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Abstract 

Minimum quantity Lubrication (MQL) is a sustainable lubrication system that is famous in many machining systems. 
It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes. The MQL system 
is affirmed to exhibit an excellent machining performance, and it is highly economical. The nanofluids are understood 
to exhibit excellent lubricity and heat evacuation capability, compared to pure oil-based MQL system. Studies have 
shown that the surface quality and amount of energy expended in the grinding operations can be reduced consid-
erably due to the positive effect of these nanofluids. This work presents an experimental study on the tribological 
performance of SiO2 nanofluid during grinding of Si3N4 ceramic. The effect different grinding modes and lubrication 
systems during the grinding operation was also analyzed. Different concentrations of the SiO2 nanofluid was manu-
factured using canola, corn and sunflower oils. The quantitative evaluation of the grinding process was done based 
on the amount of grinding forces, specific grinding energy, frictional coefficient, and surface integrity. It was found 
that the canola oil exhibits optimal lubrication performance compared to corn oil, sunflower oil, and traditional 
lubrication systems. Additionally, the introduction of ultrasonic vibrations with the SiO2 nanofluid in MQL system 
was found to reduce the specific grinding energy, normal grinding forces, tangential grinding forces, and surface 
roughness by 65%, 57%, 65%, and 18% respectively. Finally, regression analysis was used to obtain an optimum 
parameter combinations. The observations from this work will aid the smooth transition towards ecofriendly and sus-
tainable machining of engineering ceramics.
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1  Introduction
Ceramic materials have become prevalent in many 
manufacturing processes due to their outstanding and 
highly desired characteristics. Popular ceramic materials 
often used in the manufacturing industries range from 
metallic oxides (i.e., Al2O3 & ZrO2), carbides (SiC), and 
nitrides (Si3N4) [1]. Ceramic materials are characterized 
by superb corrosion, high wear/heat, and chemical resist-
ance. However, their extensive application into differ-
ent engineering fields has suffered an enormous amount 
of setbacks due to the exorbitant machining costs, and 
immense flaws encountered during the machining [2]. 
Therefore, it is vital to find a cheaper and effective alter-
native technique for processing the ceramics [3–5].

Common grinding (CG) is the most prominent method 
of processing the ceramics due to the high amount of 
material removal and achievable tolerances. Neverthe-
less, these materials are often very hard and brittle. Also, 
the quantity of energy expended during machining the 
ceramics is extremely high [6]. Additionally, grinding of 
the ceramics also involve extensive tool wears and work-
piece deformations. Hence, it is imperious to conduct 
further research towards achieving improved efficiency 
in grinding of the ceramics [7, 8]. Grinding of ceramics 
involve profound abrasion of the material using a grind-
ing wheel to machine these materials at pre-specified 
grinding depths, and feed rates with extensive crack-
ing of the workpiece [9]. Conversely, it is reported that 
most of the wheel grits’ are not entirely involved in mate-
rial removal. The unutilized grits are mostly involved in 
attritions, chafing and ploughing, thereby generating 
unwanted heat and high grinding power [10–12]. The 
high amount of heat generated and increased friction 
encountered during grinding ceramics often results in 
lower grinding efficacy [13].

Scientist have reported that during the grinding opera-
tions, the application of high frequency vibrations (above 
16  kHz) onto the workpiece material can produce con-
siderable reduction to the overall energy consumed with 
a resultant increase of its surface quality [14]. This pro-
cess which creates a 2D-oscilating trajectory of the work 
material during a grinding pass is referred to ultrasonic 
assisted grinding (UAG). Reports have shown that the 
UAG system improves the surface integrity by more than 
~20%, and lowers the grinding energy by about ~ 21% to 
~  69% [15, 16]. Furthermore, reports have shown that 
UAG system reduced the tool wears, improve material 
removal volumes, and caused a higher number of the 
diamond grains to be involved in the grinding operations 
[17].

Machining systems require efficient lubrication in 
other to remove chips/debris and vacate thermal energy 
generated in the contact region [15]. The traditional flood 

lubricants are currently famous for grinding of engineer-
ing materials. However, more governmental regulations 
have discouraged their usage to its negative environmen-
tal impact [18]. The FL are characterized by good lubric-
ity, better cooling and wheel cleaning ability. However, it 
have been reported that the waste from these coolants 
have green-house effects, and are extremely precari-
ous to the machine operators. It has been reported that 
more than 80% of human ailments found in machinists 
comes from interaction with lubricants [19]. Moreover, 
the lubricants also account for about twenty percent of 
total manufacturing expenditures [20]. Hence, in other 
to reduce cost and simultaneously improve on the overall 
efficiency of ceramic grinding, it is imperious to create a 
substitute lubrication technique that is non-hazardous, 
highly efficient and cheaper [1, 9, 21].

Consequently, some researchers suggested that an 
environmentally pleasant alternative lubrication tech-
nique such as dry-grinding, MQL, cryogenic gas and 
solid lubricant be used in the grinding process [22–24]. 
The dry process was found to be highly deleterious to the 
wheel life, and workpiece surface integrity, even though 
it significantly reduced lubrication costs [4, 25]. Recent 
research reports have indicated that these setbacks can 
be overcome via application of nanofluid based MQL 
during the machining process [3, 26]. A schematic illus-
tration of the transformation process encountered by 
switching from the conventional lubrication to eco-
friendly MQL systems is presented in Figure 1.

The application of nanofluid based MQL involves sus-
pending the nanoparticles in different fluids in the MQL 
system [27]. The nanofluid is atomized and delivered into 
the grinding section at a flow rate of 10–100 mL/h, and 
an ejection pressure of 4–6 bar [28]. Since the lubricants 
are sprayed in minute droplets, it was observed that the 
MQL process is capable of reducing the lubricant con-
sumption during machining by a thousand times [4, 
29]. Equally, the results from previous researchers have 
shown that the MQL system produces a corresponding 
increase in the overall grinding efficiency with enhanced 
wheel life [20]. Besides, it has been reported that com-
pared to the CG process, there is improved tribologi-
cal performance in the MQL system that causes a great 
decrease of the grinding energy and wears [3].

