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Abstract 

Existing mobile robots mostly use graph search algorithms for path planning, which suffer from relatively low plan-
ning efficiency owing to high redundancy and large computational complexity. Due to the limitations of the neigh-
borhood search strategy, the robots could hardly obtain the most optimal global path. A global path planning 
algorithm, denoted as EDG*, is proposed by expanding nodes using a well-designed expanding disconnected 
graph operator (EDG) in this paper. Firstly, all obstacles are marked and their corners are located through the map 
pre-processing. Then, the EDG operator is designed to find points in non-obstruction areas to complete the rapid 
expansion of disconnected nodes. Finally, the EDG* heuristic iterative algorithm is proposed. It selects the candidate 
node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum 
offset. Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM. 
The result shows that the proposed EDG* reduced the planning time by more than 90% and total length of paths 
reduced by more than 4.6%. Compared to A*, Dijkstra and JPS, EDG* does not show an exponential explosion effect 
in map size. The EDG* showed better performance in terms of path smoothness, and collision avoidance. This shows 
that the EDG* algorithm proposed in this paper can improve the efficiency of path planning and enhance path 
quality.
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1 Introduction
Autonomous navigation of mobile robots is widely used 
in the fields of entertainment, medicine, rescue, educa-
tion, and agriculture [1]. As an important part of naviga-
tion technology, path planning involves the creation of 
a collision-free path from the initial position to the tar-
get position and can be divided into two types: local and 

global [2]. This study aims to improve global path plan-
ning approaches, which mainly include spatial sampling, 
swarm intelligence, and graph planning [3–5]. Spatial 
sampling solutions mainly comprise the probabilistic 
roadmap method (PRM) [6, 7] and rapidly-exploring ran-
dom trees (RRT) [8, 9]. They can effectively solve plan-
ning problems in high-dimensional search spaces and 
complex constraints [2]. However, the solution obtained 
by PRM or RRT is not globally optimal and has some ran-
domness [6, 9].

Genetic algorithms (GA) [10, 11] have a clear princi-
ple and inherent parallel nature but have disadvantages 
such as low searching efficiency and the tendency to 
fall into a local optimum [10]. The particle swarm opti-
mization (PSO) algorithm [12, 13] has the advantages 
of a few adjustable parameters and simple algorithm 
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implementation but has the shortcomings of a slow con-
verging rate [13]. The ant colony optimization (ACO) 
algorithm [14, 15] has the advantages of positive feed-
back and strong heuristics. It also has the disadvantages 
of a large computation amount, a slow converging rate, 
and the tendency to fall into a local optimum [15].

Most graph planning algorithms discretize environ-
ment models and describe the environment by graphs 
[16]. The vertices of a graph generally represent the posi-
tions that a robot can reach. The edges represent the local 
paths that the robot can choose. The main algorithms 
include graph search, visibility graphs [17, 18], and Voro-
noi [19–21].

Graph search algorithms rasterize a map and then per-
form path searching to find the shortest path and achieve 
optimal efficiency. Dijkstra (DA) is the most classical 
graph search algorithm for finding the shortest path in 
weighted graphs [4]. DA is simple to implement and can 
obtain the optimal solution. Due to its high time com-
plexity, its running time will increase significantly with 
increasing map size. Based on DA, A* (or A-Star) innova-
tively designs a heuristic function by using a priori infor-
mation of the starting and target points. It reduces the 
number of search nodes and improves the efficiency of 
path search [4]. Restricted by the neighborhood search-
ing strategy, A* has a certain probability of not obtaining 
the optimal solution that any-angle or angle-restricted 
search algorithms can obtain. As the map size increase, 
A* shows an exponential increase in computational com-
plexity [22].

Weighted-A* [23, 24] optimizes the weight of the heu-
ristic function and reduces the number of inflection 
points but has increased the path length and planning 
time. Smooth-A * [25] improves path smoothness by add-
ing a path smoothing module based on A*. Its planning 
time increases by a factor of 4 to 7 compared to A*. Singh 
et al. [26, 27] introduced a safety distance constraint for 
the optimal waypoint in the heuristic function. They 
made the planned path for a robot far away from obsta-
cles and increased the operational safety of the robot. 
To plan a collision-free and smooth path with minimum 
cost, Tang et al. [28] proposed Geometric-A* by combin-
ing the advantages of A* and interpolation algorithms 
and optimizing them by geometric rules. Multi-Heuris-
tic-A* [29, 30] uses multiple heuristic functions to avoid 
becoming trapped in a local optimum. These improve-
ments to the heuristic function optimize A* in some 
aspects but reduce its planning efficiency or path quality.

In conventional graph search algorithms, nodes are 
expanded within the eight neighborhoods of the cur-
rent node. Zhang et  al. [31] proposed 24-neighbor-
hood-A*, which improved path smoothness to some 

