
Tao et al.
Chinese Journal of Mechanical Engineering (2024) 37:32
https://doi.org/10.1186/s10033-024-01014-8

ORIGINAL ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

Heuristic Expanding Disconnected Graph:
A Rapid Path Planning Method for Mobile
Robots
Yong Tao1,2* , Lian Duan3, He Gao2, Yufan Zhang3, Yian Song1 and Tianmiao Wang1

Abstract

Existing mobile robots mostly use graph search algorithms for path planning, which suffer from relatively low plan-
ning efficiency owing to high redundancy and large computational complexity. Due to the limitations of the neigh-
borhood search strategy, the robots could hardly obtain the most optimal global path. A global path planning
algorithm, denoted as EDG*, is proposed by expanding nodes using a well-designed expanding disconnected
graph operator (EDG) in this paper. Firstly, all obstacles are marked and their corners are located through the map
pre-processing. Then, the EDG operator is designed to find points in non-obstruction areas to complete the rapid
expansion of disconnected nodes. Finally, the EDG* heuristic iterative algorithm is proposed. It selects the candidate
node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum
offset. Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.
The result shows that the proposed EDG* reduced the planning time by more than 90% and total length of paths
reduced by more than 4.6%. Compared to A*, Dijkstra and JPS, EDG* does not show an exponential explosion effect
in map size. The EDG* showed better performance in terms of path smoothness, and collision avoidance. This shows
that the EDG* algorithm proposed in this paper can improve the efficiency of path planning and enhance path
quality.

Keywords Global path planning, Mobile robot, Expanding disconnected graph, Edge node, Offset

1 Introduction
Autonomous navigation of mobile robots is widely used
in the fields of entertainment, medicine, rescue, educa-
tion, and agriculture [1]. As an important part of naviga-
tion technology, path planning involves the creation of
a collision-free path from the initial position to the tar-
get position and can be divided into two types: local and

global [2]. This study aims to improve global path plan-
ning approaches, which mainly include spatial sampling,
swarm intelligence, and graph planning [3–5]. Spatial
sampling solutions mainly comprise the probabilistic
roadmap method (PRM) [6, 7] and rapidly-exploring ran-
dom trees (RRT) [8, 9]. They can effectively solve plan-
ning problems in high-dimensional search spaces and
complex constraints [2]. However, the solution obtained
by PRM or RRT is not globally optimal and has some ran-
domness [6, 9].

Genetic algorithms (GA) [10, 11] have a clear princi-
ple and inherent parallel nature but have disadvantages
such as low searching efficiency and the tendency to
fall into a local optimum [10]. The particle swarm opti-
mization (PSO) algorithm [12, 13] has the advantages
of a few adjustable parameters and simple algorithm

*Correspondence:
Yong Tao
taoy@buaa.edu.cn
1 School of Mechanical Engineering & Automation, Beihang University,
Beijing 100191, China
2 Aero-Engine Research Institute, Beihang University, Beijing 102206,
China
3 School of Large Aircraft Engineering, Beihang University, Beijing 100191,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-024-01014-8&domain=pdf
http://orcid.org/0000-0002-8585-0797

Page 2 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

implementation but has the shortcomings of a slow con-
verging rate [13]. The ant colony optimization (ACO)
algorithm [14, 15] has the advantages of positive feed-
back and strong heuristics. It also has the disadvantages
of a large computation amount, a slow converging rate,
and the tendency to fall into a local optimum [15].

Most graph planning algorithms discretize environ-
ment models and describe the environment by graphs
[16]. The vertices of a graph generally represent the posi-
tions that a robot can reach. The edges represent the local
paths that the robot can choose. The main algorithms
include graph search, visibility graphs [17, 18], and Voro-
noi [19–21].

Graph search algorithms rasterize a map and then per-
form path searching to find the shortest path and achieve
optimal efficiency. Dijkstra (DA) is the most classical
graph search algorithm for finding the shortest path in
weighted graphs [4]. DA is simple to implement and can
obtain the optimal solution. Due to its high time com-
plexity, its running time will increase significantly with
increasing map size. Based on DA, A* (or A-Star) innova-
tively designs a heuristic function by using a priori infor-
mation of the starting and target points. It reduces the
number of search nodes and improves the efficiency of
path search [4]. Restricted by the neighborhood search-
ing strategy, A* has a certain probability of not obtaining
the optimal solution that any-angle or angle-restricted
search algorithms can obtain. As the map size increase,
A* shows an exponential increase in computational com-
plexity [22].

Weighted-A* [23, 24] optimizes the weight of the heu-
ristic function and reduces the number of inflection
points but has increased the path length and planning
time. Smooth-A * [25] improves path smoothness by add-
ing a path smoothing module based on A*. Its planning
time increases by a factor of 4 to 7 compared to A*. Singh
et al. [26, 27] introduced a safety distance constraint for
the optimal waypoint in the heuristic function. They
made the planned path for a robot far away from obsta-
cles and increased the operational safety of the robot.
To plan a collision-free and smooth path with minimum
cost, Tang et al. [28] proposed Geometric-A* by combin-
ing the advantages of A* and interpolation algorithms
and optimizing them by geometric rules. Multi-Heuris-
tic-A* [29, 30] uses multiple heuristic functions to avoid
becoming trapped in a local optimum. These improve-
ments to the heuristic function optimize A* in some
aspects but reduce its planning efficiency or path quality.

In conventional graph search algorithms, nodes are
expanded within the eight neighborhoods of the cur-
rent node. Zhang et al. [31] proposed 24-neighbor-
hood-A*, which improved path smoothness to some

extent but reduced path planning efficiency due to
increased computation amount. Islam et al. [32, 33]
proposed A*-Connect, which increased the path plan-
ning efficiency but could not achieve a global optimum.
Harabor et al. [34, 35] proposed the jump point search
(JPS) method, which greatly improved the solution-
solving speed. Li et al. [36] proposed the A* method
based on region search. It significantly reduced the
search space but did not provide a generalized region
partitioning method and had high restrictions for the
map. Li et al. [37] further optimized the region-based
searching strategy in 2021 and proposed sparse A*,
which could effectively reduce the search space. Gong
[38] introduced the concepts of convex corner points
and neighbor relations and proposed a successor node
expansion strategy based on neighbor relations. It
showed an exponential increase in the number of con-
vex corner points as the map size increased and had
lower planning efficiency than A*. Yonetani et al. [39]
proposed Neural A*, a novel data-driven search method
for path planning problems. The canonical A* search
algorithm is reformulated as differentiable and com-
bined with a convolutional encoder to form an end-to-
end trainable neural network planner. Neural A* solves
path planning problems by encoding problem instances
into a bootstrap graph and then using the bootstrap
graph to perform a differentiable A* search. By learning
to match the search results with the real paths provided
by the expert, Neural A* can accurately and efficiently
generate paths that are consistent with the real situa-
tion. Marcucci et al. [40] focus on collision-free motion
planning, which is cost and trajectory constrained in
terms of shape, duration, and speed, and propose a path
planning framework that enables convex optimization
to efficiently and reliably plan paths around trajectories
around obstacles. A practical convex relaxation of the
planning problem is devised. We show that this relaxa-
tion is typically so tight that inexpensive post-process-
ing of its solution is almost always sufficient to identify
globally optimal collision-free trajectories.