Although, the MQL system is understood to be associ-
ated with many benefits, some researchers have reported 
the deterioration of the surface integrity in the MQL 
machined components [30]. Hence, it was suggested that 
the combination of the MQL technique with 1D-UAG 
process can reduce the surface defects, and also serve as 
an alternative technique for machining the super hard 
materials [31]. Researchers have shown that the grind-
ing efficiency could be increased by applying a lateral 
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ultrasonic vibration (1D-UAG) on the work piece dur-
ing grinding operations [15, 32, 33]. Furthermore, it has 
been reported that the hybridized machining technique 
can successfully lead to decrease of the grinding energy 
for softer materials (e.g., bearing steel) [34], and also hard 
materials (e.g., ZrO2, Inconel 718, Al2O3) [35–38].

Several nanoparticles are currently utilized in manu-
facturing nanofluids for the MQL process. Popular 
nanoparticles are SiO2, CuO, ZnO, MoS2, GO, Al2O3, 
diamond, and CNT [39]. In comparison with the numer-
ous nanoparticles, the SiO2 is low-priced, exhibits excel-
lent thermo-physical and tribological characteristics [1, 
40]. Likewise, previous research outputs have shown that 
the chemical composition of the base oils/fluid utilized to 
produce the nanofluid do exert a considerable influence 
on the overall lubricity of the nanofluid. The fluid vis-
cosity, chemical composition, flash & smoke points have 
been reported to exert significant influence on the lubri-
cation performance of the nanofluids [41].

The preceding review of literature have shown that by 
combining the nano-enhanced lubricants with the UAG 
system, an improved machining performance can be 
achieved for grinding of ceramic materials. Similarly few 
research works have been focused on overcoming the 
grindability limitations of Si3N4 ceramic materials. So far, 
there have not been any endeavor to combine the UAG 
and MQL system for grinding of this advanced ceramic 
material. Therefore, the presented hypothetical technique 
of combining SiO2 based nanofluids, and the UAG system 
for machining the Si3N4 ceramic was investigated. This 
work involves a full experimental study of the CG and 

UAG performances of SiO2 based nanofluids produced 
using different vegetable oils for grinding of the Si3N4 
ceramic material. The grinding performances of the dif-
ferent machining conditions were evaluated based on the 
surface integrity, grinding forces, specific grinding energy 
and grinding force ratio. The results were analyzed using 
qualitatively and quantitative analysis of variance. Finally, 
mathematical prediction models were developed for the 
main response parameters of the grinding operations 
using regression analysis.

2 � Methodology
The set-up is designed in other to exert the high fre-
quency vibrations to the Silicon nitride workpiece. A 
piezo-based electro-acoustic transducer was utilized in 
generating the low amplitude ultrasound displacements. 
The high frequency oscillations were then intensified 
and directed into the workpiece holder with the aid of an 
ultrasonic klaxon and an amplifier.

The study was done using the experimental set-up 
presented in Figure  2. The UAG vibrations were gener-
ated using a signal generator and transmitted through 
a 20 kHz electro-acoustic transducer which is attached 
to a designed horn. The resonant frequency of the elec-
tro-acoustic transducer was obtained at 20.40 kHz. 
Consequently, a corresponding ultrasonic klaxon was 
constructed based on this frequency in accordance with 
the explanations of author’s [42].

The process involved in the UAG system produces 
an oscillating trajectory in the work material about the 
x-y axis. As a result of the discontinuity of the surface 
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Figure 1  Process transformation from conventional lubricants to eco-friendly lubrication
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interaction occurring at the grinding region, the removal 
of unit material exhibits both brittle and elastic material 
removal mechanism. Previous researchers have illus-
trated that during grinding of ceramics materials using 
diamond wheels, the mechanism of removing material 
in ceramics involve crack propagation (See Figure  3(a)). 
Also, studies have shown that the grain trajectory in UAG 
differs from the CG method as shown in Figure 3(b).

2.1 � Nanofluid: Preparation and Application
Silicon dioxide nanoparticles were reported to exhibit 
superior strength, high thermal stability, are cheap and 
easily obtainable. The mechanical properties of Silicon 
dioxide nanoparticle is given in Table 1). The silicon diox-
ide based nanofluid is reported to exhibit superior ther-
mophysical and tribological characteristics compared 
to commonly used nanoparticles. Moreover, the struc-
tural design of the SiO2 nanoparticle enables it to have 
enhanced chemical and tribological behaviors [1, 45].

The minimum quantity lubrication (MQL) process 
comprise accurately spurting a small amount of the 
nanofluid into a grinding area via a nozzle as illustrated 
in Figure 4. The MQL system combines the compressed 
air with atomized oil as the lubricant for the grinding 
operation. Nonetheless, the lubrication behavior of 
the nanofluid in an MQL system mainly depend on the 
tribo-chemical characteristic of the fluid/lubricant. The 
tribo-chemical behavior depend upon the individual 
functional groups in the base oil and thermal-chemical 
properties of the base oils. Peng et al. [46] showed that 
silicon dioxide nanofluids exhibits enhanced tribologi-
cal behaviors, higher thermal conductivity, and were 

found to prevent burning sensations compared to other 
nanofluids. The SiO2 nanoparticle is seen to success-
fully improve the sliding between different contacting 
surfaces with the help of a tribofilm layer.

The SiO2 based nanofluid was manufacture by sus-
pending the SiO2 nanoparticles in the oils. Studies have 
shown that in addition to the tribofilms formed during 
the machining, the effective transport of the nanoflu-
ids into the grinding region also depend on the nozzle 
orientation, nozzle distance to grinding region, and the 
propulsion pressure of the atomized fluids.

