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Abstract 

In the railway system, fasteners have the functions of damping, maintaining the track distance, and adjusting the track 
level. Therefore, routine maintenance and inspection of fasteners are important to ensure the safe operation of track 
lines. Currently, assessment methods for fastener tightness include manual observation, acoustic wave detection, 
and image detection. There are limitations such as low accuracy and efficiency, easy interference and misjudgment, 
and a lack of accurate, stable, and fast detection methods. Aiming at the small deformation characteristics and large 
elastic change of fasteners from full loosening to full tightening, this study proposes high-precision surface-structured 
light technology for fastener detection and fastener deformation feature extraction based on the center-line projec-
tion distance and a fastener tightness regression method based on neural networks. First, the method uses a 3D 
camera to obtain a fastener point cloud and then segments the elastic rod area based on the iterative closest point 
algorithm registration. Principal component analysis is used to calculate the normal vector of the segmented elastic 
rod surface and extract the point on the centerline of the elastic rod. The point is projected onto the upper surface 
of the bolt to calculate the projection distance. Subsequently, the mapping relationship between the projection 
distance sequence and fastener tightness is established, and the influence of each parameter on the fastener tight-
ness prediction is analyzed. Finally, by setting up a fastener detection scene in the track experimental base, collecting 
data, and completing the algorithm verification, the results showed that the deviation between the fastener tightness 
regression value obtained after the algorithm processing and the actual measured value RMSE was 0.2196 mm, which 
significantly improved the effect compared with other tightness detection methods, and realized an effective fastener 
tightness regression.
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1 Introduction
Railway fasteners connect rails and sleepers and play a 
role in maintaining rails at a predetermined position to 
prevent their horizontal and vertical movement, provide 
elasticity to the overall track structure, reduce vibration, 

and delay the accumulation of residual rail deformation 
[1]. High-speed railways in China have developed rap-
idly in recent years. Presently, China’s high-speed railway 
operation mileage has exceeded 41000 km, ranking first 
in the world, followed by the heavy daily operation and 
maintenance of the railway facilities. The railway fasten-
ings are mostly connected by bolts in the center. In busy 
railway operations, loose or tight bolts are becoming 
increasingly prominent, particularly in high-speed and 
heavy-haul lines with large vibrations and impacts. These 
problems lead to the loss and damage of fastenings [2].
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The safety state of railway fasteners should be tested 
regularly for each railway working section. The stand-
ard manual fastener maintenance operation is generally 
determined according to different fastener types and the 
scope of the elastic tongue from the seam. Daily opera-
tion uses a "three-point contact method" to determine 
whether a fastener is qualified [3]. However, the degree 
of contact between the tongue and rail clamping surface 
is not controllable, especially when electric or internal 
combustion engine wrenches are used, because excessive 
pressure causes the elastic rod to collapse, lose elasticity, 
and damage the screw sleeve on the sleeper. Moreover, 
there are operational standards that require tightening 
wrenches to reach the specified torque range [4]; how-
ever, considering the complex conditions at the operation 
site, it is difficult to control the torque of the wrenches to 
a stable value. Few controllable torque machines are suit-
able for large-scale high-speed rail fastener operations; 
therefore, it is difficult to obtain the actual buckle pres-
sure [5].

Both domestic and foreign scholars have conducted 
extensive research on fastener detection algorithms. Yang 
et al. [6] used the LDA algorithm to set the weight of the 
matrix and calculated the distance between the matrix 
weight of the target fastener and template fastener image 
to determine the safety state of the target fastener. How-
ever, this study was not comprehensive and only pro-
vided a method for detecting whether the fastener was 
lost. This did not solve the problem of detecting fasten-
ers in a damaged state. Liu et al. [7] set various empirical 
values for different types of fasteners and proposed rel-
evant positioning and segmentation algorithms based on 
the characteristics of the regular arrangements of railway 
fasteners. This method is simple and direct; however, the 
algorithm has poor robustness. Li et al. [8] combined two 
traditional visual detection methods, studied and realized 
the edge detection of the rail surface, and determined the 
actual position of the fastener according to an empirical 
value. Feng et al. [9] used an LDA feature extraction algo-
rithm to locate the target fastener position and obtain the 
Haar features of the target image. The classification and 
detection of the safety state of the fastener were com-
pleted based on the degree of similarity of the feature 
result comparison. Few studies have focused on detecting 
and evaluating the tightness of fasteners because of the 
limited spatial information available.

Compared with 2D images, 3D point clouds have an 
irreplaceable advantage in terms of the depth informa-
tion. The most significant difference between 3D and 
2D cameras is that the former can obtain depth infor-
mation at the scale of the real world, whereas the latter 
can only obtain two-dimensional plane image informa-
tion at the pixel scale, which plays a significant role in 

the three-dimensional tightness detection of the fastener 
when the elastic deformation is small. Some research-
ers have studied methods for realizing fastener detec-
tion based on structured light. Mao et  al. [3] proposed 
a method for extracting the centerline of a complex 
cylindrical surface and a method for calculating the gap 
between elastic rods to evaluate the tightness of fasteners. 
Aytekin et al. [10] established a real-time system using a 
structural light camera to detect missing fastening nuts. 
The similarities between the histogram pixels and vari-
ous detection methods were analyzed. By constructing a 
cumulative height function and prior knowledge, Wang 
et al. [2] proposed a method to determine the bolt-tight-
ening state threshold based on an online updating thresh-
old database and compared the height difference with the 
threshold database to realize bolt-tightening state detec-
tion. Han et al. [11] proposed a basic multisource visual 
data-detection method. By combining two-dimensional 
strength information and three-dimensional depth infor-
mation generated by line-structured light projection, nut 
or bolt position positioning. An accurate perception of 
the height information can be realized in the dynamic 
running environment of railways, and a dynamic tem-
plate-matching algorithm can be used to compare and 
detect the tightness of fasteners.