The above improvements to path planning algorithms
only focused on the local optimum instead of the global
optimum. In large grid maps, the high redundancy and
large computational complexity of conventional graph
search algorithms will lead to high time consumption
and reduce planning efficiency. Meanwhile, limited by
the neighborhood searching strategy, these algorithms
failed to obtain a global optimum path. This paper
attempts to mitigate this deficiency by introducing an
expanding disconnected graph (EDG) and respective
heuristic iterative algorithm (EDG*) to solve the global
path planning problems of mobile robots.

The main contributions of this paper are as follows:

Page 3 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

(1) The “Obstacle partitioning” and “corner points
searching” are proposed for grid maps. The adjacent
occupancy grids are marked as the same obstacle.
Stronger obstacle semantic information that helps
global and local path planning is provided by search-
ing all obstacle corner points.
(2) The expanding disconnected graph (EDG) opera-
tor is proposed. It takes line segments as nodes and
randomly selects points outside the collision polygon
as new vertices of the graph to achieve expansion of
disconnected edge nodes.
(3) The EDG heuristic iterative algorithm (EDG*)
is proposed. It selects the next edge node to be
expanded based on a well-designed evaluation func-
tion. It avoids obstacles and expands the current
edge node to generate the new edge nodes utilizing
the minimum offset, thus rapid iteration completing
optimal path planning tasks.

The rest of this paper is structured as follows: Section 2
defines some necessary basic concepts, mainly including
graphs, paths, offset points, and collision polygons. Section 3
introduces EDG and constructs the EDG* heuristic iterative
algorithm, mainly including heuristic information, and map
pre-processing. Section 4 builds the path planning experi-
mental environment and presents the experimental results
analysis. Finally, Section 5 concludes the paper.

2 Basic Definitions
The generalized graph G = (V ,E) consists of a set of ver-
tices V = {vi} and a binary set of edges E = {eij} defined
on V . In many studies [16], the vertices and edges of a
graph are not represented explicitly but are specified
implicitly by the staring vertex vs and Ŵ defined in V . By
applying Ŵ to vi−1 , vi and eij are obtained. Ŵ is applied
from vs to the target vertex vt in order. This paper explic-
itly provides all vertices and edges of the current state
graph G.

In the generalized graph, any two vertices can be con-
nected to form an edge, regardless of whether they are
connected or not. Assume eij is an element in E ; then, eij
is the edge node connecting vi and vj . If vi can reach vj by
passing through eij , eij is called a connected edge node.
Otherwise, it is a disconnected edge node. The object
that causes the disconnection of eij is called the obstacle.
As shown in Figure 1, es1 and est are disconnected edge
nodes. e1t , es4 , and e4t are connected edge nodes. The
occupancy grid of Obstacle 1 is the obstacle.

This paper focuses on the cost graph of edge nodes. cij
represents the optimal estimation cost of eij . If eij is con-
nected, the practical cost c∗ij of eij is its optimal estimation
cost, that is, c∗ij = cij ; otherwise, c∗ij > cij.

The generalized path from vs to vt consists of the
ordered edge node set P = {esi, eij , ejk , ..., ent} , where ejk is
the successor edge node of eij . P is a connected path if and
only if P does not contain disconnected edge nodes. Oth-
erwise, P is a disconnected path. As shown in Figure 1,
P1 = {es1, e1t} and P2 = {est} are disconnected paths, and
P2 = {es4, e4t} is a connected path.

The cost of P is the sum of the costs of all edge nodes
on the path. In a certain state of G, if the path with mini-
mum cost from vs to vt is a disconnected path, it is the
generalized optimum path from vs to vt . Its cost is the
optimal estimation cost from vs to vt , denoted by f (vs, vt) .
Otherwise, it is the practical optimum path from vs to vt .
Its cost is the practical optimal cost from vs to vt , denoted
by f ∗(vs, vt).

The shortest distance from vm to eij is called the offset
of vm with respect to eij . The maximum offset of all points
on P with respect to est is called the maximum offset of P.
The points with the maximum offset on P are called the
maximum offset points. In Figure 1, v1 is the maximum
offset point of P1 = {es1, e1t}.

A robot can move clockwise or counterclockwise to
avoid a single obstacle Oi . In all paths that avoid Oi , the
minimum value among the maximum offsets of the paths
is called the minimum offset of Oi with respect to eij . The
points with the minimum offset are called the minimum
offset points. The minimum value among the maximum
offsets of the paths in another obstacle avoidance direc-
tion is called the subminimum offset of Oi with respect to
eij . The points with the subminimum offset are called the
subminimum offset points. The closed polygon formed
by the minimum offset points and the subminimum off-
set points connected with vi and vj , respectively, is called
the collision polygon of Oi with respect to eij . As shown
in Figure 1, the minimum offset point of Obstacle 1 with
respect to est is v2 . The subminimum offset point is v3 ,
and the collision polygon is CP2s3t.

Figure 1 Schematic of basic definitions in the generalized graph

Page 4 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

The maximum value of the minimum offsets of all
obstacles with respect to eij is called the minimum off-
set of eij . The subminimum offset of the corresponding
obstacle with respect to eij is called the subminimum
offset of eij . The points with the minimum offset and the
subminimum offset are called the minimum offset points
and subminimum offset points, respectively. As shown
in Figure 1, the minimum offset point of est is v2 , and the
subminimum offset point is v3.

The operator Ŵ on the generalized graph is defined as
follows. When eij is disconnected, the operation of add-
ing a random vertex vm outside the collision polygon of
Oi with respect to eij and performing expansion to gener-
ate new edge nodes eim and ejm is called the Ŵ operation
of eij . If both eim and ejm are connected, vi and vj can be
indirectly connected through vm . Obviously, applying Ŵ in
connected edge nodes is meaningless.

As shown in Figure 1, est is a disconnected edge node.
After vertex v4 is added, it connects with vs and vt to form
es4 and e4t , both of which are connected. This means that
vs and vt are indirectly connected through v4 . To indirectly
connect vs and vt through v1 , Ŵ needs to be applied to es1.

3 EDG* Heuristic Iterative Algorithm
3.1 The A* Algorithm
As the most widely used path planning algorithm for grid
maps, A* adds heuristic information based on DA, mak-
ing the algorithm search in a directional way. With verti-
ces as nodes, A* selects the node with the minimum f (n)
in the open list as the current node. It will be moved to
the closed list after being expanded. Then, the successor
nodes that meet the requirements are stored in the open
list. This process is repeated until the target node is found.
The node cost f (n) can be calculated as follows [25]:

where f (n) denotes the optimal estimation cost from
the starting node to the target node through the current
node. g(n) denotes the practical cost from the starting
node to the current node. h(n) denotes the optimal esti-
mation cost from the current node to the target node. α
and β are the weight coefficients. To balance the running
time, path cost, and other factors, Euclidean distance is
generally used to calculate g(n) , and Manhattan distance
is used to calculate h(n).