The nanofluid was manufactured by following the 
steps explained by authors [47]. The production of the 
nanofluid was done similar to steps taken by authors’ 
(cite). As explained by the previous researchers, the 
overall weight content of the nanofluid was obtained 
according to Eq. (1):

where:
ωn is weight of nanofluid (g), ωb is weight of base oil 

(g), ɷs is weight of surfactant (g).
The vegetable oils utilized for this work were chosen 

because of their superior viscosity at higher tempera-
tures compared to other oils. The oils also exhibit good 
lubricity and are biodegradable. Table  2 provides the 
structural arrangement of the fatty-acids present in the 
oils that were used as fluids for the nanofluid (i.e., can-
ola oil, sunflower oil, and corn oil) [48].

(1)
Nanofluid concentration (%)

=
ωn− ωs

ωb+ ωn+ ωs
× 100 (%),

Figure 2  Set-up of grinding system: (1) Grinding wheel, (2) Ultrasonic pulse generator, (3) Work material, (4) Dynamometer, (5) Work table, (6) 
Machine controller, (7) Amplifier, (8) Oscilloscope, (9) Data analyzer/computer, (10) MQL equipment, (11) MQL extrusion nozzle
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The developed nanofluid was manufactured by sus-
pending the nanoparticle in the vegetable oils using an 
ultrasonic mixing Homogenizing machine. The ultra-
sonic homogenizer (model: Sonics/vibracell) with tita-
nium based sonotrode mixed the nanofluid for about of 
20 min (machine settings: 750 W, 20 kHz). Subsequently, 
the entirely mixed nanofluid was utilized in the grinding 
experiments.

2.2 � Experiment
The experiments were done using the NI 450AV2 grind-
ing machine. Furthermore, the wheel type, workpiece 

Figure 3  Material removal mechanism during grinding: (a) Crack propagation method [43], (b) Path traced out by grits in CG and UAG methods 
[44]

Table 1  Physicochemical characteristics of Silicon dioxide (SiO2)

S/N Physical quantity Magnitude

1 Dimension (nm) 5–15

2 Texture Amorphous

3 Specific heat capacity (J/(g·K)) 1.0 

4 Heat coefficient (K−1) 5.6×10−7

5 Maximum stable temperature (°C) ~ 1600

6 Material density (g/cm3) 2.2 

7 Dielectric constant 3.9

8 Dielectric strength 107

9 Heat conductivity (330 K) (W/(cm·K)) 0.014
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material, grinding conditions were presented therein. The 
selected variables and their individual levels are given 
in Table 3. Prior to each experimental run, the grinding 
wheel was properly dressed under traditional grinding 
conditions using the machine settings given in Table  4. 
Thereafter, a full factorial design of experiment was con-
ducted with each setting and results obtained shown in 
Table 5.

The grinding forces in each grinding experiment was 
obtained using a KISTLER dynamometer (9272). The 
magnitude of the force were obtained in a three-channel 
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Figure 4  Illustration of MQL in grinding process

Table 2  Fatty acid contents of the vegetable oils

S/N Composition Sunflower (gram per 100 g of 
oil)

Corn (gram per 100 g of oil) Canola (gram 
per 100 g of 
oil)

1. Palmitic acid 5.9 10.58 4

2. Stearic acid 4.5 1.85 1.8

3. Oleic acid 19.5 27.33 56.1

4. Linoleic acid 65.7 53.52 20.3

5. Arachidic acid – 0.43 0.7

6. Behenic acid – – 0.4

7. Lignoceric acid – – 0.2

8. Palmitoleic acid – 0.14 0.2

9. Gadoleic acid – – 1.7

10. Erucic acid – – 0.6

11. Alpha linolenic acid (ALA) – 1.16 9.3

12. Myristic acid – 0.24 –

13 Margaric acid – 0.07 –

Table 3  Machine settings

S/N Lubricant Concentration of 
nanoparticle np 
(%)

Frequency f 
(kHz)

Conventional 
lubrication

MQL oil-
based Mo

i. Water based 
coolant

Canola 0 0

ii. Corn 0.5 20

iii. Sunflower 2 –
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amplifier/Kistler charge amplifier (5019). Furthermore, 
the values of the workpiece roughness was obtained 
with a Mitutoyo Surftest SJ-210 profilometer (0.8  mm 
cut-off value in feed direction). A sample of the surface 
roughness measurements is shown in Figure 5. Moreo-
ver, the elemental composition and EDX spectroscopy 
of the Si3N4 work material are respectively provided 
in Table 6 and Figure 6. Likewise, the thermo-physical 

characteristics of the three vegetable oils are given in 
Table 7 [49, 50].   

3 � Result, Analysis and Discussion
3.1 � Influence of SiO2 Based Nanofluids
The effect of the nanofluids as lubricant of the grinding 
process is analyzed in this section. The results of grind-
ing forces ft, fn, Ra, force ratio (µ) and specific grinding 
energy (U) obtained from each experimental runs. The 
force fn was generally found to be higher than ft in all the 
experimental runs. The force ft which is associated with 
the grinding power and energy expended during grinding 
is highly affected by the lubrication process [43, 51, 52]. 
Figure  7(a) shows that with an increase nanofluid con-
centration from 0% to 2%, there was about 60% reduction 
of the force ft and more than 40% decrease in the force 
fn. Thus indicating better lubrication actions at higher 
nanofluid concentrations. This shows that the SiO2 nano-
particles effectively perform the desired lubrication. At 
0% concentration of the nanofluid, the grinding forces 
were observed to be very high, indicating absence of effi-
cient lubrication. Also, the nanofluid MQL process with 
a higher amount of nanofluid concentration performed 
much better than the conventional coolants. This find-
ing is in agreement with the results of authors’ [33, 43, 
53]. The results illustrated in Figure 7, indicate that, the 
canola oil has the superior performance compared to 