extent but reduced path planning efficiency due to 
increased computation amount. Islam et  al. [32, 33] 
proposed A*-Connect, which increased the path plan-
ning efficiency but could not achieve a global optimum. 
Harabor et al. [34, 35] proposed the jump point search 
(JPS) method, which greatly improved the solution-
solving speed. Li et  al. [36] proposed the A* method 
based on region search. It significantly reduced the 
search space but did not provide a generalized region 
partitioning method and had high restrictions for the 
map. Li et  al. [37] further optimized the region-based 
searching strategy in 2021 and proposed sparse A*, 
which could effectively reduce the search space. Gong 
[38] introduced the concepts of convex corner points 
and neighbor relations and proposed a successor node 
expansion strategy based on neighbor relations. It 
showed an exponential increase in the number of con-
vex corner points as the map size increased and had 
lower planning efficiency than A*. Yonetani et  al. [39] 
proposed Neural A*, a novel data-driven search method 
for path planning problems. The canonical A* search 
algorithm is reformulated as differentiable and com-
bined with a convolutional encoder to form an end-to-
end trainable neural network planner. Neural A* solves 
path planning problems by encoding problem instances 
into a bootstrap graph and then using the bootstrap 
graph to perform a differentiable A* search. By learning 
to match the search results with the real paths provided 
by the expert, Neural A* can accurately and efficiently 
generate paths that are consistent with the real situa-
tion. Marcucci et al. [40] focus on collision-free motion 
planning, which is cost and trajectory constrained in 
terms of shape, duration, and speed, and propose a path 
planning framework that enables convex optimization 
to efficiently and reliably plan paths around trajectories 
around obstacles. A practical convex relaxation of the 
planning problem is devised. We show that this relaxa-
tion is typically so tight that inexpensive post-process-
ing of its solution is almost always sufficient to identify 
globally optimal collision-free trajectories.

The above improvements to path planning algorithms 
only focused on the local optimum instead of the global 
optimum. In large grid maps, the high redundancy and 
large computational complexity of conventional graph 
search algorithms will lead to high time consumption 
and reduce planning efficiency. Meanwhile, limited by 
the neighborhood searching strategy, these algorithms 
failed to obtain a global optimum path. This paper 
attempts to mitigate this deficiency by introducing an 
expanding disconnected graph (EDG) and respective 
heuristic iterative algorithm (EDG*) to solve the global 
path planning problems of mobile robots.

The main contributions of this paper are as follows:
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(1) The “Obstacle partitioning” and “corner points 
searching” are proposed for grid maps. The adjacent 
occupancy grids are marked as the same obstacle. 
Stronger obstacle semantic information that helps 
global and local path planning is provided by search-
ing all obstacle corner points.
(2) The expanding disconnected graph (EDG) opera-
tor is proposed. It takes line segments as nodes and 
randomly selects points outside the collision polygon 
as new vertices of the graph to achieve expansion of 
disconnected edge nodes.
(3) The EDG heuristic iterative algorithm (EDG*) 
is proposed. It selects the next edge node to be 
expanded based on a well-designed evaluation func-
tion. It avoids obstacles and expands the current 
edge node to generate the new edge nodes utilizing 
the minimum offset, thus rapid iteration completing 
optimal path planning tasks.

The rest of this paper is structured as follows: Section  2 
defines some necessary basic concepts, mainly including 
graphs, paths, offset points, and collision polygons. Section 3 
introduces EDG and constructs the EDG* heuristic iterative 
algorithm, mainly including heuristic information, and map 
pre-processing. Section  4 builds the path planning experi-
mental environment and presents the experimental results 
analysis. Finally, Section 5 concludes the paper.

2  Basic Definitions
The generalized graph G = (V ,E) consists of a set of ver-
tices V = {vi} and a binary set of edges E = {eij} defined 
on V  . In many studies [16], the vertices and edges of a 
graph are not represented explicitly but are specified 
implicitly by the staring vertex vs and Ŵ defined in V  . By 
applying Ŵ to vi−1 , vi and eij are obtained. Ŵ is applied 
from vs to the target vertex vt in order. This paper explic-
itly provides all vertices and edges of the current state 
graph G.

In the generalized graph, any two vertices can be con-
nected to form an edge, regardless of whether they are 
connected or not. Assume eij is an element in E ; then, eij 
is the edge node connecting vi and vj . If vi can reach vj by 
passing through eij , eij is called a connected edge node. 
Otherwise, it is a disconnected edge node. The object 
that causes the disconnection of eij is called the obstacle. 
As shown in Figure  1, es1 and est are disconnected edge 
nodes. e1t , es4 , and e4t are connected edge nodes. The 
occupancy grid of Obstacle 1 is the obstacle.

This paper focuses on the cost graph of edge nodes. cij 
represents the optimal estimation cost of eij . If eij is con-
nected, the practical cost c∗ij of eij is its optimal estimation 
cost, that is, c∗ij = cij ; otherwise, c∗ij > cij.

The generalized path from vs to vt consists of the 
ordered edge node set P = {esi, eij , ejk , ..., ent} , where ejk is 
the successor edge node of eij . P is a connected path if and 
only if P does not contain disconnected edge nodes. Oth-
erwise, P is a disconnected path. As shown in Figure  1, 
P1 = {es1, e1t} and P2 = {est} are disconnected paths, and 
P2 = {es4, e4t} is a connected path.

The cost of P is the sum of the costs of all edge nodes 
on the path. In a certain state of G, if the path with mini-
mum cost from vs to vt is a disconnected path, it is the 
generalized optimum path from vs to vt . Its cost is the 
optimal estimation cost from vs to vt , denoted by f (vs, vt) . 
Otherwise, it is the practical optimum path from vs to vt . 
Its cost is the practical optimal cost from vs to vt , denoted 
by f ∗(vs, vt).

The shortest distance from vm to eij is called the offset 
of vm with respect to eij . The maximum offset of all points 
on P with respect to est is called the maximum offset of P. 
The points with the maximum offset on P are called the 
maximum offset points. In Figure 1, v1 is the maximum 
offset point of P1 = {es1, e1t}.