Considering the planning problems in Figure 2 [16], vs
is the initial position of the robot, and vt is the target posi-
tion. As mentioned above, A* implicitly specifies the graph
G. The robot has eight moving directions at each grid,
as shown by the arrows at vi in Figure 2. vs and v2 can be
directly connected, but limited by the searching strategy, es2
will not be recognized. As A* expands in the diagonal direc-
tion, a path segment that crosses the wall corner is likely to

(1)f (n) = αg(n)+ βh(n),

be formed, as shown in Figure 2. It may cause the collision
of the robot with the obstacle. Additionally, A* performs
a large number of searches in the collision polygon. Most
of the gray grids in Figure 2 are not related to the ultimate
path, but multiple operations will be performed on them,
which increases the computation amount.

3.2 Expanding Disconnected Graph
In connected graphs, path planning problems are gener-
ally defined as graph search problems. That is, the con-
nected graphs are implicitly specified through vs ∈ {vs, vt}
and Ŵ . Path planning is completed in the process of expli-
cating graphs. In this paper, path planning is described
as the process of expanding a disconnected graph into a
connected graph. Specifically, with a focus on the graph
G formed by the starting vertex vs , target vertex vt , and
initial edge node est , this paper performs Ŵ on the discon-
nected edge nodes in G and updates G until it becomes a
connected graph.

The core of EDG is to find a collision-free path from
vs to vt by expanding the disconnected edge nodes in G.
Through a rough description of how the algorithm works,
it is clear what is meant by expanding a disconnected
graph. EDG randomly selects a disconnected edge node
in G as the current edge node, performs Ŵ on the edge
node, updates graph G, and randomly selects the next
disconnected edge node and performs Ŵ on it. If there is
a connected path in G, that is, a collision-free path from
vs to vt . As shown in Figure 3, if the robot needs to avoid
Obstacle 1, it is unreasonable to perform path searching
in the collision polygon as in A*. Hence, for the Ŵ opera-
tion in EDG, random points outside the collision polygon
need to be selected as new vertices of graph to complete
the planning tasks. In the generalized graph considering
the planning problems in Figure 2, the initial edge node
interacts with the obstacle and is the unique discon-
nected edge node in G. The Ŵ operation is performed on

Figure 2 Schematic of the A* algorithm on the node search strategy,
collision with the corner, etc.

Page 5 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

est , and points v1 and v3 are selected randomly outside the
collision polygon as the new vertices of G. In this case,
there are two connected paths that is Path 1 and Path 3.
The cost of Path 3 is lower than that of Path 1. Therefore,
Path 3 is the solution obtained by EDG.

In the single-obstacle map, Path 2 also exists, and its
cost is lower than that of Path 1 and Path 3. It’s the opti-
mal path that the EDG could have obtained in the grid. In
cases of multi-obstacle maps, selection of disconnected
edge node for the Ŵ operation and a point outside the col-
lision polygon as a new vertex of the graph for planning
of an optimal collision-free path similar to Path2 would
be left to EDG*.

3.3 Heuristic Information
To obtain the optimum path with the fewest edge nodes
expansions, the algorithm needs to continuously make as
many informed decisions as possible about the next edge node
to be expanded and how to expand it. The expanded edge
nodes or the successor edge nodes obtained through expan-
sion should be on the optimum path as much as possible.
Additionally, if the edge nodes that may be on the optimum
path are ignored, the optimal solution may not be found. Effi-
cient algorithms need some heuristic information to deter-
mine which edge node should be expanded next and how to
expand it. Let f ∗(eij) be the practical optimal cost of the prac-
tical optimum path from vs to vt through eij . Let f ∗(vs, vt) be
the practical cost of the practical optimum path from vs to vt . If
eij is located on the optimum path, then f ∗(eij) = f ∗(vs, vt) ,
and vice versa. If eij is not located on the optimum path, then
f ∗(vs, vt) < f ∗(eij) , and vice versa. Let f (eij) be the opti-
mal estimation cost of the generalized optimum path from
vs to vt through eij . Then, f (eij) is the optimal estimation of
f ∗(eij) and f (eij) < f ∗(eij) , and vice versa. If eij is located
on the optimum path, then f (eij) < f ∗(eij) = f ∗(vs, vt) , but
the converse is not necessarily true. If eij is not located on the
optimum path, then f ∗(vs, vt) < f (eij) is not necessarily true.

If f ∗(vs, vt) < f (eij) holds, it is certain that eij is not on the
optimum path. Overall, the smaller f (eij) is, the more likely
the edge node is to locate on the practical optimum path.
Although f ∗(vs, vt) is not a priori, using the optimal estima-
tion f (eij) of f ∗(eij) as the edge node evaluation function is
reasonable. It can be written as a sum of three terms:

For a certain edge node eij in P, h1(eij) = cij , cij repre-
sents the optimal estimation cost of eij . g(eij) is the sum
of the practical costs of the connected edge nodes among
all edge nodes in P except for eij . h2(eij) is the sum of the
optimal estimation costs of the disconnected edge nodes
among all edge nodes in P except for eij . α , β and γ are
weight coefficients.

If f ∗(eij) is the practical cost of f (eij) and is the sum
of the practical costs g∗(eij) , h∗1(eij) and h∗

2
(eij) of g(eij) ,

h1(eij) and h2(eij) , then f (eij) ≤ f ∗(eij) always holds.
There exist three relations between eij and obstacles.

Case 1: if eij is collision-free with any obstacle, then eij is
connected. The Ŵ operation is not required for eij . Robot
can move along eij without the risk of collision with any
obstacle.

Case 2: if eij collides with a unique obstacle, then eij
is disconnected. The Ŵ operation is required for eij .
Although it is possible for the robot to collide with
other obstacles while avoiding this unique obstacle, it is
assumed that the robot only needs to avoid this obstacle
and the other obstacles will be ignored.

Case 3: if eij collides with multiple obstacles, then eij
is disconnected. The Ŵ operation is required for eij . It is
obvious that the robot needs to bypass multiple obstacles
to reach the target vertex. It is assumed that the robot
will preferentially bypass the obstacle corresponding to
the minimum offset with respect to eij , and other obsta-
cles will be ignored.

EDG* uses the optimal successor edge node genera-
tion method to perform the Ŵ operation. The process is
as follows:

(1) Some points are selected from the minimum and
subminimum offsets of the current disconnected
edge node according to the preset rule.
(2) The selected points are added as new vertices of
G.
(3) The new vertices are connected with two vertices
of the current edge node to form new edge nodes.
(4) The current disconnected edge node is removed
from G.

It is a special case that the offset from the new vertex
to the predecessor of the current edge node is greater

(2)f (eij) = αg(eij)+ βh1(eij)+ γh2(eij).