Table 4  Machining setting

S/N Grinding conditions

Physical quantity Magnitude

1 Grinding wheel speed vs (m/s) 31.42

2 Table speed vw (m/min) 10

3 Depth of cut ae 10 cycles of 5 µm (50 µm)

4 Grinding wheel Diamond-SD120M100M

5 Wheel external diameter (mm) 200

6 MQL flow rate (mL/h) 150

7 Pressure (bar) 10

8 Stand-off distance (mm) 55

9 Nozzle inclination angle (º) 30

10 Work material Si3N4

11 Depth of dressing (μm) 20

12 Feed rate of dress (mm/min) 500

Table 5  Design of experiment

Run no. Oil type Conc. (wt. %) Ultrasonic
(kHz)

ft (N) fn (N) Ra (µm) ft/fn U  (J/mm3)

1 Canola 0 0 71.60 144.23 0.5301 0.4964 134.9530

2 Canola 0 20 40.40 100.11 0.4668 0.4036 76.1469

3 Canola 0.5 0 70.22 125.22 0.4792 0.5608 132.3520

4 Canola 0.5 20 36.21 92.36 0.4404 0.3921 68.2494

5 Canola 2 0 66.11 85.51 0.4740 0.7731 124.6060

6 Canola 2 20 29.41 65.08 0.4592 0.4519 55.4326

7 Corn 0 0 73.80 139.89 0.5328 0.5276 139.1000

8 Corn 0 20 41.01 105.01 0.4729 0.3904 77.2777

9 Corn 0.5 0 70.80 126.31 0.4863 0.5605 133.4450

10 Corn 0.5 20 38.20 94.06 0.4402 0.4061 72.0002

11 Corn 2 0 65.02 88.27 0.4752 0.7366 122.5510

12 Corn 2 20 34.40 70.31 0.4627 0.4893 64.8379

13 Sunflower 0 0 73.80 145.25 0.5366 0.5081 139.1000

14 Sunflower 0 20 42.70 102.19 0.4784 0.4179 80.4819

15 Sunflower 0.5 0 71.81 126.13 0.4842 0.5693 135.3490

16 Sunflower 0.5 20 40.63 94.04 0.4512 0.4321 76.5804

17 Sunflower 2 0 68.61 91.20 0.4772 0.7523 129.318

18 Sunflower 2 20 34.80 74.04 0.4690 0.4700 65.5918

19 Flood – 0 84.00 150.00 0.5614 0.5600 158.3251

20 Flood – 20 45.80 105.14 0.4566 0.4356 86.3249
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corn and sunflower oils. The canola oil formed the low-
est grinding force, whilst the sunflower oil produced the 
largest grinding force. The corn oil based nanofluid can 
be seen to have produce similar machining outcomes 
with the canola oil. The result indicates an effective 
machining outcomes from the MQL based silicon diox-
ide nanofluid. Moreover, a small layer of spread nanofluid 
was observed to form tribofilms, through the continuous 
crushing and bursting of the oil filled nanoparticles. This 
tribofilm layer was the cause of improved lubricity wit-
nessed during grinding with the nanofluid MQL. Similar 
finding was substantiated by authors [43, 45, 54].

Additionally, it was found that the two percent nano-
fluid produced lower grinding forces than the 0% & 
0.5% nanofluid concentration, and also the flood cool-
ant. Moreover, the experiments performed with flood 
coolants were noted to have lesser amount of adhered 
debris, indicating efficient debris evacuation/flush-
ing. Conversely, the work materials that were ground 
with the pure vegetable oils were observed to contain 
enormous surface and sub-surface deformations. This 

show that the pure oil on its own have reduced lubric-
ity and thermochemical behavior, but upon suspension 
of the silicon dioxide nanoparticles, the surface quality 
of the machined components was found to substan-
tially improve. It was also observed that the canola oils 
exhibit a higher lower viscosity at high temperatures 
compared to the sunflower and corn oils.

The results of measured surface roughness (Ra) in the 
grinding direction is given in Figure 7(c). It can be seen 
that the pure base oils produced the highest roughness 
values in the MQL condition. The lateral oscillations 
caused some deterioration of the surface quality due 
to absence of the positive tribological influence of the 
nanofluid. However, with increase in the concentration 
of the nanofluids, the surface roughness was observed 
to be decreased and overall surface integrity improved.

Considering the complete effect of the grinding vari-
ables of the on the frictional coefficient, the force ratio 
can be used to evaluate the coefficient of friction. Eq. 
(2) gives the mathematical representation of the grind-
ing force ratio in any grinding operation.

Kalita et  al. [55] explained that a smaller value of G 
indicates effective lubrication actions around the con-
tact region. The measured frictional coefficient under 
different grinding conditions are provided in Fig-
ure  7(d). The results obtained showed that the MQL 
system have lower values of force ratio as compared to 
the flood coolants. However, it can be seen that the fric-
tional coefficients tend to increase with higher amount 
of nanofluid concentration.

(2)G =
ft

fn
.
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Figure 5  Sample of measurement surface roughness

Table 6  Composition of work material

Element wt.% at.%

CK 07.21 10.04

NK 41.63 49.69

OK 21.70 22.67

AlK 02.58 01.60

SiK 26.89 16.01

Matrix Correction ZAF
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Additionally, the specific grinding energy is the 
energy needed to take out a given amount of material 
in a grinding process. The specific grinding energy (U) 
measured in (J/mm3) is obtained using Eq. (3) [33]:

where vs is tool speed (m/s), ft is tangent force (N), b is 
width (mm), vw is feed rate (m/s), ae is grinding depth 
(µm).