A robot can move clockwise or counterclockwise to 
avoid a single obstacle Oi . In all paths that avoid Oi , the 
minimum value among the maximum offsets of the paths 
is called the minimum offset of Oi with respect to eij . The 
points with the minimum offset are called the minimum 
offset points. The minimum value among the maximum 
offsets of the paths in another obstacle avoidance direc-
tion is called the subminimum offset of Oi with respect to 
eij . The points with the subminimum offset are called the 
subminimum offset points. The closed polygon formed 
by the minimum offset points and the subminimum off-
set points connected with vi and vj , respectively, is called 
the collision polygon of Oi with respect to eij . As shown 
in Figure 1, the minimum offset point of Obstacle 1 with 
respect to est is v2 . The subminimum offset point is v3 , 
and the collision polygon is CP2s3t.

Figure 1 Schematic of basic definitions in the generalized graph
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The maximum value of the minimum offsets of all 
obstacles with respect to eij is called the minimum off-
set of eij . The subminimum offset of the corresponding 
obstacle with respect to eij is called the subminimum 
offset of eij . The points with the minimum offset and the 
subminimum offset are called the minimum offset points 
and subminimum offset points, respectively. As shown 
in Figure 1, the minimum offset point of est is v2 , and the 
subminimum offset point is v3.

The operator Ŵ on the generalized graph is defined as 
follows. When eij is disconnected, the operation of add-
ing a random vertex vm outside the collision polygon of 
Oi with respect to eij and performing expansion to gener-
ate new edge nodes eim and ejm is called the Ŵ operation 
of eij . If both eim and ejm are connected, vi and vj can be 
indirectly connected through vm . Obviously, applying Ŵ in 
connected edge nodes is meaningless.

As shown in Figure  1, est is a disconnected edge node. 
After vertex v4 is added, it connects with vs and vt to form 
es4 and e4t , both of which are connected. This means that 
vs and vt are indirectly connected through v4 . To indirectly 
connect vs and vt through v1 , Ŵ needs to be applied to es1.

3  EDG* Heuristic Iterative Algorithm
3.1  The A* Algorithm
As the most widely used path planning algorithm for grid 
maps, A* adds heuristic information based on DA, mak-
ing the algorithm search in a directional way. With verti-
ces as nodes, A* selects the node with the minimum f (n) 
in the open list as the current node. It will be moved to 
the closed list after being expanded. Then, the successor 
nodes that meet the requirements are stored in the open 
list. This process is repeated until the target node is found. 
The node cost f (n) can be calculated as follows [25]:

where f (n) denotes the optimal estimation cost from 
the starting node to the target node through the current 
node. g(n) denotes the practical cost from the starting 
node to the current node. h(n) denotes the optimal esti-
mation cost from the current node to the target node. α 
and β are the weight coefficients. To balance the running 
time, path cost, and other factors, Euclidean distance is 
generally used to calculate g(n) , and Manhattan distance 
is used to calculate h(n).

Considering the planning problems in Figure  2 [16], vs 
is the initial position of the robot, and vt is the target posi-
tion. As mentioned above, A* implicitly specifies the graph 
G. The robot has eight moving directions at each grid, 
as shown by the arrows at vi in Figure 2. vs and v2 can be 
directly connected, but limited by the searching strategy, es2 
will not be recognized. As A* expands in the diagonal direc-
tion, a path segment that crosses the wall corner is likely to 

(1)f (n) = αg(n)+ βh(n),

be formed, as shown in Figure 2. It may cause the collision 
of the robot with the obstacle. Additionally, A* performs 
a large number of searches in the collision polygon. Most 
of the gray grids in Figure 2 are not related to the ultimate 
path, but multiple operations will be performed on them, 
which increases the computation amount.

3.2  Expanding Disconnected Graph
In connected graphs, path planning problems are gener-
ally defined as graph search problems. That is, the con-
nected graphs are implicitly specified through vs ∈ {vs, vt} 
and Ŵ . Path planning is completed in the process of expli-
cating graphs. In this paper, path planning is described 
as the process of expanding a disconnected graph into a 
connected graph. Specifically, with a focus on the graph 
G formed by the starting vertex vs , target vertex vt , and 
initial edge node est , this paper performs Ŵ on the discon-
nected edge nodes in G and updates G until it becomes a 
connected graph.

The core of EDG is to find a collision-free path from 
vs to vt by expanding the disconnected edge nodes in G. 
Through a rough description of how the algorithm works, 
it is clear what is meant by expanding a disconnected 
graph. EDG randomly selects a disconnected edge node 
in G as the current edge node, performs Ŵ on the edge 
node, updates graph G, and randomly selects the next 
disconnected edge node and performs Ŵ on it. If there is 
a connected path in G, that is, a collision-free path from 
vs to vt . As shown in Figure 3, if the robot needs to avoid 
Obstacle 1, it is unreasonable to perform path searching 
in the collision polygon as in A*. Hence, for the Ŵ opera-
tion in EDG, random points outside the collision polygon 
need to be selected as new vertices of graph to complete 
the planning tasks. In the generalized graph considering 
the planning problems in Figure 2, the initial edge node 
interacts with the obstacle and is the unique discon-
nected edge node in G. The Ŵ operation is performed on 

Figure 2 Schematic of the A* algorithm on the node search strategy, 
collision with the corner, etc.
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est , and points v1 and v3 are selected randomly outside the 
collision polygon as the new vertices of G. In this case, 
there are two connected paths that is Path 1 and Path 3. 
The cost of Path 3 is lower than that of Path 1. Therefore, 
Path 3 is the solution obtained by EDG.

In the single-obstacle map, Path 2 also exists, and its 
cost is lower than that of Path 1 and Path 3. It’s the opti-
mal path that the EDG could have obtained in the grid. In 
cases of multi-obstacle maps, selection of disconnected 
edge node for the Ŵ operation and a point outside the col-
lision polygon as a new vertex of the graph for planning 
of an optimal collision-free path similar to Path2 would 
be left to EDG*.