Figure 3 Schematic of the expanding disconnected graph

Page 6 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

than the minimum offset of the latter. In this case, the
new vertex also needs to form a new edge node with
another vertex of the latter. If this is neglected, in some
special planning problems, the generalized optimum
path of the current state may not be generated cor-
rectly, resulting in a local optimum.

3.4 Map Pre‑processing
In the grid map, each grid has only one attribute value,
occupancy or blank. This lacks the most basic semantic
property of which grids represent the same obstacles in
a real-world context. An unpartitioned grid map cannot
reflect the actual spatial distribution of obstacles faced by
a robot, which is not conducive to global path planning.
Whereas EDG* performs path planning on the partitioned
map, a simple and efficient obstacle partitioning method
was proposed in this paper. If there are other occupancy
grids in the eight neighboring grids of an occupancy
grid, these occupancy grids belong to the same obstacle.
The corresponding map area is traversed to complete the
partitioning.

EDG* also obtains heuristic information from obstacle
offsets. In the grid map, it is easily proven that the mini-
mum offset of an obstacle to an edge node can only come
from the convex corner points of the obstacle. In the map
pre-processing stage, finding the concave and convex
corner points of each obstacle in advance is necessary.

In a nine-pane grid, if the blank grid vi is geometri-
cally opposite to the occupancy grid of an obstacle and
the other two grids are blank grids, vi is the convex
corner point of the obstacle. If the other two grids are
occupancy grids, vi is the concave corner point of the
obstacle. As shown in Figure 4, v1 is the convex corner
point of Obstacle 1. v3 is the concave corner point of
Obstacle 1.

A corner point search method with the time property
was proposed. For an obstacle, the upper right corner
of the occupancy grid that is the first time to join the
obstacle must be the convex corner point of the obsta-
cle. Starting from the convex corner point, the center of
the nine-pane grid is moved counterclockwise along the
boundary of the obstacle to search for corner points to
obtain the corner points of the obstacle. It is shown in
Figure 4. The corner points are connected in order of
time. The closed polygon obtained is the approximate
outer contour of Obstacle 1.

3.5 Algorithm Description of EDG*
The EDG that introduces the evaluation function shown
in Eq. (2) and the optimal child node generation method
is denoted as EDG*. By means of f (eij) , the costs of all
disconnected edge nodes are evaluated. The evaluation

results are used to guide EDG* to select the next edge
node for Ŵ from the disconnected edge nodes. The dis-
connected edge node with the minimum f (eij) will be
the edge node to be expanded next. If there are multi-
ple edge nodes with the minimum f (eij) , the edge node
with the maximum h1 is selected. If there are still multi-
ple edge nodes, the edge node is selected based on the
breadth priority principle. The priority queue Qopen is
used to store all leaf edge nodes in the current state. If
the current edge node is disconnected, move it to the set
Sclosed ; otherwise, move it to the set Scandi.

Algorithm 1 EDGstar_Pathfingding

Figure 4 Schematic of map pre-processing

Page 7 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

EDG* must obtain the estimates g(eij) and h(eij) of
g∗(eij) and h∗(eij) , respectively. For path planning in a
two-dimensional grid map, the cost mainly comes from
the distance information in the map. The common forms
of cost are Euclidean and Manhattan distances. In this
paper, Euclidean distance is used to calculate all the costs.
It can ensure the algorithm’s time efficiency and con-
vergence with the minimum number of expanded edge
nodes.

4 Path Planning Experiments
To verify the effectiveness of EDG* and to objectively
evaluate its planning efficiency, path quality, and environ-
mental adaptability, the following three experiments were
conducted by considering the map size and environmen-
tal complexity.

Experiment 1: Evaluate the map size exponential explo-
sion effect of the evaluation metrics of EDG*. Experiment
1 was conducted in the same typical indoor environment.
By setting different resolutions, six maps of different sizes
from 32 × 32 to 1024 × 1024 were created. The starting
vertex of planning problems was located at the lower-left
corner of the map. The target vertex was in the upper-
right corner. Due to the random error in the running
time, each planning problem was run 20 times indepen-
dently. The running time of each problem presented in
Experiment 1 was the average time of the 20 runs.

Experiment 2: Evaluate the path planning performance
of EDG* on maps of different environments. Experiment
2 used the map dataset of 30 cities openly available on the
Moving AI Lab [41, 42]: City Street Maps dataset (CSM).
The map size ranged from 256 × 256 to 1024 × 1024. A
maximum size of 1024 × 1024 was used in this paper. The
starting and target vertices of the planning problems and
the number of runs were the same as in Experiment 1.

Experiment 3: Evaluate the overall performance and
robustness of EDG* under ultra-large planning problems.
Experiment 3 was conducted in CSM, with the starting
and target vertices specified by the scan file of CSM. CSM
presented a total of 113200 planning problems with dif-
ferent starting and target vertices in 30 city street maps
and the optimal length of benchmarks. The total running
time presented in Experiment 3 was the average time of
three independent runs.

At the start of each experiment, evaluation metrics that
matched the purpose of the experiment were set. Addi-
tionally, each experiment included the same experimen-
tal setup as follows.

(1) Comparison algorithms: A*, DA, and JPS were
selected as the comparison algorithms. A* and JPS
versions were selected from the top starred versions

on GitHub over the past 5 years. The selected A* and
JPS were open-sourced and maintained by Yu Hu
from Shanghai Jiao Tong University, China. The heu-
ristic information of the selected A* was set to 0 to
obtain the DA used in this paper.
(2) Heuristic information: A* heuristic information
was the Manhattan distance from the current ver-
tex to the target vertex. DA had no heuristic infor-
mation. JPS heuristic information was the Euclidean
distance from the current vertex to the target vertex.
All the distances in EDG* were Euclidean distances.
The heuristic information was given by Eq. (2). Each
weight coefficient was 1.
(3) Programming language: All algorithms were writ-
ten in C++.
(4) Hardware environment: All algorithms were run
on a computer with a 4.00 GHz Intel Core i7-6700K
CPU and 3200 MHz 16G RAM.

4.1 Experiment 1
In Experiment 1, the exponential explosion effects of
EDG* planning efficiency and path quality on map size
were investigated to evaluate the optimization effects
of EDG* compared to the competitive algorithms. The
planning efficiency was evaluated based on the number
of algorithm iterations, number of successor nodes, and
running time, with the running time as the main evalu-
ation metric. The path quality was evaluated based on
path smoothness, collision avoidance performance, and
length. In this paper, the path smoothness was charac-
terized by the number of path turns. The path collision
avoidance performance was characterized by the number
of path collisions with wall corners.

Figure 5 shows the path planning results of the four
algorithms in the 1024 × 1024 indoor environment map.
The black grid is the occupancy grid. The white grid is
the blank grid. The folded line is the path generated by
the corresponding algorithm. The detailed experimental
results are shown in Tables 1 and 2.