Generally, the specific grinding energy is used to 
indicate the overall system efficiency in a grind-
ing operation. It have been explained that a smaller 
amount of the specific grinding energy in a grinding 
process, indicates a highly efficient grinding process 
[55]. From the mathematical relationship in Eq. (3), 
it can be seen that a lower value of the ft and broader 
ground width will produce smaller value of U. The 
overall effect of the ultrasonic assisted grinding can be 

(3)U =
vs × ft

ae × vw × b
,
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Figure 6  Elemental analysis of work material using an EDX

Table 7  Thermo-physical properties of vegetable oils

S/N Oil type Density at 
30 °C (g/
cm3)

Smoke 
point 
(°C)

Flash 
point (°C)

Viscosity at 
35 °C (mPa·s)

1 Corn oil 0.9185 232 254 37.92

2 Sunflower 0.9167 232 274 41.55

3 Canola 0.9183 225 280 42.49
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used to effectively reduce the overall energy consumed 
in a grinding process. The reason for this is because 
the ultrasonic vibration was capable of reducing the 
tangential grinding force considerably, and simultane-
ously increasing the grinding forces as illustrated in 
Figure 7.

The canola oil was found to expend lower specific 
grinding energy compared to corn and sunflower oils. 
This performance can be attributed to the overall 
effective tribology of the canola oil, due to the exist-
ence of various fatty acid functional groups in its com-
position. The concentration of nanoparticle can be 
seen to also affect the grinding energy and frictional 
coefficient. In the case of specific grinding energy, it 
can be seen that a higher nanofluid concentration 
reduced the energy expended significantly. However, 
an opposite trend was observed regarding the fric-
tional coefficient. In general, it was found that the 
ultrasonic vibration has the most effect on the grind-
ing energy and force ratio, in comparison to the oil 
types and nanofluid.

3.2 � Influence of Ultrasonic Assisted Vibrations
The effect of applying high frequency ultrasonic vibra-
tions of 20  kHz on the workpiece material was also 
investigated. The results obtained from the 1D-UAG 
experiments were compared. From Figure 7(a), (b), the 
results of the grinding forces ft and fn were respectively 
presented. It can be seen that the UAG experiments 
have lower grinding forces compared to the CG experi-
ments. It was also found that during the 1D-UAG pro-
cess, the normal force obtained for the different MQL 
lubricants was reduced by between ~ 38% to ~ 58% as 
compared to flood cooling lubrication. The 2% nano-
fluid concentration was found to effect the highest 
reduction on the normal grinding forces. From the 
results obtained, it can be seen that when the MQL 
nanofluid and UAG process were hybridized into the 
grinding system, the overall results of the normal and 
tangential grinding forces were significantly decreased. 
This desired grinding performance can be attributed to 
the intermittent separations occurring at the grinding 
zone due to the high frequency oscillations, and effec-
tive lubricity of the MQL nanofluids.

Figure 7  Results from grinding experiments: (a) Tangent force (ft), (b) Normal force (fn), (c) Roughness (Ra), (d) Grinding force ratio (ft/fn), (e) 
Grinding energy U 
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Similarly, the results the tangential force obtained in the 
UAG process were found to be lower by ~ 49% to ~ 70% 
as compared to the CG. Generally, the ultrasonication 
helps to significantly lower the grinding forces in grind-
ing operations. The resultant reduction of the grinding 
forces due to ultrasonication can be attributed to better 
penetration of the diamond grits into the work material 
as a result of the complex material removal mechanism 
existing during the 1D ultrasonic grinding process. Also, 
the self-sharpening phenomenon explained by Molaie 
et al. [33] is a major source of this reduction in the grind-
ing forces. It was explained that the self-sharpening pro-
cess also extends the tool life. The rate of reduction of the 
grinding forces was found to be when the concentration 
of MQL nanofluids were high.

Among the vegetable oils used in the study, the 
canola and corn oil were observed to proffer similar 
improvement in workpiece surface quality. The samples 
machined using the CG systems were found to have poor 
surface quality, with intense cracks, pores, and ridges. 
By and large, the lubricant with higher concentration 
of nanofluid combined with ultrasonic assistance was 
found to have the best performance during the grinding 
operations.

Compared with the conventional flood cooling lubrica-
tion system, the canola oil was found to have the highest 
rate of reduction of the grinding forces amongst the veg-
etable oils used in this work. The performance of the oils 
were found to improve significantly with addition of the 
SiO2 nanoparticles. The tangential grinding force in sam-
ples ground with UAG and MQL process was found to be 
lowered by about 49%–69% compared to the flood cooled 
operations. Similarly, with the hybridization of the MQL 
nanofluids and UAG process, there was about 10%–37% 
reductions in surface roughness. The viscosity and com-
position of oils play a significant role in their tribological 
performance during the grinding operations.

3.3 � Influence of Vegetable Oils on Grinding Performance
The tribological behaviour of each vegetable oils differs 
considering the differences in their chemical composi-
tions. With increasing calls for discarding the use of syn-
thetic and mineral based oils as lubricants in machining 
processes, the performance of vegetable oils need to be 
enhanced significantly to serve as alternative replace-
ments of the traditional lubricants. Previous works have 
shown that due to high amount of energy expended in 
grinding operations, the dry grinding is not a viable alter-
native to the non-environmental friendly oils. Hence, 
based on results of the reports from previous works, the 
preeminent and high performing vegetable oils such as 
corn oil, canola and sunflower oils were chosen in this 
investigation. The pure oils (0% concentration) were 

found to exhibit relatively poor lubrication and tribologi-
cal performances. This is evident from the several types 
of surface defects observed on the workpiece, in addition 
to high rate of wheel wear when pure oils were used in 
the MQL system. Also, intense chip weld and macro-
fractures were observed in the samples ground with pure 
vegetable oil in the MQL system.