3.3  Heuristic Information
To obtain the optimum path with the fewest edge nodes 
expansions, the algorithm needs to continuously make as 
many informed decisions as possible about the next edge node 
to be expanded and how to expand it. The expanded edge 
nodes or the successor edge nodes obtained through expan-
sion should be on the optimum path as much as possible. 
Additionally, if the edge nodes that may be on the optimum 
path are ignored, the optimal solution may not be found. Effi-
cient algorithms need some heuristic information to deter-
mine which edge node should be expanded next and how to 
expand it. Let f ∗(eij) be the practical optimal cost of the prac-
tical optimum path from vs to vt through eij . Let f ∗(vs, vt) be 
the practical cost of the practical optimum path from vs to vt . If 
eij is located on the optimum path, then f ∗(eij) = f ∗(vs, vt) , 
and vice versa. If eij is not located on the optimum path, then 
f ∗(vs, vt) < f ∗(eij) , and vice versa. Let f (eij) be the opti-
mal estimation cost of the generalized optimum path from 
vs to vt through eij . Then, f (eij) is the optimal estimation of 
f ∗(eij) and f (eij) < f ∗(eij) , and vice versa. If eij is located 
on the optimum path, then f (eij) < f ∗(eij) = f ∗(vs, vt) , but 
the converse is not necessarily true. If eij is not located on the 
optimum path, then f ∗(vs, vt) < f (eij) is not necessarily true. 

If f ∗(vs, vt) < f (eij) holds, it is certain that eij is not on the 
optimum path. Overall, the smaller f (eij) is, the more likely 
the edge node is to locate on the practical optimum path. 
Although f ∗(vs, vt) is not a priori, using the optimal estima-
tion f (eij) of f ∗(eij) as the edge node evaluation function is 
reasonable. It can be written as a sum of three terms:

For a certain edge node eij in P, h1(eij) = cij , cij repre-
sents the optimal estimation cost of eij . g(eij) is the sum 
of the practical costs of the connected edge nodes among 
all edge nodes in P except for eij . h2(eij) is the sum of the 
optimal estimation costs of the disconnected edge nodes 
among all edge nodes in P except for eij . α , β and γ are 
weight coefficients.

If f ∗(eij) is the practical cost of f (eij) and is the sum 
of the practical costs g∗(eij) , h∗1(eij) and h∗

2
(eij) of g(eij) , 

h1(eij) and h2(eij) , then f (eij) ≤ f ∗(eij) always holds. 
There exist three relations between eij and obstacles.

Case 1: if eij is collision-free with any obstacle, then eij is 
connected. The Ŵ operation is not required for eij . Robot 
can move along eij without the risk of collision with any 
obstacle.

Case 2: if eij collides with a unique obstacle, then eij 
is disconnected. The Ŵ operation is required for eij . 
Although it is possible for the robot to collide with 
other obstacles while avoiding this unique obstacle, it is 
assumed that the robot only needs to avoid this obstacle 
and the other obstacles will be ignored.

Case 3: if eij collides with multiple obstacles, then eij 
is disconnected. The Ŵ operation is required for eij . It is 
obvious that the robot needs to bypass multiple obstacles 
to reach the target vertex. It is assumed that the robot 
will preferentially bypass the obstacle corresponding to 
the minimum offset with respect to eij , and other obsta-
cles will be ignored.

EDG* uses the optimal successor edge node genera-
tion method to perform the Ŵ operation. The process is 
as follows:

(1) Some points are selected from the minimum and 
subminimum offsets of the current disconnected 
edge node according to the preset rule.
(2) The selected points are added as new vertices of 
G.
(3) The new vertices are connected with two vertices 
of the current edge node to form new edge nodes.
(4) The current disconnected edge node is removed 
from G.

It is a special case that the offset from the new vertex 
to the predecessor of the current edge node is greater 

(2)f (eij) = αg(eij)+ βh1(eij)+ γh2(eij).

Figure 3 Schematic of the expanding disconnected graph
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than the minimum offset of the latter. In this case, the 
new vertex also needs to form a new edge node with 
another vertex of the latter. If this is neglected, in some 
special planning problems, the generalized optimum 
path of the current state may not be generated cor-
rectly, resulting in a local optimum.

3.4  Map Pre‑processing
In the grid map, each grid has only one attribute value, 
occupancy or blank. This lacks the most basic semantic 
property of which grids represent the same obstacles in 
a real-world context. An unpartitioned grid map cannot 
reflect the actual spatial distribution of obstacles faced by 
a robot, which is not conducive to global path planning. 
Whereas EDG* performs path planning on the partitioned 
map, a simple and efficient obstacle partitioning method 
was proposed in this paper. If there are other occupancy 
grids in the eight neighboring grids of an occupancy 
grid, these occupancy grids belong to the same obstacle. 
The corresponding map area is traversed to complete the 
partitioning.

EDG* also obtains heuristic information from obstacle 
offsets. In the grid map, it is easily proven that the mini-
mum offset of an obstacle to an edge node can only come 
from the convex corner points of the obstacle. In the map 
pre-processing stage, finding the concave and convex 
corner points of each obstacle in advance is necessary.

In a nine-pane grid, if the blank grid vi is geometri-
cally opposite to the occupancy grid of an obstacle and 
the other two grids are blank grids, vi is the convex 
corner point of the obstacle. If the other two grids are 
occupancy grids, vi is the concave corner point of the 
obstacle. As shown in Figure 4, v1 is the convex corner 
point of Obstacle 1. v3 is the concave corner point of 
Obstacle 1.

