , xM).

(15)Xt+1
i = Xt

best − A
∣∣C ∗ Xbest − Xt

i

∣∣,

(16)Xt+1
i = Xt

rand − A
∣∣C ∗ Xrand − Xt

i

∣∣.

The swimming mode depends on the value of A. In the 
other word, the whale chooses to swim toward the opti-
mal individual as |A<1|. Otherwise, it swims towards a 
random individual. During the hunting process, the bub-
ble net is used to update the whale’s position as

where l is a random number uniformly distributed in 
[− 1,1].

The local optimization problem quickly appears in the 
whale algorithm compared with the PSO algorithm, as 
shown in Figure 3(a). To avoid the local optimal solution, 
differential mutation was used to improve the total optimi-
zation performance. It is to be noted that the better indi-
vidual whales are selected in the current population for 
mutation. This mutation way is described as Eq. (18), which 
can effectively expand the algorithm search domain and 
prevent the local optimal solution.

where V represents the position of the ith whale; φ is a 
scaling factor; X r1(t)− X r2(t) represents the difference 
vector of the whale position under the current iterations. 
The new mutated individual will be replaced the original 
individual as the better one.

In this study, WOA, PSO, and EWOA are all used to 
optimize the parameters, respectively. The population size 
of the algorithm is set to 100, and the maximum number 
of iterations is 200 as shown in Figure 3(a). The horizon-
tal coordinate is the iteration number. The vertical coordi-
nate represents the fitness value, i.e. the condition number 
of the state matrix Y. The vertical coordinate is a small 
value means the better results of the excitation trajectory. 
Meanwhile, the three algorithms are used to optimize the 
unknown parameters φ of the exoskeleton dynamics model 
as shown in Figure 3(b).

The WOA converges fastest but easily falls into local 
optimal solution among three algorithms. Meanwhile, the 
convergence speed of the PSO algorithm in the initial stage 

(17)Xt+1
i =

∣∣Xt
best − Xt

i

∣∣ ∗ el ∗ cos(2πl)+ Xt
best ,

(18)Vi(t + 1) = Xi(t)+ φ(X r1(t)− X r2(t)),

Table 2  The boundary conditions of exoskeleton

Angle (rad) Velocity (rad) Acceleration
(rad/s2)

Thigh [− 0.087, 1.309] [− 1.645, 1.645] [− 5.168, 5.168]

Calf [− 1.658, −0.087] [− 1.645, 1.645] [− 5.168, 5.168]

Table 3  The parameters of excitation trajectory

Parameter Value Parameter Value

a1 1.685 b1 5.689

a2 − 2.258 b2 2.904

a3 13.828 b3 14.805

a4 − 15.389 b4 10.822

A1 3.530 B1 5.205

A2 − 9.949 B2 4.578

A3 − 15.978 B3 15.914

A4 5.415 B4 11.738
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(a) Exoskeleton hip joint excitation trajectory optimized 

(b) Exoskeleton knee joint excitation trajectory optimized 
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Figure 4  Excitation trajectory optimized by EWOA
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is faster than that of EWOA. However, the optimization 
solution of PSO is convergence with the increasing itera-
tions. The convergence rate of the EWOA is slightly slower 
than the WOA, but the local optimal solution is obviously 
improved after 50 iterations.

3.2 � Generation of Excitation Trajectories
The off-line identification has certain requirements for the 
experimental signal, which should fully excite all motion 

modes of the identified plant [20]. A reasonable excita-
tion trajectory should consider the mechanical physical 
constraint. In the regression matrix Y (θ , θ̇ , ξ , ξ̇ ) , external 
disturbance will emerge as a great influence on the identi-
fication results. Based on the Fourier series, the excitation 
trajectory is composed of finite sums of N harmonic sine 
and cosine functions, which is expressed as

where θd is the initial value of the joint, the initial value in 
the thigh θ1 is 0.6107 rad, and the initial value in the calf 
θ2 is −0.8727 rad ; θd , θ̇d , θ̈d represent the desired joint 
angle, angular velocity, angular acceleration, respectively; 
aκ , bκ are the coefficient of the Fourier series to be opti-
mized, ωf  is the fundamental frequency, N = 4 is the Fou-
rier series period.