According to the results obtained for the grinding per-
formances of each vegetable oil, it could be seen that the 
canola oil had superior tribological properties than the 
corn and sunflower oils. The overall hierarchical tribol-
ogy of the oils is sunflower oil< corn oil < canola oil. Due 
to the similarities in molecular structures of the corn and 
canola oils, it can be confirmed that the molecular com-
position significantly affects the tribological behaviour 
of the oils. Furthermore, the higher tribological charac-
teristics of the canola oil can be attributed to its superior 
opposition to oxidations especially at elevated tempera-
tures. The double bond of carbon in the structure of 
these vegetable oils (illustrated in Figure 8) can be seen 
to be a formidable point of attack for the oxygen atoms, 
thereby initializing the oxidation process. Furthermore, 
the corn oil contains about 59.7% polyunsaturated 
fatty acid (PUFA) and 24% monounsaturated fatty acid 

Figure 8  Molecular structure of vegetable oils: (a) Canola oil, (b) 
Corn oil, (c) Sunflower oil
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(MUFA) total fatty acid content. Similarly, the sunflower 
oil contains about 66% polyunsaturated fatty acid (PUFA) 
and 23% monounsaturated fatty acid (MUFA) total fatty 
acid content. However, the canola oil can be seen to con-
tain only 28.1% of the PUFA and 63.3% of the MUFA. 
Hence, the superior tribological performance of the can-
ola oil can be attributed to its higher resistance to oxida-
tion compared to other vegetable oils [56]. This finding 
is similar to the results obtained by Singh et al. [57]. The 
mono-unsaturated and poly-unsaturated vegetable oils 
are observed to contain single and multiple C-C double 
bonds respectively. A thin tribofilm was observed to be 
formed on the surface of the workpiece material. Besides, 
the length of the carbon chain in the molecular structure 
of the oil also affect the energy adsorbed by this tribo-
film. It can be seen that the higher length of carbon chain 
in the oil, the more will be energy adsorption by the oil. 
Hence, any vegetable oil that contains a higher amount 
of the polyunsaturated fatty acid molecules will have a 
higher affinity to oxidation reactions.

Likewise, studies have also shown that the thermo-
physical properties of a vegetable oil have significant 
effect on the tribological behaviour of that oil. A higher 
specific capacity and viscosity implies better tribologi-
cal characteristics of the selected vegetable oil. Hence, 
this study illustrated how the molecular composition 

and structural characteristics of each vegetable oil can 
have significant effect on the tribological behaviour of the 
nanofluids produced from it. Figure 9 shows an illustra-
tion of the hierarchy of the tribological characteristics of 
the base oil according to the composition and molecular 
texture of the oils.

Additionally, Figure 10 shows the surface images of the 
best and worst surface quality for each lubrication con-
dition. The images were obtained using a scanning elec-
tron microscopes with 500× magnification. In the MQL 
process, the best surface quality was obtained when the 
grinding operation was performed with higher nanofluid 
concentration and UAG system altogether. Moreover, the 
0% nanofluid concentration under CG systems was found 
to have the poorest surface quality.

Most of the ground samples were characterized by dif-
ferent categories of furrows, grooves, debris adherance 
and microfractures. Since the main cause of poor surface 
quality is the poor lubrication, excessive heat and wear out 
of the diamond grits, it is believed that effective lubrication 
can reduce these setbacks. As seen in Figure 10, the sam-
ples with high surface roughness exhibit tremendous rub-
bing lines, uneven furrows, microstructural damages and 
deep grooves. These defects are majorly due to the poor 
lubrication phenomenon, which lead to excessive microp-
lowing and chipping actions. Also, the UAG and nanofluid 
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Figure 10  SEM images of ground samples for the worst and best surface quaility under different lubricating conditions
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MQL samples showed lesser debris adherance compared 
to CG components. Also, smaller furrows were noticed in 
the nanofluid MQL samples compared to those ground 
with conventional flood cooling. Additionally, the samples 
ground with the 1D-UAG system appear smoother with 
minimal surface defects. It is evident that during grind-
ing with the 1D-UAG system, the grinding wheel main-
tains a higher sharpness of the diamond grits even after a 
number of grinding passes. Furthermore, the SEM images 
illustrate how the tribological behavior of the vegetable 
oils were immensely altered by the SiO2 nanoparticles. 
At 0% nanofluid concentration, the pure canola oil under 
CG process produced a surface roughness of 0.4972  µm, 
whereas pure corn oil under CG process produced a sur-
face roughness of 0.5271  µm. However, under UAG pro-
cess and the additon of SiO2 nanoparticle into both oils at 
0.5% concentration, the surface roughness achieved under 
this experimental condition by the canola and corn oil was 
0.4402 µm and 0.4404 µm respectively.

3.4 � ANOVA Analysis
The experimental results were then analysed using the 
full factorial analysis of variance. The analysis was con-
ducted using the results of the MQL process only, in 
other to statistically ascertain the effect of each of the 
1D-UAG, and MQL process parameters. The analysis 
was conducted on Minitab software with a single rep-
licate full factorial design (18 runs). The Residual and 
Pareto plots were used to indicate the level of significance 
of each variable on the corresponding output response. 
From Table 8, it can be seen that the effect of the type of 
vegetable oil used has less impact on the tangential force 
compared to the other variables, i.e., nanofluid concen-
tration and ultrasonic vibrations. Figure 11(a) shows the 
residual plots of the results obtained for the tangential 
grinding force ft. The normal plot of the developed model 
showed that the points are close to the straight line, 
with only one unusual observation away from the line, 
an abnormal observation found in experimental run 18. 
The histogram of residuals also shows a rationally normal 