As seen in Table 1, under the same environment but
with different map resolutions, A*, DA, JPS, and EDG*
could accomplish the specified path planning tasks.
EDG* outperformed A*, DA, and JPS in terms of the
number of algorithm iterations, number of successor
nodes, and running time. Both the number of algorithm
iterations and the number of successor nodes of A* and
DA increased exponentially with map size. The JPS and
EDG* were basically not affected by the map size, as
shown in Figures 6 and 7. The running time of all four
algorithms increased with map size. The running times
of A*, DA, and JPS were greatly affected by the map size,
exponentially increasing with the map size. The running

Page 8 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

time of EDG* increased at a slower speed, as shown in
Figure 8.

As seen in Table 1, under the same environment but
with different map resolutions, A*, DA, JPS, and EDG*
could accomplish the specified path planning tasks.
EDG* outperformed A*, DA, and JPS in terms of the
number of algorithm iterations, number of successor
nodes, and running time. Both the number of algorithm
iterations and the number of successor nodes of A* and
DA increased exponentially with map size. The JPS and
EDG* were basically not affected by the map size, as
shown in Figures 6 and 7. The running time of all four
algorithms increased with map size. The running times
of A*, DA, and JPS were greatly affected by the map size,
exponentially increasing with the map size. The running
time of EDG* increased at a slower speed, as shown in
Figure 8.

According to Table 2, EDG* outperformed A*, DA, and
JPS in terms of the number of path turns, number of cor-
ners passed by the path, and path length. The four algo-
rithms exhibited no significant exponential expansion
effect on the map size in the number of path turns and the
number of corner paths passed through. The path lengths

of the four algorithms did not differ significantly, increasing
with the map size.

4.2 Experiment 2
Experiment 2 investigated the optimization degrees of
EDG* in terms of planning efficiency and path quality on
maps of different environments compared to the competi-
tive algorithms. The optimization rate of the six metrics of
EDG* compared to the competitive algorithms was evalu-
ated in the range of 0–100% [43] and calculated as follows:

where Ei is the corresponding metric value of the com-
petitive algorithms. EEDG∗ is the corresponding metric
value of EDG*. RE characterizes the degree of optimiza-
tion of this metric of EDG* compared to the competitive
algorithms. Figure 9 shows some of the planning results
of the four algorithms in CSM.

Unlike A*, DA, and JPS, which use the neighborhood
searching strategy, EDG* selects the next edge node by a
well-designed evaluation function and avoids collisions,

(3)RE = max

{

Ei − EEDG∗

Ei
× 100%, 0

}

,

Figure 5 Comparison of paths planned by EDG* and three competitive algorithms on the 1024 × 1024 indoor environment map

Table 1 Comparison of evaluation metrics of path planning efficiency between EDG* and competitive algorithms on indoor
environment maps of different sizes

Metrics Map size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Number of iterations↓ A* 165 527 1739 6575 25009 97981

DA 892 3568 14272 57088 228352 913408

JPS 24 29 28 28 28 28

EDG* 9 9 9 9 9 9

Number of nodes↓ A* 1104 3842 13196 51175 197482 778684

DA 6039 26259 109515 447291 1807899 7269339

JPS 33 38 37 37 37 37

EDG* 12 12 12 12 12 12

Time↓(ms) A* 2.2 7.1 24.2 87.7 334.5 1350.1

DA 10.5 41.6 167.7 646.9 2547.9 10280.6

JPS 0.3 0.7 2.4 8.8 34.7 139.0

EDG* 0.2 0.3 0.3 0.4 0.7 1.2

Page 9 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

expanding the edge node according to the minimum off-
set. It can reduce the number of algorithm iterations and
the number of successor nodes by several orders of mag-
nitude, reducing the time complexity and running time.
Table 3 shows the experimental results of the number
of algorithm iterations, number of successor nodes, and
running time of the four algorithms on different envi-
ronment maps. The results show that A*, DA, JPS, and
EDG* can accomplish the specified path-planning tasks
on maps of different environments. The number of algo-
rithm iterations of EDG* was reduced by more than 95%
on average compared with that of the three competitive
algorithms. The number of successor nodes of EDG* was
reduced by more than 90% on average compared with
that of the three competitive algorithms. The running
time of EDG* was decreased by 79.9%–99.2% compared
with A*, with an average decrease of 94.3%. The running
time of EDG* was reduced by 99.7%–99.9% compared
with DA, with an average decrease of 99.9%. The running

Table 2 Comparison of evaluation metrics of path quality between EDG* and competitive algorithms on indoor environment maps of
different sizes

Metrics Map size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Number of turns↓ A* 7 11 11 11 11 11

DA 9 9 9 9 9 9

JPS 7 7 7 7 7 7

EDG* 4 4 4 4 4 4

Number of corners↓ A* 4 6 6 6 6 6

DA 4 4 4 4 4 4

JPS 4 4 4 4 4 4

EDG* 0 0 0 0 0 0

Length↓ A* 48.5 107.3 215.2 431.0 862.5 1725.6

DA 48.5 98.5 198.4 398.1 797.7 1596.8

JPS 48.5 98.5 198.4 398.1 797.7 1596.8

EDG* 47.8 95.1 189.8 379.5 758.9 1517.7

Figure 6 Comparison of the number of algorithm iterations
between EDG* and three competitive algorithms on indoor
environment maps of different sizes

Figure 7 Comparison of the number of successor nodes
between EDG* and three competitive algorithms on indoor
environment maps of different sizes

Figure 8 Comparison of the running time between EDG* and three
competitive algorithms on indoor environment maps of different
sizes

Page 10 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

time of EDG* was reduced by 86.7%–99.7% compared
with JPS, with an average decrease of 95.1%. The EDG*
outperformed A*, DA, and JPS in terms of the iteration
number, number of successor nodes, and running time.

In A* and JPS, the cost of expanding nodes along a
diagonal direction was generally smaller. The dangerous
paths involving a collision with corners in Figure 4 were
likely to be generated.

The proposed EDG* expanded successor edge nodes
according to the obstacle corner points obtained in
advance. It greatly reduced the risk of collision between
the robot and corners. The A*, DA, and JPS are angle-
restricted search algorithms because they can only search
in specific directions. The paths planned by these algo-
rithms are not optimum global paths. EDG* allows the
robot to go in any direction and thus belongs to any-
angle search algorithms. It can reduce the number of
path turns, improve path smoothness, and reduce the
path length.

Table 4 shows the experimental results of the num-
ber of path turns, number of corners passed through,
and path length of the four algorithms on different

environment maps. The number of turns of EDG* was
reduced by more than 80% on average compared with
that of the three competitive algorithms. The number of
corners passing through of EDG* was reduced by more
than 95% on average compared with that of the three
competitive algorithms. The path length of EDG* was
reduced by 0.8%–12.0% compared with that of A*, with
an average decrease of 4.9%, and by 0.8%–5.7% com-
pared with that of DA and JPS, with an average decline
of 3.7%. The results show that EDG* outperformed A*,
DA, and JPS in terms of path smoothness, collision
avoidance performance, and path length.

4.3 Experiment 3
The CMS dataset provided 113200 planning problems
in 30 maps as well as the optimal length of benchmarks.
Experiment 3 used four algorithms to solve the 113200
planning problems independently and defined the met-
rics in Table 5 to evaluate the algorithms.