Currently, there is little research on tightness tests 
and evaluation methods for fasteners. Owing to the 
influences of construction, impact, vibration, and other 
factors, bolts and nuts inevitably become loose or too 
tight. Detection methods based on traditional two-
dimensional cameras cannot easily obtain informa-
tion in the depth direction; therefore, it is difficult to 
realize tightness detection. According to a field inves-
tigation [12], the fastener pressure is positively corre-
lated with the number of tightening laps of the bolts, 
whereas the fastener pressure requirement is closely 
related to the environment of the track, radius of the 
bend, and site construction requirements of the track 
elevation. For example, in a bend where the inclination 
angle of the track must be adjusted using fasteners, the 
buckling pressure inside the railway is greater than that 
outside. Based on the influence of seasons and tem-
peratures, the fasteners on the entire seamless rail line 
must be operated regularly. The buckle pressure should 
be reduced quantitatively to release the stress inside the 
entire rail to reduce the occurrence of rail expansion 
or breakage and ensure the safety of railway operation. 
Additionally, the buckle pressure must be moderate: if 
it is too large, it will reduce the elasticity of the cush-
ion and crush the elastic rod resulting in damage and 
if it is too small, it will make the fastener slide along 
the shoulder of the concrete pillow causing shoulder 
damage and gauge distance expansion. In summary, the 



Page 3 of 16Wang et al. Chinese Journal of Mechanical Engineering           (2024) 37:35  

tightness evaluation standard of fasteners should not 
be simply determined as loose or tight according to the 
threshold value but should map the tightness state of 
the fasteners according to the relationship between the 
size and deformation of the buckle pressure. Therefore, 
identifying the tightness state of fasteners reasonably, 
quickly, and accurately is the key objective of this study. 
Figure  1 shows the structural diagram of this study, 
which describes the identification and prediction pro-
cesses of fastener tightness.

Based on the railway fastener maintenance robot 
platform, this study proposes a method for calculating 
the projection distance after dimensional-reduction 
processing of the centerline of fasteners using feed-
forward and backward neural network regression. First, 
the fastener point cloud is obtained from a structural 
light camera (such as the RVC X mini camera), and 
then the region of the fasteners is extracted by regis-
tration segmentation and other operations. The normal 
vector of the vertical surface of the fastener point cloud 
was obtained using the PCA method to extract the cen-
terline of the fastener, which was then projected onto 
the upper surface of the fastener bolts to obtain the 
projection distance and sort it for the regression fea-
ture extraction. The trained network was used to iden-
tify and predict unknown fastener states. The accuracy 
and effectiveness of the algorithm were proven through 
data collection and analysis, and the effects of various 

parameters on the regression prediction performance 
of the algorithm were analyzed.

The remainder of the paper is organized as follows: 
Section 2 discusses the work and provides notation and 
problem definitions. In Section  3, an algorithm for the 
centerline projection distance (CPD) is proposed and 
verified. Section 4 presents the experimental results and 
analysis. Section  5 summarizes and discusses the issues 
related to future research.

2  Problem Definition
The focus of this study was to obtain a fastener topog-
raphy point cloud using a 3D camera and to study the 
mapping relationship between the fastener topography 
point cloud and tightness of the fastener based on a pat-
tern recognition algorithm. According to the research, 
the overall stress of the fastener is roughly linearly cor-
related with the deformation of some positions within a 
certain range; therefore, the tightness of the fastener can 
be identified through deformation. The algorithm in this 
study focuses on the feature extraction of the fastener 
point cloud and makes the following agreement consid-
ering the feasibility of the fastener point cloud feature 
and algorithm deployment.

(1) Because there are many types of fasteners, this 
study mainly focuses on WJ-8 fasteners, which are 
widely used in high-speed railways.

Figure 1 Paper structure frame diagram
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(2) Owing to the corrosion of the bolts in complex 
environments in some sections, the material prop-
erties change, and the buckling pressure is lost. This 
study evaluates fasteners in good condition, and the 
algorithm is not temporarily applicable to failed fas-
teners.

(3) The performance of the algorithm is significantly 
affected when unknown objects invade the fastener 
system. However, this is less likely to occur in bal-
last-less track systems.

The variables in this study are defined as Table 1.
The predicted fastener tightness determined in this 

study is represented by the tightening angle of the bolt, 
and its state is related to the number of points on the 
centerline p, number of neural network nodes n, number 
of adjacent points k in the PCA method, and other fac-
tors. The definition is θ ∈ {p,n, k}.