(19)






θd = θd +

N�

κ=1

(aκ sin(κωf t)+ bκ cos(κωf t)),

θ̇d =

N�

κ=1

κωf (aκ cos(κωf t)− bκ sin(κωf t)),

θ̈d =

N�

κ=1

(κωf )
2(−aκ sin(κωf t)− bκ cos(κωf t)),

Table 4  Parameters of exoskeleton dynamic model

Parameter ( ̂�) Value

�̂1 (kg ·m2) 28.634

�̂2 (kg ·m2) 9.716

�̂3 (kg ·m2) 1.84

�̂4 (kg ·m2) − 11.54

�̂5 (kg ·m) 17.224

�̂6 (N · kg · s · rad−1) − 3.1

�̂7 (kg ·m) 33.372

�̂8 (N · kg · s · rad−1) 27.657

Figure 5  The measured joint torque based on Butterworth low-pass filter
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In addition, the exoskeleton needs to ensure the wear-
er’s safety during the human-robot cooperative motion. 
The motion range must be limited during the exoskele-
ton’s movement. Hence, the boundary conditions of the 
exoskeleton are shown in Table 2.

The objective of parametric identification is to obtain 
an optimization solution for the EWOA. An optimal cri-
terion is used to find the periodic excitation trajectories 
based on the minimum condition number of the regres-
sion matrix [19, 29, 30]. Therefore, the condition number 
of the regression matrix is adopted as a fitness function 
in the algorithm optimization.

It can be expressed as

Based on a typical human gait, ωf = 0.2π is substituted 
into the designed excitation trajectory Eq. (19). There 
are 16 parameters to be optimized. The minimum con-
dition number of the regression matrix is selected as the 
final result of the EWOA. The final optimization solution 

(20)Fitness = K (Y ) = �Y � ·

∥∥∥Y−1
∥∥∥.

of ak , bk (hip joint) and Ak ,Bk (knee joint) are shown in 
Table 3.

The excitation trajectories of the exoskeleton two joints 
are obtained based on the optimized parameters shown 
in Figure 4. The angle position, velocity, and acceleration 
of the identified excitation trajectory are constrained in 
Table 2.

3.3 � Model Parameter Identification
The excitation trajectory is selected as the desired trajec-
tory demand of the exoskeleton. Furthermore, the PID 
controller drives the two-DOF lower limb exoskeleton 
experimental platform, as shown in Figure 2. The exoskel-
eton’s joint position and real-time torque are obtained by 
the absolute encoders and torque sensors (integrating 
into the motor). Moreover, the obtained information is 
constructed as the dataset to identify the model param-
eters based on EWOA.

According to Eq. (13), and the current estimated 
parameter �̂ by EWOA, the estimated torque τ̂  is 
expressed as

Figure 6  The estimated joint torque and the corresponding filtered signal
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Figure 7  The measured joint torque and the corresponding filtered signal
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Figure 8  The comparison of measured and estimated joint torque
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where Y  is the element in the dataset. The error 
τ̃ = τ − τ̂ is the important basis for evaluating �̂ . There-
fore, the mean square deviations of calculated torque τ̂ 
and measured torque τ  are designed as a fitness function 
and �̂ is optimized by EWOA. The fitness function can 
be expressed as

where N is the samples number, τ i represents the meas-
ured torque of the i test data, and τ̂ i represents the calcu-
lation torque from Eq. (21).

The identification parameters �̂ of exoskeleton is 
obtained based on the EWOA as the fitness function is 
the smallest value, as shown in Table 4.

4 � Experiments and Results
In this section, the excitation trajectory in Section 3.2 is 
used to drive the exoskeleton experimental data. Based 
on the EWOA, the model parameters are identified by 
using the collected dataset. Then the backstepping con-
troller was designed based on the exoskeleton model after 

(21)τ̂ = Y �̂,

(22)Fitness =

N∑

i

1

2
(τ i − τ̂ i)

T(τ i − τ̂ i),

parameter identification. The model accuracy is verified 
through human-robot cooperative motion experiments.

4.1 � Experimental Description and Data Processing
The excitation trajectory is regarded as the desired 
demand trajectory. A PID controller is used to drive a 
two-DOF lower limb exoskeleton experimental plat-
form. According to the data collected by the encoder and 
torque sensor, the regression matrix Y and � are obtained 
after filtering. The model parameters are calculated from 
the regression matrix and the torques. The accuracy of 
the model parameters can be verified by comparing the 
calculated with actual torques. In addition, some other 
test trajectories different from the excitation trajectory 
are used to verify the identification accuracy. Finally, the 
control experiment of the lower limb exoskeleton is real-
ized by the backstepping controller.

The Butterworth low-pass filter is used to address 
the driving torque noise. In order to prevent the phase 
change of the filtered torque, both forward and reverse 
filtering are adopted to filter the torque signal as shown 
in Figure  5. In Figure  6, the blue curve represents the 
measured joint torque, and the red curve represents the 
calculated torque by the identification model. The experi-
mental results show that the actual driving torque has 
a high fitness to the calculated torque. However, some 
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Figure 9  The joint position, and the corresponding position error, together with the measured torque of hip joint by using backstepping controller
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discrete point errors are large due to unknown friction 
near the joint.