Experiment 3 aimed to verify the overall performance
and robustness of the corresponding algorithms in
ultra-large planning problems. The total running time

Figure 9 Comparison of paths planned by EDG* and the competing algorithm on the 1st to 3rd maps in the 1024 × 1024 CSM

Page 11 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

in Table 6 is the average time of the corresponding algo-
rithms running three times independently for 113200
planning problems. The running time included the time
of loading pre-processed data and path planning time but
excluded the map pre-processing time.

As shown in Table 6, the running time of EDG dropped
by more than 99% compared with those of A* and DA
and by 95.9% compared with that of JPS. Meanwhile, the
path length of EDG* was reduced by 6.0% compared with
that of A* and by 4.6% compared with those of DA and
JPS.

As observed, EDG* found a valid solution for all 113200
planning problems, while A*, DA, and JPS failed to find
valid solutions for seven problems. In terms of the opti-
mal solution rate, EDG* outperformed the competitive
algorithms. A* failed to find optimal solutions for 38612
problems, with an optimal solution rate of only 65.9%.

DA and JPS failed to find optimal solutions for 99 prob-
lems. EDG* did not find optimal solutions for five prob-
lems. The non-optimal path cases are shown in Figure 10.
For the No. 2261 path planning problem in the 13th map
of the CSM dataset, the three comparison algorithms all
give optimal solutions with path lengths less than the
benchmark length, and the path lengths are all 1067.02,
but the path solution length of the EDG* algorithm is
1068.23, while the benchmark optimal path length is
1067.57, as shown in the comparison diagram of group
(a) in Figure 10. the No. 3099 path planning problem in
the 14th map of the CSM dataset, the EDG* algorithm
gives the optimal solution whose length is less than the
benchmark’s length, and the path length is 1148.33, but
none of the three comparison algorithms gives the opti-
mal solution, in which the A* algorithm gives the path
solution length of 1246.55, and the other two comparison

Table 3 The ratio of evaluation metrics of path planning efficiency of EDG* to competitive algorithms on the maps in the 1024 × 1024
CSM

Metrics Number of iterations↓ Number of nodes↓ Time↓

Map number EDG* VS EDG* VS EDG* VS

A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%)

1 99.9 99.9 97.0 99.9 99.9 95.1 95.8 99.8 88.3

2 99.9 99.9 98.0 99.9 99.9 96.1 98.9 99.9 96.2

3 99.7 99.9 98.5 99.9 99.9 97.1 94.7 99.9 95.0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
28 99.1 99.9 85.7 99.8 99.9 83.1 96.0 99.9 96.7

29 99.3 99.9 97.4 99.8 99.9 95.6 95.8 99.9 98.4

30 99.5 99.9 98.3 99.9 99.9 97.2 95.4 99.9 97.7

Min. 97.9 99.9 84.7 99.4 99.9 82.9 79.9 99.7 86.7

Avg. 99.5 99.9 96.1 99.9 99.9 94.3 94.3 99.9 95.1

Max. 99.9 99.9 99.4 99.9 99.9 99.2 99.2 99.9 99.7

Table 4 The ratio of evaluation metrics of path quality of EDG* to competitive algorithms on the maps in the 1024 × 1024 CSM

Metrics Number of turns↓ Number of corners↓ Length↓

Map number EDG* VS EDG* VS EDG* VS

A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%) A* (%) DA (%) JPS (%)

1 95.8 52.6 91.3 99.9 99.9 99.9 6.5 3.2 3.2

2 84.7 91.1 84.7 99.9 99.9 99.9 4.8 4.1 4.1

3 98.7 96.9 98.6 99.9 99.9 99.9 5.8 4.8 4.8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
28 60.0 53.8 60.0 99.9 99.9 99.9 2.3 2.3 2.3

29 76.2 90.6 76.2 96.6 96.9 96.6 2.9 2.9 2.9

30 93.8 93.8 93.8 95.1 94.0 95.1 4.0 4.0 4.0

Min. 46.2 33.3 46.2 87.5 83.0 93.0 0.8 0.8 0.8

Avg. 85.3 81.9 84.8 98.8 98.5 99.1 4.9 3.7 3.7

Max. 98.7 98.9 98.6 99.9 99.9 99.9 12.0 5.7 5.7

Page 12 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

algorithms give the path solution length of 1237.18, while
the benchmark optimal path length is 1236.31, as shown
in the comparison diagram of group (b) in Figure 10.

EDG* needs to pre-process the map before planning.
As indicated, for the 113200 planning problems in CSM,
the time consumed by map pre-processing was 3325 ms,
with the average time consumed by each map of 110.8
ms, and the average time consumed on each planning
problem of 0.03 ms.

Since some of the planning problems from CSM have
their starting and target vertices overlapping and the

competitive algorithms failed to handle this, no solution
was found for seven planning problems. To save the data-
set integrity and the rigor of the experiment, the planning
problems unfavorable to the competitive algorithms were
not removed from Experiment 3.

The optimal solution rate of A* was much lower than
that of the other three algorithms, probably because
the heuristic distance of A* used the Manhattan dis-
tance by convention. The Manhattan distance sig-
nificantly reduced the computation amount of the
node cost update and running time. The probability
of nodes expanding diagonally also increased signifi-
cantly, resulting in the failure of A* to obtain the opti-
mal solution that angle-restricted search algorithms
could find. In an additional experiment, the A* heu-
ristic information was replaced with the Eulerian dis-
tance. In this case, the optimal solution rate of A* was
the same as that of DA and JPS, but its running time
increased significantly. A* algorithm can hardly iden-
tify the global optimal solution that can be found by
Any-angle Search algorithms due to the limitation of
angle searching strategies. A* algorithm can neither
identify the optimal solution that can be found by
Angle-restricted Search algorithms using the Manhat-
tan distance as the heuristic information was calcu-
lated by using Manhattan distance.

Experiment 3 verified the effectiveness and high
robustness of EDG* in the 113200 planning problems
from the CSM dataset. The results demonstrate that
EDG* outperformed the competitive algorithms in
terms of running time, path length, and optimum path
rate.