P is the point cloud of the originally collected fasten-
ers. After extracting the point cloud of the fastener, the 
following parameters were used to predict its tightness 
state:

where p, k, n and L are from the training dataset, and L* 
and P* are the unknown parameters of the fastener to be 
tested. The goal of this study was to establish a relation-
ship between the point cloud characteristics of a fasten-
er’s geometric deformation appearance and its tightness, 
ς(·) . The algorithm that was used is the extracted CPD 
method.

3  Center‑Line Projection Distance Algorithm
3.1  Framework of Algorithm
The overall evaluation process for identifying the tight-
ness of the fasteners is shown in Figure 2. First, the origi-
nal three-dimensional point cloud of the fastener was 
obtained using a structural light camera, and the ICP 
algorithm was used to locate the fastener bolt area and 
determine the XYZ coordinate direction on the fastener. 

(1)L∗=ς(P∗, θ∗|θ ,P,L),

Table 1 Definition of variables

Parameter Definition

q Bolt tightness state q ∈ {1, 2, 3, 4, 5, 6, 7}
p Number of points on center-line

n Number of neural network nodes

k k-nearest neighbor points in PCA method

D Projection distance

L Predicted geometric deformation state of fastener

Ln Fastener tightness state transfer

Figure 2 Fastener tightness state test flowchart
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The X-axis is parallel to the rail along the positive direc-
tion of the track repair vehicle. The point cloud area 
where the fastener and bolt were located was significantly 
higher than that in the other areas of the background, 
including the iron bottom plate, concrete pillow, and 
insulation block, making it easier for the algorithm to 
segment the elastic rod area. After the accurate registra-
tion and segmentation of the fasteners using the stand-
ard point cloud template of the bolts, iron bottom plate, 
and insulating block, the normal vector perpendicular to 
the surface of the elastic rod was extracted using the PCA 
method to extract the centerline of the elastic rod. Sub-
sequently, the point on the centerline was projected onto 
the upper surface of the bolt, and the resulting projection 
distance was calculated. After the projection distance was 
ranked, it was input into the neural network for regres-
sion prediction to determine the geometric features of 
the fasteners. To establish a better mapping relationship 
between the projection distance and bolt turns of the fas-
tener, the influence of the number of points on the fas-
tener centerline (p), number of nodes in the regression 
network (n), and number of points near k in the PCA 
method were analyzed. Finally, the CPD method based 
on the above parameters was used to identify and predict 
the tightness of the fasteners. Figure 3 shows that WJ-8 
fasteners are laid on the high-speed rail system.

3.2  Segmentation and Extraction of Fastener Region 
Based on ICP Algorithm

Currently, commonly used point-cloud segmentation 
algorithms are based on model fitting, regional growth, 
and clustering features. Researchers have conducted bolt 
detection and segmentation using a point cloud contain-
ing a bolt structure. Researchers have used the Hough 
algorithm to detect bolt holes in the point clouds of steel 
structures to achieve rapid and stable detection. Others 
have used the region-of-interest method to extract point-
cloud features and perform fast segmentation based on 
the region-growing method. Its advantages are that it can 
segment connected regions with the same features and 
provide good boundary information and segmentation 
results. However, iteration-based methods are time-con-
suming and computationally intensive. Noise and uneven 
grayscales may lead to voids and over segmentation.

Because there is no clear feature point for the fastener, 
setting the initial position of the seed point is difficult. 
Because the bolt and circular gasket blocked the shoot-
ing of the 3D camera, there was a discontinuous fastener 
point cloud after the segmentation. Therefore, the algo-
rithm in this study transforms the idea of using a con-
tinuous fastener point cloud to extract features, focusing 
on the overall geometric shape features of the cloud to 
quickly perform segmentation operations. According to 
China’s railway standard, the distance between the bolt 
midpoint for adjacent fasteners is approximately 0.6 m, 
hence, the distance between the rail car running can be 
set accordingly to determine the approximate initial posi-
tion of the fasteners to be tested. The conical area of the 
structural light acquisition point cloud shown in Figure 4 
contains bolts, gaskets, fasteners, an iron bottom plate, 
insulating gaskets, and a concrete base. These parts were 
arranged sequentially from top to bottom.

This study proposes an iterative segmentation method 
based on an iterative closest point (ICP) registration algo-
rithm that can locate and segment fasteners more accu-
rately and stably. The process of point cloud registration (a) Fastener coordinate system 

(b)  Fastener construction sites 
Figure 3 Conditions of WJ-8 fastener Figure 4 Main targets within the range of structural light cameras
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involves inputting two point clouds, Ps and Pt , and out-
putting the transformation matrix T to make the coinci-
dence degree of the two point clouds as high as possible. 
The transformation matrix T can be rigid or flexible; 
this study applied it to a rigid transformation [13]. This 
process is divided into rough and accurate registrations. 
Rough registration is based on the high accuracy of the 
ICP algorithm, which provides a good initial transforma-
tion value for accurate registration. Otherwise, it would 
be difficult for the registration results to converge to the 
global optimal value in the subsequent iterative calcula-
tions. Because the track detection vehicle moves with ref-
erence to a fixed distance on the track and the attitude 
changes between the fasteners under the same track are 
not significant, it can provide a good prerequisite for 
rough registration. After passing the rough registration, 
the two point clouds are in a roughly overlapping state. 
The transformation matrix is optimized until the con-
vergence is less than the set threshold or the maximum 
number of iterations, and a transformation with a smaller 
and better registration error is obtained. Methods based 
on the feature points, main direction matching, or 
improved search point pairs help accelerate the algorithm 
convergence and improve the registration accuracy.