A corner point search method with the time property 
was proposed. For an obstacle, the upper right corner 
of the occupancy grid that is the first time to join the 
obstacle must be the convex corner point of the obsta-
cle. Starting from the convex corner point, the center of 
the nine-pane grid is moved counterclockwise along the 
boundary of the obstacle to search for corner points to 
obtain the corner points of the obstacle. It is shown in 
Figure  4. The corner points are connected in order of 
time. The closed polygon obtained is the approximate 
outer contour of Obstacle 1.

3.5  Algorithm Description of EDG*
The EDG that introduces the evaluation function shown 
in Eq. (2) and the optimal child node generation method 
is denoted as EDG*. By means of f (eij) , the costs of all 
disconnected edge nodes are evaluated. The evaluation 

results are used to guide EDG* to select the next edge 
node for Ŵ from the disconnected edge nodes. The dis-
connected edge node with the minimum f (eij) will be 
the edge node to be expanded next. If there are multi-
ple edge nodes with the minimum f (eij) , the edge node 
with the maximum h1 is selected. If there are still multi-
ple edge nodes, the edge node is selected based on the 
breadth priority principle. The priority queue Qopen is 
used to store all leaf edge nodes in the current state. If 
the current edge node is disconnected, move it to the set 
Sclosed ; otherwise, move it to the set Scandi.

Algorithm 1 EDGstar_Pathfingding

Figure 4 Schematic of map pre-processing
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EDG* must obtain the estimates g(eij) and h(eij) of 
g∗(eij) and h∗(eij) , respectively. For path planning in a 
two-dimensional grid map, the cost mainly comes from 
the distance information in the map. The common forms 
of cost are Euclidean and Manhattan distances. In this 
paper, Euclidean distance is used to calculate all the costs. 
It can ensure the algorithm’s time efficiency and con-
vergence with the minimum number of expanded edge 
nodes.

4  Path Planning Experiments
To verify the effectiveness of EDG* and to objectively 
evaluate its planning efficiency, path quality, and environ-
mental adaptability, the following three experiments were 
conducted by considering the map size and environmen-
tal complexity.

Experiment 1: Evaluate the map size exponential explo-
sion effect of the evaluation metrics of EDG*. Experiment 
1 was conducted in the same typical indoor environment. 
By setting different resolutions, six maps of different sizes 
from 32 × 32 to 1024 × 1024 were created. The starting 
vertex of planning problems was located at the lower-left 
corner of the map. The target vertex was in the upper-
right corner. Due to the random error in the running 
time, each planning problem was run 20 times indepen-
dently. The running time of each problem presented in 
Experiment 1 was the average time of the 20 runs.

Experiment 2: Evaluate the path planning performance 
of EDG* on maps of different environments. Experiment 
2 used the map dataset of 30 cities openly available on the 
Moving AI Lab [41, 42]: City Street Maps dataset (CSM). 
The map size ranged from 256 × 256 to 1024 × 1024. A 
maximum size of 1024 × 1024 was used in this paper. The 
starting and target vertices of the planning problems and 
the number of runs were the same as in Experiment 1.

Experiment 3: Evaluate the overall performance and 
robustness of EDG* under ultra-large planning problems. 
Experiment 3 was conducted in CSM, with the starting 
and target vertices specified by the scan file of CSM. CSM 
presented a total of 113200 planning problems with dif-
ferent starting and target vertices in 30 city street maps 
and the optimal length of benchmarks. The total running 
time presented in Experiment 3 was the average time of 
three independent runs.

At the start of each experiment, evaluation metrics that 
matched the purpose of the experiment were set. Addi-
tionally, each experiment included the same experimen-
tal setup as follows.

(1) Comparison algorithms: A*, DA, and JPS were 
selected as the comparison algorithms. A* and JPS 
versions were selected from the top starred versions 

on GitHub over the past 5 years. The selected A* and 
JPS were open-sourced and maintained by Yu Hu 
from Shanghai Jiao Tong University, China. The heu-
ristic information of the selected A* was set to 0 to 
obtain the DA used in this paper.
(2) Heuristic information: A* heuristic information 
was the Manhattan distance from the current ver-
tex to the target vertex. DA had no heuristic infor-
mation. JPS heuristic information was the Euclidean 
distance from the current vertex to the target vertex. 
All the distances in EDG* were Euclidean distances. 
The heuristic information was given by Eq. (2). Each 
weight coefficient was 1.
(3) Programming language: All algorithms were writ-
ten in C++.
(4) Hardware environment: All algorithms were run 
on a computer with a 4.00 GHz Intel Core i7-6700K 
CPU and 3200 MHz 16G RAM.

4.1  Experiment 1
In Experiment 1, the exponential explosion effects of 
EDG* planning efficiency and path quality on map size 
were investigated to evaluate the optimization effects 
of EDG* compared to the competitive algorithms. The 
planning efficiency was evaluated based on the number 
of algorithm iterations, number of successor nodes, and 
running time, with the running time as the main evalu-
ation metric. The path quality was evaluated based on 
path smoothness, collision avoidance performance, and 
length. In this paper, the path smoothness was charac-
terized by the number of path turns. The path collision 
avoidance performance was characterized by the number 
of path collisions with wall corners.

Figure  5 shows the path planning results of the four 
algorithms in the 1024 × 1024 indoor environment map. 
The black grid is the occupancy grid. The white grid is 
the blank grid. The folded line is the path generated by 
the corresponding algorithm. The detailed experimental 
results are shown in Tables 1 and 2.