Table 5 Evaluation metrics defined in Experiment 3

Metrics The definition of metrics

TT (ms) Total time required for path planning 113200 times

AT (ms) Average time spent on one path planning

TR Time optimization rate of EDG* compared to competitive algorithms. It can
be calculated by Eq. (3)

TBL Sum of benchmarks’ optimal length

ABL Average of benchmarks’ optimal length

TL Total length of 113200 path planning problem

AL Average length of 113200 path planning problem

LOR Length optimization rate of EDG* compared to competitive algorithms. It
can be calculated by Eq. (3)

NPS Number of paths solved

NPI Number of paths with no solution or invalid

NOPL Number of optimum path lengths

OPLR Optimum path length ratio

TMPT (ms) Total map pre-processing time required for path planning 113200 times

AMPT (ms) Average map pre-processing time required for path planning 113200 times

Table 6 Comparison of evaluation metrics defined in
Experiment 3 between EDG* and competitive algorithms on
113200 path planning problems in the 1024 × 1024 CSM

Metrics A* DA JPS EDG*

TT (ms) ↓ 56510903 592191778 10739162 435590

AT (ms) ↓ 499.2 5231.4 94.9 3.8

TR (%) 99.2 99.9 95.9 /

TBL 85561250

ABL 755.8

TL↓ 86586680 85319950 85319950 81426090

AL↓ 764.9 753.7 753.7 719.3

LOR (%) 6.0 4.6 4.6 /

NPS↑ 113193 113193 113193 113200

NPI↓ 7 7 7 0

NOPL↑ 74588 113101 113101 113195

OPLR↑ (%) 65.9 99.9 99.9 100.0

TMPT (ms)↑ 0 0 0 3325

AMPT (ms)↑ 0 0 0 0.03

Page 13 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

5 Conclusions
Through improvements in the successor node expan-
sion strategy of graph planning algorithms, an expand-
ing disconnected graph (EDG) algorithm for global
planning problems of mobile robots was proposed. A
heuristic function called EDG* was presented to opti-
mize EDG in path planning by finding edge nodes and
expanding successor edge nodes in the pre-processed
map. It replaced the operation on neighboring nodes in
conventional graph planning algorithms, thus improv-
ing the path planning efficiency. In different complex-
ity environment maps, EDG*’s running time dropped
by more than 90% and total length of paths reduced
by more than 4.6% compared with A*, DA, and JPS
algorithms. Its planning efficiency has no exponential
explosion dilemma on map size. The path quality evalu-
ation metrics of EDG*, such as path length, smooth-
ness, and collision avoidance, also outperformed those
of the competitive algorithms. The extensive path plan-
ning experimental results indicate that EDG* applica-
tion mitigated the low planning efficiency and poor
path quality deficiencies of conventional algorithms.

This paper focused on proposing EDG* and verify-
ing its effectiveness. In the future, more work will be
put into further optimizing EDG* and using it for path
planning in dynamic or 3D environments.

Acknowledgments
The authors would like to thank all the colleagues who contributed to this
research.

Authors’ Contributions
YT contributed by leading and supervising trials, providing constructive guid-
ance, and reviewing manuscripts; LD contributed by providing methodol-
ogy and design procedures to verify and write manuscripts; HG contributed
by writing guidance; YZ contributed by data curation; YS contributed by
visualization presentation; TW contributed by giving constructive guidance to
the experiment, supervision, and review of manuscripts. All authors read and
approved the final manuscript.

Funding
Supported by National Key Research and Development Program of China
(Grant No. 2022YFB4700402).

Data Availability
The data that support the findings of this paper are openly available in GitHub
at https:// github. com/ ldcoo kie/ EDGst ar_ Pathfi nding.

Declarations

Competing Interests
The authors declare no competing financial interests.

Received: 17 April 2023 Revised: 22 February 2024 Accepted: 12 March
2024

References
 [1] B K Patle, L G Babu, A Pandey, et al. A review: on path planning strategies

for navigation of mobile robot. Defence Technology, 2019, 15(4): 582–606.
 [2] A Loganathan, N S Ahmad. A systematic review on recent advances in

autonomous mobile robot Navigation. Engineering Science and Technol-
ogy, an International Journal, 2023, 40: 101343.

 [3] B Hichri, A Gallala, F Giovannini, et al. Mobile robots path planning and
mobile multirobots control: A review. Robotica, 2022, 40(12): 4257–4270.

 [4] M Abed, O Lutfy, Q Al-Doori. A review on path planning algorithms for
mobile robots. Engineering and Technology Journal, 2021, 39(5A): 804–820.

Figure 10 Comparison of EDG* and competitive algorithms for nonoptimal programming cases in the 1024 × 1024 CSM

https://github.com/ldcookie/EDGstar_Pathfinding

Page 14 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

 [5] M N A Wahab, S Nefti-Meziani, A Atyabi. A comparative review on mobile
robot path planning: classical or meta-heuristic methods? Annual Reviews
in Control, 2020, 50: 233–252.

 [6] M Huppi, L Bartolomei, R Mascaro, et al. T-PRM: Temporal probabilistic
roadmap for path planning in dynamic environments. 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan,
October 23–27, 2022: 10320–10327.

 [7] L E Kavraki, P Svestka, J C Latombe, et al. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 1996, 12(4): 566–580.

 [8] Y Li, W Wei, Y Gao, et al. PQ-RRT*: An improved path planning algorithm
for mobile robots. Expert Systems with Applications, 2020, 152: 113425.

 [9] J Wang, M Meng, O Khatib. EB-RRT: Optimal motion planning for mobile
robots. IEEE Transactions on Automation Science and Engineering, 2020,
17(4): 2063–2073.

 [10] Y V Pehlivanoglu, P Pehlivanoglu. An enhanced genetic algorithm for
path planning of autonomous UAV in target coverage problems. Applied
Soft Computing, 2021, 112: 107796.

 [11] M Nazarahari, E Khanmirza, S Doostie. Multi-objective multi-robot path
planning in continuous environment using an enhanced genetic algo-
rithm. Expert Systems with Applications, 2019, 115: 106–120.

 [12] M D Phung, Q P Ha. Safety-enhanced UAV path planning with spherical
vector-based particle swarm optimization. Applied Soft Computing, 2021,
107: 107376.

 [13] C Huang, X Zhou, X Ran, et al. Adaptive cylinder vector particle swarm
optimization with differential evolution for UAV path planning. Engineer-
ing Applications of Artificial Intelligence, 2023, 121: 105942.

 [14] C Miao, G Chen, C Yan, et al. Path planning optimization of indoor mobile
robot based on adaptive ant colony algorithm. Computers & Industrial
Engineering, 2021, 156: 107230.

 [15] C Ntakolia, D V Lyridis. A comparative study on ant colony optimization
algorithm approaches for solving multi-objective path planning prob-
lems in case of unmanned surface vehicles. Ocean Engineering, 2022, 255:
111418.

 [16] J R Sánchez-Ibáñez, C J Pérez-del-Pulgar, A García-Cerezo. Path planning
for autonomous mobile robots: A review. Sensors, 2021, 21(23): 7898.

 [17] W Lee, G H Choi, T Kim. Visibility graph-based path-planning algorithm
with quadtree representation. Applied Ocean Research, 2021, 117: 102887.

 [18] Q Li, F Xie, J Zhao, et al. FPS: Fast path planner algorithm based on sparse
visibility graph and bidirectional breadth-first search. Remote Sensing,
2022, 14(15): 3720.

 [19] W Chi, Z Ding, J Wang, et al. A generalized voronoi diagram-based
efficient heuristic path planning method for RRTs in mobile robots. IEEE
Transactions on Industrial Electronics, 2022, 69(5): 4926–4937.