The discrete point cloud obtained by the 3D camera is 
defined as

The target point cloud is defined as

The registration problem of the point cloud can be 
described as

According to the above formula, the ICP problem can 
be divided into two steps: finding the nearest point and 
solving the optimal transformation. Through constant 
iterations, optimal varying parameters Rk and tk are 
obtained each time. The registration iteration stops if the 
registration error is less than or equal to the threshold, 
the maximum number of iterations is reached, or the rate 
of �R and �t change is less than the threshold; the regis-
tration error function is expressed as

where R is a 3×3 rotation transformation matrix and 
t is a 3×1 translation transformation vector. The ICP 

Ps = {p1, p2, ..., pn}, pn ∈ R
3.

Pt = {p1, p2, ..., pi}, pi ∈ R
3.

(2)R∗, t∗ = arg min
R,t

{ 1

|Ps|

|Ps|
∑

i=1

∥

∥

∥
pit −

(

R · pis + t
)∥

∥

∥

2
}.

(3)F(R, t) =
N
∑

i=1

�Pt − (R · Ps + t)�2,

algorithm does not require deliberate segmentation and 
extraction of features from a point cloud, making it suit-
able for faster point clouds with fewer features. In the 
case of good initial values, the precision and convergence 
are better. Because of the relationship between the cam-
era layout and position of the fastener on the rail, it has a 
strong regularity. Except for missing and damaged fasten-
ers, the fasteners to be registered do not show significant 
changes in their position and attitude.

The track-detection vehicle moved to the top of the 
fasteners to be evaluated at fixed intervals,  as shown 
in Figure 5, and the original point cloud was captured 
by the 3D camera. After preprocessing, such as noise 
reduction and downsampling, the prepared standard 
fastener bolt point-cloud template was used for regis-
tration. The coordinates of the bolt center point after 
registration were calculated, and the bolt area was 
divided using the AABB bounding box method, as 
shown in Figure  6. The iron bottom plate and insula-
tion block area were divided in the same manner to 
complete the accurate division of the fastener elastic 
rod. The above steps were repeated until all the fas-
tener elastic rods were extracted. The algorithm can 
successfully separate the point cloud between the fas-
tener and other objects in the background because the 
fastener is in contact with the bolt and the contact sur-
face is a plane. When the camera is shooting downward 
between the fasteners and iron base plate and the point 
cloud part of the insulating block, there is a gap of 
approximately 6.5 mm in the radius of the elastic rod.

Figure 5 Structural light camera layout
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3.3  PCA Method Based on k‑Nearest Neighbor 
for Extracting Fastener Center‑Line

The tightness feature of the elastic rod mapping the cen-
terline was extracted based on the registration and seg-
mentation results of the fastener. The tightness of the 
fastener is determined by the elastic force of the elastic 
rod and buckling pressure of the bolt. Tightening the bolt 
exerted a downward pressure on the elastic rod. There 
is a point contact between the bar and rail, and the rail 
is fixed by the buckle pressure to prevent transverse and 
longitudinal movements. Because of the complex cylin-
drical shape of the elastic rod, it is difficult to find fea-
ture points or feature surfaces on its body; therefore, it 
is difficult to apply the traditional feature-matching algo-
rithm to the fastener. Changes in the elastic range were 
observed while pressing the fasteners. According to a 
survey, when the elastic deformation of the fasteners 
is fully pressed, the range of variation is approximately 
9–13  mm, which indicates that the geometric charac-
teristics of the fasteners can be described as a whole. To 
facilitate the feature extraction of the fasteners, it is com-
mon to extract the centerline of a complex structure and 
convert the cylinder feature, which is difficult to describe, 
into a line feature for description.

The point cloud skeleton is a morphological expres-
sion of a three-dimensional model that aims to reduce 
the complexity of the data dimensions and calculation. 
Point cloud skeleton extraction has been systematically 
studied by many scholars. A representative method is 
the L1 median skeleton extraction method, which uses 
the L1 theory to map a three-dimensional point cloud 
and takes the median value of a series of points instead of 
the average value for iterative contraction to obtain skel-
eton points [14]. Some researchers have also proposed a 
point-cloud model skeleton extraction method based on 

the ROSA, which processes the information extraction 
skeleton of the central axis of the local area of the point 
cloud [15]. Point cloud skeleton extraction is based on the 
Laplace operator contraction, which gradually shrinks 
iteratively from the periphery to the interior [16]. After 
summarizing and referring to the studies of other schol-
ars and institutions, and conducting experiments and 
comparative analysis, we finally determined our research 
method [17–21]. In this study, the point cloud extraction 
of the centerline of the elastic rod was performed based 
on the commonly used PCA method. As a common data 
processing method, the main principle is to process the 
data according to the matrix transformation method to 
make it linearly independent in all dimensions and obtain 
the important feature components of the data and other 
information.

The WJ-8 fastener was composed of 60Si2Mn or 
55Si2Mn hot-rolled round spring steel with a diameter of 
13 mm. To solve the extraction problem of the elastic rod 
skeleton, the method adopted in this study obtains the 
normal vector of discrete points on the fastener surface 
using the PCA method, which must be perpendicular to 
the fastener surface and point to the corresponding point 
on the centerline of the fastener. The point on the cen-
terline was located on the central axis of the round steel 
strip.