As seen in Table  1, under the same environment but 
with different map resolutions, A*, DA, JPS, and EDG* 
could accomplish the specified path planning tasks. 
EDG* outperformed A*, DA, and JPS in terms of the 
number of algorithm iterations, number of successor 
nodes, and running time. Both the number of algorithm 
iterations and the number of successor nodes of A* and 
DA increased exponentially with map size. The JPS and 
EDG* were basically not affected by the map size, as 
shown in Figures  6 and 7. The running time of all four 
algorithms increased with map size. The running times 
of A*, DA, and JPS were greatly affected by the map size, 
exponentially increasing with the map size. The running 
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time of EDG* increased at a slower speed, as shown in 
Figure 8.

As seen in Table  1, under the same environment but 
with different map resolutions, A*, DA, JPS, and EDG* 
could accomplish the specified path planning tasks. 
EDG* outperformed A*, DA, and JPS in terms of the 
number of algorithm iterations, number of successor 
nodes, and running time. Both the number of algorithm 
iterations and the number of successor nodes of A* and 
DA increased exponentially with map size. The JPS and 
EDG* were basically not affected by the map size, as 
shown in Figures  6 and 7. The running time of all four 
algorithms increased with map size. The running times 
of A*, DA, and JPS were greatly affected by the map size, 
exponentially increasing with the map size. The running 
time of EDG* increased at a slower speed, as shown in 
Figure 8.

According to Table 2, EDG* outperformed A*, DA, and 
JPS in terms of the number of path turns, number of cor-
ners passed by the path, and path length. The four algo-
rithms exhibited no significant exponential expansion 
effect on the map size in the number of path turns and the 
number of corner paths passed through. The path lengths 

of the four algorithms did not differ significantly, increasing 
with the map size.

4.2  Experiment 2
Experiment 2 investigated the optimization degrees of 
EDG* in terms of planning efficiency and path quality on 
maps of different environments compared to the competi-
tive algorithms. The optimization rate of the six metrics of 
EDG* compared to the competitive algorithms was evalu-
ated in the range of 0–100% [43] and calculated as follows:

where Ei is the corresponding metric value of the com-
petitive algorithms.  EEDG∗ is the corresponding metric 
value of EDG*. RE characterizes the degree of optimiza-
tion of this metric of EDG* compared to the competitive 
algorithms. Figure 9 shows some of the planning results 
of the four algorithms in CSM.

Unlike A*, DA, and JPS, which use the neighborhood 
searching strategy, EDG* selects the next edge node by a 
well-designed evaluation function and avoids collisions, 

(3)RE = max

{

Ei − EEDG∗

Ei
× 100%, 0

}

,

Figure 5 Comparison of paths planned by EDG* and three competitive algorithms on the 1024 × 1024 indoor environment map

Table 1 Comparison of evaluation metrics of path planning efficiency between EDG* and competitive algorithms on indoor 
environment maps of different sizes

Metrics Map size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Number of iterations↓ A* 165 527 1739 6575 25009 97981

DA 892 3568 14272 57088 228352 913408

JPS 24 29 28 28 28 28

EDG* 9 9 9 9 9 9

Number of nodes↓ A* 1104 3842 13196 51175 197482 778684

DA 6039 26259 109515 447291 1807899 7269339

JPS 33 38 37 37 37 37

EDG* 12 12 12 12 12 12

Time↓(ms) A* 2.2 7.1 24.2 87.7 334.5 1350.1

DA 10.5 41.6 167.7 646.9 2547.9 10280.6

JPS 0.3 0.7 2.4 8.8 34.7 139.0

EDG* 0.2 0.3 0.3 0.4 0.7 1.2
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expanding the edge node according to the minimum off-
set. It can reduce the number of algorithm iterations and 
the number of successor nodes by several orders of mag-
nitude, reducing the time complexity and running time. 
Table  3 shows the experimental results of the number 
of algorithm iterations, number of successor nodes, and 
running time of the four algorithms on different envi-
ronment maps. The results show that A*, DA, JPS, and 
EDG* can accomplish the specified path-planning tasks 
on maps of different environments. The number of algo-
rithm iterations of EDG* was reduced by more than 95% 
on average compared with that of the three competitive 
algorithms. The number of successor nodes of EDG* was 
reduced by more than 90% on average compared with 
that of the three competitive algorithms. The running 
time of EDG* was decreased by 79.9%–99.2% compared 
with A*, with an average decrease of 94.3%. The running 
time of EDG* was reduced by 99.7%–99.9% compared 
with DA, with an average decrease of 99.9%. The running 

Table 2 Comparison of evaluation metrics of path quality between EDG* and competitive algorithms on indoor environment maps of 
different sizes

Metrics Map size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Number of turns↓ A* 7 11 11 11 11 11

DA 9 9 9 9 9 9

JPS 7 7 7 7 7 7

EDG* 4 4 4 4 4 4

Number of corners↓ A* 4 6 6 6 6 6

DA 4 4 4 4 4 4

JPS 4 4 4 4 4 4

EDG* 0 0 0 0 0 0

Length↓ A* 48.5 107.3 215.2 431.0 862.5 1725.6

DA 48.5 98.5 198.4 398.1 797.7 1596.8

JPS 48.5 98.5 198.4 398.1 797.7 1596.8

EDG* 47.8 95.1 189.8 379.5 758.9 1517.7

Figure 6 Comparison of the number of algorithm iterations 
between EDG* and three competitive algorithms on indoor 
environment maps of different sizes

Figure 7 Comparison of the number of successor nodes 
between EDG* and three competitive algorithms on indoor 
environment maps of different sizes

Figure 8 Comparison of the running time between EDG* and three 
competitive algorithms on indoor environment maps of different 
sizes
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time of EDG* was reduced by 86.7%–99.7% compared 
with JPS, with an average decrease of 95.1%. The EDG* 
outperformed A*, DA, and JPS in terms of the iteration 
number, number of successor nodes, and running time.