distribution of the residuals. The Pareto chart of the ana-
lysed result is shown in Figure 11(b), and it indicates that 
all the factors are at least 90% significant in the developed 
model. It can also be seen that the ultrasonic vibration 
exhibits the highest influence on the tangential grinding 
force, followed by the nanofluid concentration and then 
the type of oil utilized. Furthermore, the mains effect of 
the variables are illustrated in Figure  11(c). The mains 
effect shows that applying the MQL nanofluid with ultra-
sonic vibration decreases the tangential grinding force, 
ft. Moreover, the canola oil exhibits the lowest values of 
ft compared to the corn and sunflower oils. The optimal 
settings obtained from the developed model shows that 
the minimum value of tangential grinding force can be 
obtained when canola oil was used, and a higher nano-
fluid concentration of 2 wt.% with the 1D-UAG. The 
overall model summary indicates that the hierarchy of 
influence of the grinding process variables on the tan-
gential grinding force is f > np > Mo. The analysis indi-
cate that the variation in response can be explained by 
the model with accuracy of about 97.30% (see Table  9). 
Finally, the regression model for the tangential grinding 
force is presented in Eq. (4):

   
Similar to the result obtained for ft, Table 10 shows that 

the oil type has less significance to the corresponding meas-
ured normal grinding force, fn. As seen, the P-value of the oil 
type is 0.081, which is greater than 0.05, clearly indicating 
the effect of this variable is not conspicuous as compared to 
the resultant effects observed in the other factors, i.e., nano-
fluid concentration, ultrasonication and their interactions. 
The residual plots of the analysis for the normal grinding 
force is shown in Figure 12(a). The result presented by the 
normal probability plot and residuals’ histogram indicates 

(4)

ft = 53.397− {2.067 ∗Mo1} + {0.473 ∗Mo2}

+ {1.594 ∗Mo3} +
{

3.819 ∗ np1
}

+
{

0.281 np2
}

−
{

4.101 ∗ np3
}

+
{

16.799 ∗ f 1
}

−
{

16.799 ∗ f 2
}

Table 8  Analysis of variance of ft

S/N Source DF Adj SS Adj MS F-Value P-Value

1 Model 5 0.006998 0.001400 172.81 <0.0001

2 Linear 5 0.006998 0.001400 172.81 <0.0001

4 Oil type 2 0.000056 0.000028 3.45 0.066

5 Concentration 2 0.000302 0.000151 18.64 <0.0001

6 Ultrasonic 1 0.006640 0.006640 819.88 <0.0001

7 Error 12 0.000097 0.000008

8 Total 17 0.007095
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that the result were normally distributed along the line. 
Similarly, the Pareto chart of the developed model show 
that the input variables have at least 99% significance, with 
the nanofluid concentration having the highest influence 
on the values of fn (see Figure  12(b)). The overall predic-
tion accuracy of the model was also found to be 99.16% (see 
Table 11). The mains effect shown in Figure 12(c) illustrates 
the effect of each process parameter on the normal grind-
ing force. It can be seen in Figure 12(c) that the nanofluid 
concentration have the highest effect exhibiting the steepest 
decline from 0% value to 2% nanofluid concentrations. The 
result also show that higher amount of nanofluid concentra-
tion and simultaneously using the 1D-UAG vibrations pro-
duced lower values of the fn. In addition, the canola oil was 
found to have the lower values of fn as compared to corn and 
sunflower oils. Finally, the optimal parameter setting for the 
lowest values of fn is canola oil, 2 wt.% nanofluid concentra-
tion and 1D-UAG. Finally, the regression model for the nor-
mal grinding force is presented in Eq. (5):

   

(5)

fn = 104.43−{4.84 ∗Mo1}− {6.07 ∗Mo2}

+ {10.91 ∗Mo3} +
{

23.35 ∗ np1
}

+
{

2.84 ∗ np2
}

−
{

26.19 ∗ np3
}

+
{

9.37 ∗ f 1
}

−
{

9.37 ∗ f 2
}

.

Table  12 shows that all the process variables and the 
interaction between some parameters significantly affects 
the values of surface roughness. The model shows that the 
oil type, nanofluid concentration and the ultrasonic vibra-
tion have significant effect on the surface roughness. Addi-
tionally, Table  13 show that the regression model can be 
used to determine the amount of variance between each 
variable can be explained by the developed model with 
accuracy of about 99.21%. More so, it can be seen that the 
two way interaction of the nanofluid concentration and 
the 1D-UAG process is also significant. Figure 13(a) gives 
an illustration of the residual plot of the surface roughness 
results. The points on the normal plot of the model were 
closely aligned along the straight line of the plot. This is 
indicative of the model’s accuracy, and validity. Also, the 
histogram of the residuals is bell shaped, which is indicative 
of normal distribution of the residuals. Additionally, Fig-
ure 13(b) illustrates the Pareto chart of the analysed result 
of surface roughness. The analysis in the Pareto chart shows 
that the 1D-UAG ultrasonic vibrations have the highest 
effect on the surface roughness, followed by the nanofluid 
concentration and then interaction between these two fac-
tors. The oil type was found to have the least effect on the 
surface roughness. A striking observation can be seen from 

Figure 11  (a) Residual plots for ft, (b) Pareto chart of ft, (c) Mains effect plots for ft
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Figure 13(c) whereby it is seen that excess nanofluid con-
centration causes an increase the workpiece surface rough-
ness. The 0.5 wt.% of nanofluid was found to produce the 
best surface roughness when used with 1D-UAG system. 
Similarly, the corn oil exhibits the lowest surface rough-
ness, followed by the canola oil and lastly the sunflower oil. 
Lastly, the regression model for the surface roughness of 
the ground components is given in Eq. (6):

(6)

Ra = 0.478689−{0.003772 ∗Mo1}− {0.000306 ∗Mo2} + {0.004078 ∗Mo3} +
{

0.024244 ∗ np1
}

−
{

0.015106 ∗ np2
}

−
{

0.009139 ∗ np3
}

+
{

0.018600 ∗ f 1
}

−
{

0.018600 ∗ f 2
}

+
{

0.011633 ∗ np1 ∗ f 1
}

−
{

0.011633 ∗ np1 ∗ f 2
}

+
{

0.001050 ∗ np2 ∗ f 1
}

−
{

0.001050 ∗ np2 ∗ f 2
}

−
{

0.012683 ∗ np3 ∗ f 1
}

+
{

0.012683 ∗ np3 ∗ f 2
}

.