According to the point search method using the k-near-
est neighbor (KNN), the point set is expressed as

If we use p =
k
∑

i=0

pi

/

(k + 1) for the mean of the point 

cloud coordinates, the covariance matrix can be 
expressed as the SVD decomposition of the matrix for 
eigenvalues and eigenvectors.

The decomposition process of matrix H is as

The first pivot vector is the first column of the 
matrix U r , the second vector is the second column, 
etc. In this case, the eigenvalues of the matrix cov_P 
and corresponding eigenvectors are respectively 
�1, �2, �3,α1,α2,α3 and satisfied with �1 > �2 > �3 . The 
smallest eigenvalue �3 , corresponding to the eigenvector 
α3 is the normal vector of the section at this point.

The KNN algorithm was used to calculate the k points 
closest to each point on the elastic rod surface. The 
value of k affected the extraction accuracy of the normal 

P = {pi|pi = (xi, yi, zi)
T}, i = 0, 1, 2, 3, ..., k .

(4)cov_P =
k

∑

i=0

(pi − p)(pi − p)T.

(5)H = P̃P̃T = U r

∑

2UT
r .

Figure 6 Fastener bolt separated from surrounding box
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vector on the elastic strip surface of the fastener. Because 
the surface of an elastic bar is a continuously changing 
curved surface, the curvature changes at different points 
are significantly different. When the curvature of the sur-
face at a point changes significantly, the value of k should 
be increased appropriately to obtain a more reasonable 
estimate of the normal vector; however, it should not be 
increased excessively so that the normal vector can be 
perpendicular to the local plane composed of k+1 points.

Assuming that there are p points on the point cloud 
of the elastic rod surface, p samples are formed in the 
model. The value of p is determined by the sampling pro-
portion of the original point cloud. The larger the p value, 
the more accurately the curvature of the local plane and 
the estimation of the normal vector can be fitted. How-
ever, the amount of computation will also increase. 
Therefore, an appropriate p value must be selected to 
ensure the accuracy and computational requirements of 
the algorithm.

The preliminary normal line extraction effect of the 
point cloud based on principal component analysis is 
shown in Figure  7. Six adjacent points near the point 
were fitted into a local plane to estimate the normal vec-
tor for each point. In this case, the calculated normal vec-
tor is ambiguous; that is, only the straight line where the 

normal vector is located is obtained, but the direction 
of the line is not determined as the final direction of the 
normal vector. It can be observed that the normal vec-
tor arrangement of the point cloud is relatively scattered, 
and the direction points are random, which cannot meet 
the requirement that the normal vector should be per-
pendicular to the surface of the projectile bar and toward 
the outside, and the centerline of the elastic rod cannot 
be extracted. Assuming that the point cloud is sufficiently 
dense and that the sampling plane is smooth, the normal 
vector of two adjacent points �ni, �nj is assumed to be close 
to parallel. If the inner product of the two results is nega-
tive �ni · �nj < 0 , then the normal vector at a certain point 
must be flipped. Therefore, the normal vector orientation 
is first set to a certain point in the point cloud. The cur-
rent point normal vector is set to �ni and then traverses 
all other points and �nj is the next point to traverse. If the 
inner product is negative, �nj flips; otherwise, it remains 
the same.

The point-cloud normal vector extraction algorithm 
can satisfy the requirements after the directional integra-
tion of the normal vectors, as shown in Figure  8. After 
extraction, the points on the elastic rod point cloud move 
the radius of the elastic rod by 6.5 mm in reverse, accord-
ing to the normal vector, to obtain the original data of the 

Figure 7 Original PCA normal vector extraction effect Figure 8 Redirect normal vector extraction effect
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points on the centerline. The outlier data were removed, 
and the results are shown in Figure 9.

3.4  Projection Distance and Neural Network Regression 
Calculated by Fitting Plane

The RANSAC algorithm can estimate the parameters of 
the mathematical model from a set of observation data 
containing ‘‘external points’’ through an iterative way, 
which is often used to determine the plane, sphere, cyl-
inder, etc., whereas the M-estimator Sample Consensus 
(MSAC) algorithm is a variant of the RANSAC algorithm 
to fit the plane with higher accuracy. The MSAC algo-
rithm was used to fit the upper surface of the bolt, and 
the fitting results are shown in Figures 10 and 11. 

The general equation for a three-dimensional plane in 
space can be expressed as

The set and index of the plane point cloud are obtained 
and solve the equation of the plane according to the 
known points. Let the coordinates of the three-dimen-
sional space points not on the plane be (x0, y0, z0) , then 
the projection coordinate on the plane is set to (xp, yp, zp) . 
The line from the projection point to the current point is 
perpendicular to the plane U2 = A2 + B2 + C2 . Accord-
ing to the vertical constraint, we obtain

(6)Ax + By+ Cz + D = 0.