In A* and JPS, the cost of expanding nodes along a 
diagonal direction was generally smaller. The dangerous 
paths involving a collision with corners in Figure 4 were 
likely to be generated.

The proposed EDG* expanded successor edge nodes 
according to the obstacle corner points obtained in 
advance. It greatly reduced the risk of collision between 
the robot and corners. The A*, DA, and JPS are angle-
restricted search algorithms because they can only search 
in specific directions. The paths planned by these algo-
rithms are not optimum global paths. EDG* allows the 
robot to go in any direction and thus belongs to any-
angle search algorithms. It can reduce the number of 
path turns, improve path smoothness, and reduce the 
path length.

Table  4 shows the experimental results of the num-
ber of path turns, number of corners passed through, 
and path length of the four algorithms on different 

environment maps. The number of turns of EDG* was 
reduced by more than 80% on average compared with 
that of the three competitive algorithms. The number of 
corners passing through of EDG* was reduced by more 
than 95% on average compared with that of the three 
competitive algorithms. The path length of EDG* was 
reduced by 0.8%–12.0% compared with that of A*, with 
an average decrease of 4.9%, and by 0.8%–5.7% com-
pared with that of DA and JPS, with an average decline 
of 3.7%. The results show that EDG* outperformed A*, 
DA, and JPS in terms of path smoothness, collision 
avoidance performance, and path length.

4.3  Experiment 3
The CMS dataset provided 113200 planning problems 
in 30 maps as well as the optimal length of benchmarks. 
Experiment 3 used four algorithms to solve the 113200 
planning problems independently and defined the met-
rics in Table 5 to evaluate the algorithms.

Experiment 3 aimed to verify the overall performance 
and robustness of the corresponding algorithms in 
ultra-large planning problems. The total running time 

Figure 9 Comparison of paths planned by EDG* and the competing algorithm on the 1st to 3rd maps in the 1024 × 1024 CSM
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in Table 6 is the average time of the corresponding algo-
rithms running three times independently for 113200 
planning problems. The running time included the time 
of loading pre-processed data and path planning time but 
excluded the map pre-processing time.

As shown in Table 6, the running time of EDG dropped 
by more than 99% compared with those of A* and DA 
and by 95.9% compared with that of JPS. Meanwhile, the 
path length of EDG* was reduced by 6.0% compared with 
that of A* and by 4.6% compared with those of DA and 
JPS.

As observed, EDG* found a valid solution for all 113200 
planning problems, while A*, DA, and JPS failed to find 
valid solutions for seven problems. In terms of the opti-
mal solution rate, EDG* outperformed the competitive 
algorithms. A* failed to find optimal solutions for 38612 
problems, with an optimal solution rate of only 65.9%. 

DA and JPS failed to find optimal solutions for 99 prob-
lems. EDG* did not find optimal solutions for five prob-
lems. The non-optimal path cases are shown in Figure 10.
For the No. 2261 path planning problem in the 13th map 
of the CSM dataset, the three comparison algorithms all 
give optimal solutions with path lengths less than the 
benchmark length, and the path lengths are all 1067.02, 
but the path solution length of the EDG* algorithm is 
1068.23, while the benchmark optimal path length is 
1067.57, as shown in the comparison diagram of group 
(a) in Figure 10. the No. 3099 path planning problem in 
the 14th map of the CSM dataset, the EDG* algorithm 
gives the optimal solution whose length is less than the 
benchmark’s length, and the path length is 1148.33, but 
none of the three comparison algorithms gives the opti-
mal solution, in which the A* algorithm gives the path 
solution length of 1246.55, and the other two comparison 

Table 3 The ratio of evaluation metrics of path planning efficiency of EDG* to competitive algorithms on the maps in the 1024 × 1024 
CSM

Metrics Number of iterations↓ Number of nodes↓ Time↓

Map number EDG* VS EDG* VS EDG* VS

A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%)

1 99.9 99.9 97.0 99.9 99.9 95.1 95.8 99.8 88.3

2 99.9 99.9 98.0 99.9 99.9 96.1 98.9 99.9 96.2

3 99.7 99.9 98.5 99.9 99.9 97.1 94.7 99.9 95.0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
28 99.1 99.9 85.7 99.8 99.9 83.1 96.0 99.9 96.7

29 99.3 99.9 97.4 99.8 99.9 95.6 95.8 99.9 98.4

30 99.5 99.9 98.3 99.9 99.9 97.2 95.4 99.9 97.7

Min. 97.9 99.9 84.7 99.4 99.9 82.9 79.9 99.7 86.7

Avg. 99.5 99.9 96.1 99.9 99.9 94.3 94.3 99.9 95.1

Max. 99.9 99.9 99.4 99.9 99.9 99.2 99.2 99.9 99.7

Table 4 The ratio of evaluation metrics of path quality of EDG* to competitive algorithms on the maps in the 1024 × 1024 CSM

Metrics Number of turns↓ Number of corners↓ Length↓

Map number EDG* VS EDG* VS EDG* VS

A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%)