Figure 11  continued

Table 9  Model summary for transformed response

S/N S R-sq (%) R-sq(adj) (%) R-sq(pred) (%)

1 2.93309 98.09 97.30 95.71
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4 � Conclusions
The present study is focused on investigating the grind-
ing performance of SiO2 nanofluid formed using ecof-
riendly vegetable oils during machining of Si3N4 ceramic. 
The MQL process is a promising alternative to traditional 

flood cooling lubrication methods in grinding of super-
hard materials. The flood coolants are presently being 
used are mostly synthetic hydrocarbon-based, and have 
been found to be hazardous to the environments, and 
costly. The literatures reviewed showed that the MQL 
process help to reduce the amount of energy expended 
in grinding operations. Further, it was also reported that 

Table 10  Analysis of variance of fn

S/N Source DF Adj SS Adj MS F-Value P-Value

1 Model 7 10645.9 1520.85 287.14 <0.0001

2 Linear 5 10269.5 2053.89 387.78 <0.0001

3 Oil type 2 34.6 17.31 3.27 0.081

4 Concentration 2 6039.3 3019.63 570.11 <0.0001

5 Ultrasonic 1 4195.6 4195.59 792.14 <0.0001

6 2-Way Interactions 2 376.5 188.23 35.54 <0.0001

7 Concentration*Ultrasonic 2 376.5 188.23 35.54 <0.0001

8 Error 10 53.0 5.30

9 Total 17 10698.9

Figure 12  (a) Residual plots for fn, (b) Pareto chart of fn, (c) Mains effect plots for fn
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there is a corresponding increase of the workpiece surface 
integrity and increased lifespan for the grinding wheels. 
In terms of overall grinding costs, the MQL process was 
reported to significantly reduce the lubricant consump-
tion by 1000 times. Qualitative and quantitative analysis 
was employed to observe the overall performance of the 
nanofluid MQL system and compared to other lubricant 
types. The grinding performance was examined using the 

grinding forces, specific grinding energy, frictional coef-
ficient and workpiece surface roughness. Based on the 
experimental results obtained, the main findings of this 
work can be summarized as follows:

1.	 The 1D-UAG process has a much higher process effi-
ciency than the CG process. This is because it pro-
duces the lowest value for grinding forces and surface 
roughness during grinding of the ceramic materials. 
Also, the MQL system when combined with UAG 
system, it outperformed the common grinding sys-
tem and the traditional lubricants.

2.	 The optimum grinding performance was obtained 
when the experiments were performed combining 

Figure 12  continued

Table 11  Model summary

S/N S R-sq (%) R-sq(adj) (%) R-sq(pred) (%)

1 2.30142 99.50 99.16 98.40
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the MQL system (canola oil with 2% nanofluid con-
centration) and the 1D-UAG process.

3.	 The use of both UAG and SiO2/canola based nano-
fluid reduced the specific grinding energy, normal 
grinding forces, tangential grinding forces, and sur-
face roughness by 65%, 57%, 65%, and 18% respec-

tively, as compared to the CG with the traditional 
lubricants.

4.	 Finally, a full factorial analysis of the ultrasonic and 
MQL system was used to obtain an optimized set-
tings of the process variables. The grinding perfor-
mance of the corn oil was found to be similar to that 
of the canola oil based lubricants. Whereas the sun-
flower oil was observed to exhibit the poorest lubri-
cation ability among the vegetable oil based lubri-
cants.

Table 12  Analysis of variance of Ra

S/N Source DF Adj SS Adj MS F-Value P-Value

1 Model 7 0.013594 0.001942 306.57 < 0.0001

2 Linear 5 0.011810 0.002362 372.87 < 0.0001

4 Oil type 2 0.000186 0.000093 14.66 0.001

5 Concentration 2 0.005397 0.002698 425.99 < 0.0001

6 Ultrasonic 1 0.006227 0.006227 983.07 < 0.0001

7 2-Way Interactions 2 0.001784 0.000892 140.80 < 0.0001

8 Concentration*Ultrasonic 2 0.001784 0.000892 140.80 < 0.0001

9 Error 10 0.000063 0.000006

10 Total 17 0.013657

Table 13  Model summary

S/N S R-sq (%) R-sq(adj) (%) R-sq(pred) (%)

1 0.0025169 99.54 99.21 98.50

Figure 13  (a) Residual plots for Ra, (b) Pareto chart of Ra, (c) Mains effect plots for Ra
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Abbreviations
FL	� Traditional flood lubricant
MQL	� Minimum quantity lubrication
U	� Specific grinding energy
NMQL	� Nano-fluid minimum quantity lubrication
CC	� Cryogenic cooling
fn	� Normal grinding force
ft	� Tangential grinding force
Ra	� Surface roughness
SiO2	� Silicon dioxide
ND	� Nano-diamond
Mo	� MQL base oil
F	� Ultrasonic oscillation frequency
CoF	� Coefficient of friction
SEM	� Scanning electron microscope
CNT	� Carbon nanotubes
MWCNT	� Multi-walled carbon nanotubes
CG	� Conventional grinding
UAG​	� Ultrasonic assisted grinding
EDX	� Energy dispersive X-ray
ft/fn	� Force ratio
np	� Nanoparticle concentration
Q	� MQL flow rate
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