After obtaining the plane equation for the upper sur-
face of the fastener bolt, the original image of the fas-
tener was rotated such that the upper surface of the 
bolt was parallel to the horizontal plane. The normal 
vector of the horizontal plane was set to n0(0, 0, 1) and 
the direction was upward. The normal vector of the 
upper surface of the bolt is expressed as n1(A, B, and C). 
Using the vector cross-product method, we determine 
the angle ϕ between the normal vectors and the corre-
sponding axis ̟ of rotation. The Rodriguez method is 
then used to solve the rotation matrix R, and the coor-
dinates of the corresponding points in the point cloud 
are multiplied by the rotation matrix R to obtain the 
rotating point cloud. The rotation effect is illustrated in 
Figure 12, where the upper surface of the bolt is parallel 
to the horizontal ground.

(7)























xp = ((B2 + C2)x0 − A(By0 + Cz0 + D))
�

U2,

yp = ((A2 + C2)y0 − B(Ax0 + Cz0 + D))
�

U2,

zp = ((A2 + B2)z0 − C(Ax0 + By0 + D))
�

U2.

Figure 9 Extraction of centerline of elastic rod

Figure 10 Bolt upper surface fitting

Figure 11 Projection onto the upper surface plane of the bolt

Figure 12 Rotated fastener point-cloud image



Page 10 of 16Wang et al. Chinese Journal of Mechanical Engineering           (2024) 37:35 

Under the equation of the plane in a known space, 
the projected distance D from point to plane can be 
expressed as

The centerline point of the fastener was projected onto 
the plane of the upper surface of the bolt. Based on the 
principles of the point cloud disorder and displacement 
invariance, the projection distance was calculated and 
arranged in ascending order to generate the feed-forward 
and backward propagation neural network training sam-
ples with p features, as shown in Figure 13.

Preliminary data on the fastener characteristics were 
obtained based on the previous section. These original 
data were input into a neural network for feature extrac-
tion to reconstruct the mapping relationship between 
the dataset and tightness features of the fasteners. In an 
actual situation, the buckle pressure of the fastener is 
positively correlated with the shape variable of the elastic 
rod; therefore, this study adopts a two-layer feed-forward 
network with a sigmoid activation function of hidden 
neurons and linear output neurons. Linear regression 
outputs a continuous value, making it suitable for regres-
sion problems. Linear regression assumes that the rela-
tionship between the output and input is linear.

where ωn is the weight and b is the deviation of both sca-
lars. The model output ŷ is the prediction and estima-
tion of the real output y using linear regression. Here, 
we set the model output y as the tightening angle of the 
fastener bolts. Label q of the training set has eight states, 
representing the corresponding fastener tightening angle. 
Considering the requirements of the actual tightening 

(8)D = (Ax0 + By0 + Cz0 + D)
/√

U2.

(9)ŷ = x1ω1 + x2ω2 + ...+ xnωn + b,

condition of fasteners and the accuracy of field construc-
tion, the interval of the fastening angles was set as 45°, 
which was used as the basis for labeling each sample in 
the training set. In the model training, ε is an error. The 
function used to measure the error is called the loss func-
tion, and the smaller its value, the smaller the error. The 
evaluation index i for the sample error is expressed as 
follows:

After training, the total loss of all the training sam-
ples was minimized, and the model parameters were 
obtained:

The training algorithm adopted by the network was 
the L-M algorithm. The small-batch stochastic gradi-
ent descent is widely used in deep learning to optimize 
the algorithms. This process randomly selects the initial 
values of a group of model parameters and performs sev-
eral iterations to reduce the loss function value. In each 
iteration, a small batch β consisting of a fixed number 
of training data samples was randomly and evenly sam-
pled, and the gradient of its average loss with respect to 
the model parameters was calculated. Finally, the product 
of this result and a predetermined positive number were 
used to reduce the model parameters in this iteration. In 
the process of training the linear regression model, each 
parameter was iterated as follows:

In the above formula, |β| represents the number of sam-
ples in each small batch, and η is the learning rate of the 
network. Appropriate results can be obtained by repeat-
edly adjusting the hyperparameter values. The effect of 
the verification model training can be evaluated using 
independent verification sets.

3.5  Flowchart of CPD Algorithm
To express the CPD algorithm proposed in this study 
more systematically, we designed a flowchart of the algo-
rithm, as shown in Figure 14. The main steps of the algo-
rithm are as follows.

(10)ε(i)(ω1,ω2, ...,ωn, b) = 1
2 (ŷ

(i) − y(i))2.

(11)ω∗
1,ω

∗
2, b

∗ = arg min
ω1,ω2,b

ε(ω1,ω2, b).

(12)















































ω1 −
η

|β|
�

i∈β

∂ε(i)(ω1,ω2, ...,ωn, b)

∂ω1
−→ω1,

ω2 −
η

|β|
�

i∈β

∂ε(i)(ω1,ω2, ...,ωn, b)

∂ω2
−→ω2,

b− η

|β|
�

i∈β

∂ε(i)(ω1,ω2, ...,ωn, b)

∂b
−→ b.

Figure 13 Point-cloud feature sequencing after projection
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(1) Step1: Obtain the original fastener point aggregation.

Ps = {p1, p2, ..., pn}, pn ∈ R
3 , and data preprocessing

(2) Step2: Use the ICP registration algorithm to locate 
and segment the elastic rod area of the fastener to 
obtain the point set of the elastic rod surface.