1 95.8 52.6 91.3 99.9 99.9 99.9 6.5 3.2 3.2

2 84.7 91.1 84.7 99.9 99.9 99.9 4.8 4.1 4.1

3 98.7 96.9 98.6 99.9 99.9 99.9 5.8 4.8 4.8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
28 60.0 53.8 60.0 99.9 99.9 99.9 2.3 2.3 2.3

29 76.2 90.6 76.2 96.6 96.9 96.6 2.9 2.9 2.9

30 93.8 93.8 93.8 95.1 94.0 95.1 4.0 4.0 4.0

Min. 46.2 33.3 46.2 87.5 83.0 93.0 0.8 0.8 0.8

Avg. 85.3 81.9 84.8 98.8 98.5 99.1 4.9 3.7 3.7

Max. 98.7 98.9 98.6 99.9 99.9 99.9 12.0 5.7 5.7
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algorithms give the path solution length of 1237.18, while 
the benchmark optimal path length is 1236.31, as shown 
in the comparison diagram of group (b) in Figure 10.

EDG* needs to pre-process the map before planning. 
As indicated, for the 113200 planning problems in CSM, 
the time consumed by map pre-processing was 3325 ms, 
with the average time consumed by each map of 110.8 
ms, and the average time consumed on each planning 
problem of 0.03 ms.

Since some of the planning problems from CSM have 
their starting and target vertices overlapping and the 

competitive algorithms failed to handle this, no solution 
was found for seven planning problems. To save the data-
set integrity and the rigor of the experiment, the planning 
problems unfavorable to the competitive algorithms were 
not removed from Experiment 3.

The optimal solution rate of A* was much lower than 
that of the other three algorithms, probably because 
the heuristic distance of A* used the Manhattan dis-
tance by convention. The Manhattan distance sig-
nificantly reduced the computation amount of the 
node cost update and running time. The probability 
of nodes expanding diagonally also increased signifi-
cantly, resulting in the failure of A* to obtain the opti-
mal solution that angle-restricted search algorithms 
could find. In an additional experiment, the A* heu-
ristic information was replaced with the Eulerian dis-
tance. In this case, the optimal solution rate of A* was 
the same as that of DA and JPS, but its running time 
increased significantly. A* algorithm can hardly iden-
tify the global optimal solution that can be found by 
Any-angle Search algorithms due to the limitation of 
angle searching strategies. A* algorithm can neither 
identify the optimal solution that can be found by 
Angle-restricted Search algorithms using the Manhat-
tan distance as the heuristic information was calcu-
lated by using Manhattan distance.

Experiment 3 verified the effectiveness and high 
robustness of EDG* in the 113200 planning problems 
from the CSM dataset. The results demonstrate that 
EDG* outperformed the competitive algorithms in 
terms of running time, path length, and optimum path 
rate.

Table 5 Evaluation metrics defined in Experiment 3

Metrics The definition of metrics

TT (ms) Total time required for path planning 113200 times

AT (ms) Average time spent on one path planning

TR Time optimization rate of EDG* compared to competitive algorithms. It can 
be calculated by Eq. (3)

TBL Sum of benchmarks’ optimal length

ABL Average of benchmarks’ optimal length

TL Total length of 113200 path planning problem

AL Average length of 113200 path planning problem

LOR Length optimization rate of EDG* compared to competitive algorithms. It 
can be calculated by Eq. (3)

NPS Number of paths solved

NPI Number of paths with no solution or invalid

NOPL Number of optimum path lengths

OPLR Optimum path length ratio

TMPT (ms) Total map pre-processing time required for path planning 113200 times

AMPT (ms) Average map pre-processing time required for path planning 113200 times

Table 6 Comparison of evaluation metrics defined in 
Experiment 3 between EDG* and competitive algorithms on 
113200 path planning problems in the 1024 × 1024 CSM

Metrics A* DA JPS EDG*

TT (ms) ↓ 56510903 592191778 10739162 435590

AT (ms) ↓ 499.2 5231.4 94.9 3.8

TR (%) 99.2 99.9 95.9 /

TBL 85561250

ABL 755.8

TL↓ 86586680 85319950 85319950 81426090

AL↓ 764.9 753.7 753.7 719.3

LOR (%) 6.0 4.6 4.6 /

NPS↑ 113193 113193 113193 113200

NPI↓ 7 7 7 0

NOPL↑ 74588 113101 113101 113195

OPLR↑ (%) 65.9 99.9 99.9 100.0

TMPT (ms)↑ 0 0 0 3325

AMPT (ms)↑ 0 0 0 0.03
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5  Conclusions
Through improvements in the successor node expan-
sion strategy of graph planning algorithms, an expand-
ing disconnected graph (EDG) algorithm for global 
planning problems of mobile robots was proposed. A 
heuristic function called EDG* was presented to opti-
mize EDG in path planning by finding edge nodes and 
expanding successor edge nodes in the pre-processed 
map. It replaced the operation on neighboring nodes in 
conventional graph planning algorithms, thus improv-
ing the path planning efficiency. In different complex-
ity environment maps, EDG*’s running time dropped 
by more than 90% and total length of paths reduced 
by more than 4.6% compared with A*, DA, and JPS 
algorithms. Its planning efficiency has no exponential 
explosion dilemma on map size. The path quality evalu-
ation metrics of EDG*, such as path length, smooth-
ness, and collision avoidance, also outperformed those 
of the competitive algorithms. The extensive path plan-
ning experimental results indicate that EDG* applica-
tion mitigated the low planning efficiency and poor 
path quality deficiencies of conventional algorithms.

This paper focused on proposing EDG* and verify-
ing its effectiveness. In the future, more work will be 
put into further optimizing EDG* and using it for path 
planning in dynamic or 3D environments.
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