The measured and estimated torques for the steady 
state are compared in Figures 7 and 8. The results show 
that the estimated torque is consistent with the measured 
torque.

4.2 � Model‑Based Control
The model-based control is designed based on the 
exoskeleton parameters identification. In this study, a 
backstepping controller (7) [31] is used to improve both 
the wearable comfortable performance of operator and 
the real-time following error is constrained in a satis-
factory boundary.

If the exoskeleton state variables are defined as 
x1 = [θ1, θ2]

T , ẋ1 = [θ̇1, θ̇2]
T , then the state space model 

of the exoskeleton dynamics yields that

The desired trajectory xd = [θ1d , θ2d]
T , and the 

desired joint velocities ẋd = [θ̇1d , θ̇2d]
T of the exo-

skeleton joint are selected as arbitrary trajectoris 

(23)

{
ẋ1 = x2,

ẋ2 = H−1(τ − Cx2 − G − f ).

constrained in Table 2. The values of H, C, G are deter-
mined by the identified parameters �̂ in Eq. (12).

The state errors of exoskeleton δ1 ∈ R
2 , δ2 ∈ R

2 are 
defined as

where α = −K1δ1 + ẋd is the virtual control quantity, and 
K 1 = R

2×2 is a positive definite matrix.
Hence, the controller is designed as

where K 2 = R
2×2 is a positive definite matrix.

Then the controller stability is analyzed by Lyapunov 
technique. Firstly, the Lyapunov function V1 is designed 
as

The derivative of V1 yields that

(24)
{
δ1 = x1 − xd ,

δ2 = x2 − α,

(25)τ = −δ1 − K 2δ2 + G + Cα + f +H α̇,

(26)V1 =
1

2
δT1 δ2.

(27)V̇1 = δT1 (δ2 + α − ẋd).
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Figure 10  The joint position, and the corresponding position error, together with the measured torque of knee joint by using backstepping 
controller
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Meanwhile, the Lyapunov function V2 is designed as

Similarly, the derivative of V2 is given by

Since Ḣ − 2C is an anti-symmetric matrix, then 
1/2δT2 (Ḣ − 2C) = 0 . Substituting the backstepping con-
troller Eq. (25) into Eq. (29), we have

which indicate the exoskeleton system is asymptotically 
convergence to 0, as t → 0.

Finally, a demand trajectory of exoskeleton is selected 
as xd = sin(0.5πt) . The related experimental results are 
shown in Figures 9 and 10.

The controller starts at 3 s, and the position response 
is shown in Figures  9 and 10. The knee joint motion 
achieves a steady-state response after 0.5 s. Meanwhile, 
the position error of hip joint response is less than 0.03 
rad after 0.9 s. Since the exoskeleton system changes 
from static to dynamic, the joint torque is enlarged in 

(28)V2 = V1 +
1

2
δ22Hδ2.

(29)V̇2 = V̇1 + δT2H δ̇2 +
1

2
δT2 Ḣδ2.

(30)V̇2 = −δT1 K1δ1 − δT2 K2δ2,

the transient response range but has a safe range value. 
As the system approaches a steady-state response, the 
joint torque is in the normal range and periodically 
changes along with the demand trajectory. The experi-
mental results show that the exoskeleton control based 
on the mathematical model after parameter identifica-
tion can achieve high precision. In addition, the steady 
state human-robot interaction torque of the two joints is 
constrained within 15 N ·m as shown in Figure 11. This 
torque is within a reasonable range, which improves the 
human-robot wearable comfortable performance under 
cooperative motion.

5 � Conclusions
In this study, the 2-DOF lower limb exoskeleton platform 
is constructed by the Lagrange model to verify the model 
parameters identification and backstepping control 
experiment. The enhanced whale optimization algorithm 
(EWOA) is presented to design the excitation trajectories 
and identify the unknown model parameters such as the 
mass, moment of inertia and mechanical size. The peri-
odic excitation trajectories should consider the mechani-
cal physical constraint in order to input the desired 
position demand of exoskeletons. Then a backstepping 
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Figure 11  The steady state human-robot interaction torque by using backstepping controller
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controller based on the identified model is designed to 
improve the human-robot wearable comfortable per-
formance under cooperative motion. The dynamic and 
steady state response of the exoskeleton is guaranteed to 
synchronize the operator’s gait trajectories with satisfac-
tory performance.
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