(3) Step3: Use the KNN algorithm to calculate the 
neighborhood points of each point on the elastic 
rod P = {pi|pi = (xi, yi, zi)

T}, i = 0, 1, 2, 3, ..., k , use 
the PCA algorithm to estimate the normal vector of 

the elastic rod surface and extract the centerline of 
the elastic rod surface after reverse translation.

(4) Step4: Fit the plane of the upper surface of the fas-
tener bolt, project the point on the centerline onto 
the plane, output the projection distance, introduce 
it into the neural network for regression, and save 
the well-trained model Mi.

(5) Step5: Put the test sample Ti into the well-trained 
model to predict the unknown fastener state and 
obtain the result Si.

Figure 14 Flowchart of CPD algorithm
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4  Experiments and Result Analysis
4.1  Fastener Inspection and Maintenance Robot
For the WJ-8 fastener widely used on ballastless tracks, 
field tests were conducted in a track railway test base to 
evaluate the performance of the proposed fastener safety 
state detection algorithm. In this section, the collection 
of the fastener point cloud data is established for the rail-
way fastener maintenance robot, which is composed of 
the vehicle body, electric torque feedback bolt wrench, 
manipulator slider module, high-precision structural 
light camera, material conveying module, and industrial 
computer, as shown in Figure 15.

The 3D structured light camera was installed at a 
fixed position on the vehicle, and its accuracy can reach 
0.012–0.040 mm at a calibration depth of 600 mm. 
After calibrating the camera parameters, the movement 
of the vehicle was controlled to sample the data of the 
test fastenings. The collected fastener data are stored 
sequentially. This section describes the extraction of the 
geometric features from the fastener point clouds data to 
generate training sets, test sets, and other operations.

By comparing the results of the tightness detection 
method of the fastener in this study with those of other 
fastener detection methods and using the manually cali-
brated dataset as the reference standard, the identifica-
tion and prediction results of the tightness state of the 
fastener were obtained, and the error was compared with 
the standard dataset to evaluate the accuracy of the algo-
rithm. Finally, the influence of each parameter on the 
prediction accuracy of the neural network was discussed.

4.2  Collection Process of Fastener Point Cloud Data Set
The experiment was conducted in the railway base of the 
Research Institute. The railway in the test site was bal-
lastless track, and the fasteners were WJ-8 type fasten-
ers. Firstly, the fastener was manually adjusted to the test 
state using the calibration plate for marking. The bolt 
angle was defined as 0° when the fastener was fully loose, 
that is, no fastening pressure was generated on the elastic 
rod. When the fastener was fully tightened, that is, when 
the middle of the elastic rod part just touches the insula-
tion block, a bolt angle of 270° can be measured. Because 
the torque value of the bolt wrench should be kept within 

±5% of the set value, the seven states that were sampled 
were based on a benchmark of 45° intervals from 0 to 
270°. Seven states were obtained Nq(1, 2, 3, 4, 5, 6, 7) ∗ 45◦ 
by tightening each fastener from 0 to 270°, and then 
another seven states were obtained by loosening the fas-
tener from 270° to 0°. The data of each state were sampled 
five times. Through cyclic sampling, the data of 50 groups 
of different fasteners are collected on the track, as illus-
trated in Table 2. Choosing 45° as the rotation reference 
is better controlled on the calibration plate, and the range 
of the fastener changes is more uniform. The orbital test 
base is in the outdoor scene. To ensure the sampling 
accuracy of the structured light camera, the setting state 
and marking of the fastener are completed manually. In 
the experiment, standard angle calibration equipment is 
used to ensure the accuracy in the manual tightening and 
loosening of the fastener.

The original data were split, and each fastener had 70 
states collected separately. In total, 3500 sample data points 
were used. Among the 50 groups of fasteners, forty-five 
groups were randomly selected as the training data and 
5 groups as the testing data. After obtaining the original 
image of the fastener, the original data were finely seg-
mented to obtain an area with only the elastic rod, as shown 
in Figure 16. The CPD method was then used to extract the 
normal vector of the fastener surface points, and the points 

Figure 15 Rail fastener inspection and maintenance robot

Table 2 Data sets of different tightness of fastener bolts

Label Angle of tightening Label Angle of 
Loosing

1 0° 7’ 270°

2 45° 6’ 225°

3 90° 5’ 180°

4 135° 4’ 135°

5 180° 3’ 90°

6 225° 2’ 45°

7 270° 1’ 0°

Figure 16 Elastic bar region after feature extraction
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on the centerline were extracted. The points were projected 
onto the upper surface of the fastener bolts, and the projec-
tion distance (PD) was used to sort them. Finally, the points 
were introduced into the neural network for regression and 
geometric feature extraction.

4.3  Weight of Experimental Parameter in the Tightness 
State

In the process of predicting the tightness of fasteners using 
the CPD algorithm, the main parameters affecting the pre-
diction performance of the network include the number 
of points on the centerline p and the number of k nearest 
neighbor points in the PCA method. The number of neu-
ral network nodes n has a less obvious effect on the results. 
In the process of predicting the state of unknown fasten-
ers, different p and k values have different influences on the 
predicted results. The predicted results are compared with 
the original results, and the root mean square error was cal-
culated as an evaluation index to select the optimal p and 
k. Table 3 presents the results of the study. After repeated 
experiments, better results were obtained at p = 4000 and 
k = 16. For p = 4000, it can be ensured that the calculated 
amount of training data is appropriate, and the accuracy 
requirements are reasonable. For k = 16, good symme-
try can be guaranteed in the neighborhood near the data 
point, and the calculation accuracy is higher. The RMSE in 
the experimental results is a dimensionless value between 
the state quantities 1 and 7, which is then converted into 
the overall variation of the elastic strip according to the bolt 
rotation angle and pitch value in mm.