 [20] M Candeloro, A M Lekkas, A J Sørensen. A voronoi-diagram-based
dynamic path-planning system for underactuated marine vessels. Control
Engineering Practice, 2017, 61: 41–54.

 [21] B B K Ayawli, X Mei, M Shen, et al. Mobile robot path planning in dynamic
environment using voronoi diagram and computation geometry tech-
nique. IEEE Access, 2019, 7: 86026–86040.

 [22] T T Mac, C Copot, D T Tran, et al. A hierarchical global path planning
approach for mobile robots based on multi-objective particle swarm
optimization. Applied Soft Computing, 2017, 59: 68–76.

 [23] X Lai, J Li, J Chambers. Enhanced center constraint weighted A* algo-
rithm for path planning of petrochemical inspection robot. Journal of
Intelligent & Robotic Systems, 2021, 102(4).

 [24] K J C Fransen, J A W M Van Eekelen, A Pogromsky, et al. A dynamic path
planning approach for dense, large, grid-based automated guided vehi-
cle systems. Computers & Operations Research, 2020, 123: 105046.

 [25] R Song, Y Liu, R Bucknall. Smoothed A* algorithm for practical unmanned
surface vehicle path planning. Applied Ocean Research, 2019, 83: 9–20.

 [26] Y Singh, S Sharma, R Sutton, et al. A constrained A* approach towards
optimal path planning for an unmanned surface vehicle in a maritime
environment containing dynamic obstacles and ocean currents. Ocean
Engineering, 2018, 169: 187–201.

 [27] H Zhang, M Li, L Yang. Safe path planning of mobile robot based on
improved A* algorithm in complex terrains. Algorithms, 2018, 11(4): 44.

 [28] G Tang, C Tang, C Claramunt, et al. Geometric A-Star algorithm: An
improved A-Star algorithm for AGV path planning in a port environment.
IEEE Access, 2021, 9: 59196–59210.

 [29] F Islam, V Narayanan, M Likhachev. Dynamic multi-heuristic A*. 2015
IEEE International Conference on Robotics and Automation (ICRA), Seattle,
Washington, USA, May 26-30, 2015: 2376–2382.

 [30] K Mi, J Zheng, Y Wang, et al. A multi-heuristic A* algorithm based on
stagnation detection for path planning of manipulators in cluttered
environments. IEEE Access, 2019, 7: 135870–135881.

 [31] J Zhang, Z Liu, Y Wang, et al. Research on effective path planning
algorithm based on improved A* algorithm. Journal of Physics: Conference
Series, Chengdu, China, November 7–9, 2022, 2188(1): 012014.

 [32] F Islam, V Narayanan, M Likhachev. A*-Connect: Bounded suboptimal
bidirectional heuristic search. 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, May 16-21, 2016:
2752–2758.

 [33] X Wu, L Xu, R Zhen, et al. Bi-Directional adaptive A* algorithm toward
optimal path planning for large-scale UAV under multi-constraints. IEEE
Access, 2020, 8: 85431–85440.

 [34] D Harabor, A Grastien. Online graph pruning for pathfinding on grid
maps. Proceedings of the AAAI Conference on Artificial Intelligence, San
Francisco, California, USA, August 7-11, 2011, 25(1): 1114–1119.

 [35] S Liu, M Watterson, K Mohta, et al. Planning dynamically feasible trajecto-
ries for quadrotors using safe flight corridors in 3-D complex environ-
ments. IEEE Robotics and Automation Letters, 2017, 2(3): 1688–1695.

 [36] Z Li, Z Zhang, H Liu, et al. A new path planning method based on
concave polygon convex decomposition and artificial bee colony
algorithm. International Journal of Advanced Robotic Systems, 2020, 17(1):
172988141989478.

 [37] Z Li, R Shi, Z Zhang. A new path planning method based on sparse A*
algorithm with map segmentation. Transactions of the Institute of Measure-
ment and Control, 2021, 44(4): 916–925.

 [38] Y Gong, G Liu. Path planning method using convex corner to improve
A* algorithm. Computer Engineering and Applications, 2022: 1–10. (in
Chinese)

 [39] R Yonetani, T Taniai, M Barekatain, et al. Path planning using neural A*
search. International Conference on Machine Learning(ICML 2021), Vienna,
Austria, 2021: 12029–12039.

 [40] T Marcucci, M Petersen, D von Wrangel, et al. Motion planning around
obstacles with convex optimization. Science Robotics, 2023, 8(84): 1–11.

 [41] N R Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions
on Computational Intelligence and AI in Games, 2012, 4(2): 144–148.

 [42] L Zhang, Y Zhang, Y Li. Mobile robot path planning based on improved
localized particle swarm optimization. IEEE Sensors Journal, 2021, 21(5):
6962–6972.

 [43] R Yonetani, T Taniai, M Barekatain, et al. Path planning using neural A*
search. International Conference on Machine Learning, Virtual, July 18–24,
2021: 12029–12039.

Yong Tao born in 1979, is an associate professor and a doctoral
supervisor at School of Mechanical Engineering & Automation, Beihang
University, China. He received his Ph.D. degree from School of Mechan-
ical Engineering and Automation, Beihang University, China, in 2009. His
research interests include intelligent robot control methods, robots
for aviation, and robot integration applications.

Lian Duan born in 1996, is currently a master candidate at School
of Large Aircraft Engineering, Beihang University, China. He received his
Bachelor’s degree from China Agricultural University, China, in 2021.
His research interests include mobile robot autonomous positioning
and path planning.

He Gao born in 1997, is currently a Ph.D. candidate at Aero-Engine
Research Institute, Beihang University, China. He received his Bachelor’s
degree from Northeast Forestry University, China, in 2019. His research
interests include mobile manipulation, motion planning, and trajec-
tory optimization for autonomous mobile robots.

Yufan Zhang born in 2000, is a master candidate at School of
Large Aircraft Engineering, Beihang University, China. He received his

Page 15 of 15Tao et al. Chinese Journal of Mechanical Engineering (2024) 37:32

Bachelor’s degree from Harbin Institute of Technology, China, in 2022.
His research interests include robot cluster control.

Yian Song born in 2001, is a master candidate at School of Mechan-
ical Engineering & Automation, Beihang University, China. His research
interests include mobile manipulators and robot cluster control.

Tianmiao Wang born in 1960, is a professor and a doctoral super-
visor at School of Mechanical Engineering & Automation, Beihang
University, China. He received his Ph.D. degree from School of Com-
puter Science, Northwestern Polytechnical University, China, in 1990.
His research interests include biomimetic robotics, medical robotics
technology, and mobile robots.

	Heuristic Expanding Disconnected Graph: A Rapid Path Planning Method for Mobile Robots
	Abstract
	1 Introduction
	2 Basic Definitions
	3 EDG* Heuristic Iterative Algorithm
	3.1 The A* Algorithm
	3.2 Expanding Disconnected Graph
	3.3 Heuristic Information
	3.4 Map Pre-processing
	3.5 Algorithm Description of EDG*

	4 Path Planning Experiments
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3

	5 Conclusions
	Acknowledgments
	References