According to the parameters p = 4000 and k = 16, the 
experimental results were further analyzed to verify the 
generalization performance of the algorithm. The results 
are shown in Figure 17.

From the comparison of the above experimental results, 
it can be observed that the error in the training effect of 
the network fluctuated between 0.2100 and 0.3500. In 
the eighth training group, a good error convergence was 
attained to achieve a good training effect. As shown in 
Figure  18, the best and worst predicted values of the ten 
groups of the training results were selected for comparison. 
After the data analysis, it can be concluded that the devia-
tion of the final neural network training and verification 
results was caused by the interference of human factors in 
the data collection process or unstable factors in the algo-
rithm operation process. Subsequent work will focus on 

strengthening the analysis and correction of data distur-
bance factors and improving the accuracy of the fastener 
segmentation and centerline extraction algorithms to bet-
ter fit the neural network model of the fastener tightness 
detection and optimize the parameter adjustment.

4.4  Compare with Other Algorithms
For the point cloud data of the fastener, we simulated and 
reproduced other tightness-detection methods for experi-
mental comparison. The difference in the Euclidean dis-
tance between the processing results and original data was 
used to represent the final effect of the algorithm, as illus-
trated in Table 4.

Method 1 is the centerline projection point distance 
method and Method 2 is the original point cloud ICP reg-
istration method. The RMSE error generated after reg-
istration is obtained by the direct registration operation 
of the original point cloud, which describes the degree 
of deviation between the target point cloud and original 

Table 3 Parameter setting and experimental results

Parameter p = 2000 p = 2000 p = 2000 p = 4000 p = 4000, p = 4000 p  = 7000 p = 7000, p = 7000
k = 6 k = 16 k = 32 k = 6 k = 16 k = 32 k = 6 k = 16 k = 32

RMSE 0.9031 0.3054 0.3579 0.8653 0.2201 0.2657 0.8835 0.3081 0.3543

(a) Comparison of prediction effects of ten groups of training 
networks

(b) Prediction effects of the seven tension states were compared
Figure 17 Conclusion of RMSE results
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point cloud, which is when the fastener generates geo-
metric deformation under the action of the buckle pres-
sure. The experimental results were compared with those 
of the original registration in a fully loose state. Method 3 
was the centerline clearance measurement method. The 
extracted centerline was further processed to obtain a 
point set on the symmetric plane of the middle line of the 
elastic rod. The vertical distance between the point set and 

insulating block was calculated as the basis for determining 
the unseam value of the elastic rod. Method 4 was the ICP 
registration method for the centerline. The extracted cen-
terlines were registered together, the center-line template 
in the fully loose state was created for registration with the 
other states, and the experimental results were compared. 
The experimental results showed that the proposed CPD 
algorithm can accurately identify and predict the tightness 
of fasteners.

5  Conclusions
Detecting the tightness of fasteners is an important and 
challenging task in high-speed railways. Based on high-
precision plane-structured light technology, this study 
proposed a fastener tightness detection method based 
on the centerline projection distance feature and neural 
network regression. The process of algorithm implemen-
tation was as follows.

(1) By obtaining the three-dimensional point cloud 
of fasteners, accurate registration and segmentation 
operations were performed based on the ICP algo-
rithm.
(2) The PCA algorithm was used to estimate the nor-
mal vector of the elastic rod surface to extract the 
centerline of the fastener in the plane formed by each 
point and its domain point, project the points on the 
centerline to the upper surface of the fastener bolt 
and calculate the projection distance.
(3) A linear neural network was used for regression 
to establish the mapping relationship between the 
projection distance and geometric tightness state of 
the fastener. The obtained network model with good 
performance was used to predict the tightness of 
unknown fasteners.

In the experiment, an angle-measuring instrument 
was used to manually calibrate the tightness of 50 groups 
of fasteners in different states, and the data were col-
lected and marked as the calibration benchmark. From 
the RMSE value compared with the final verification set 
and the real data, it can be observed that the deviation 
between the method and manual calibration result is less 
than 0.2196 mm, which proves that the method can effec-
tively predict the tightness state of unknown fasteners.

Additionally, it was compared with other algorithms to 
verify its performance.

Simultaneously, by analyzing the influence of different 
p and k parameters, it was deduced that the proposed 
method can replace manual maintenance in the future 
automatic field of fastener maintenance and improve the 
operation and maintenance efficiency of railway fastener 
maintenance.

(a) Two poor predictions from ten datasets

(b) Two good predictions from ten datasets

Figure 18 Comparison of results

Table 4 Comparison of other registration methods

Method RMSE

CPD method 0.2196 mm

ICP method 1.4355 mm

Midpoint gap method 0.8673 mm

Centerline ICP method 0.9271 mm
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The subsequent algorithm was deployed on the railway 
maintenance robot, and the designed torque wrench was 
applied to precisely tighten or loosen the bolts of the fas-
tener to meet the safety operation standards of the rail 
transit.
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