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Abstract 

Fuel consumption is one of the main concerns for heavy-duty trucks. Predictive cruise control (PCC) provides 
an intriguing opportunity to reduce fuel consumption by using the upcoming road information. In this study, a real-
time implementable PCC, which simultaneously optimizes engine torque and gear shifting, is proposed for heavy-
duty trucks. To minimize fuel consumption, the problem of the PCC is formulated as a nonlinear model predictive 
control (MPC), in which the upcoming road elevation information is used. Finding the solution of the nonlinear MPC 
is time consuming; thus, a real-time implementable solver is developed based on Pontryagin’s maximum principle 
and indirect shooting method. Dynamic programming (DP) algorithm, as a global optimization algorithm, is used 
as a performance benchmark for the proposed solver. Simulation, hardware-in-the-loop and real-truck experiments 
are conducted to verify the performance of the proposed controller. The results demonstrate that the MPC-based 
solution performs nearly as well as the DP-based solution, with less than 1% deviation for testing roads. Moreover, 
the proposed co-optimization controller is implementable in a real-truck, and the proposed MPC-based PCC algo-
rithm achieves a fuel-saving rate of 7.9% without compromising the truck’s travel time.

Keywords  Heavy-duty truck, Predictive cruise control, Model predictive control, Pontryagin’s maximum principle, 
Real-truck implementation

1  Introduction
Heavy-duty trucks have an irreplaceable role in freight 
transportation in the daily life of human beings. As a 
commercial transport, one of the main concerns for the 
heavy-duty truck is energy consumption [1]. One way of 
reducing energy consumption is by the development of 
a smarter cruise control (CC) system [2]. At present, CC 

system which releases the driver from operating either 
on the accelerator or brake pedal is widely equipped to 
reduce driver workload  [3] for some heavy-duty trucks. 
However, the traditional CC system usually brakes under 
slope conditions; this mechanism is not conducive to 
energy saving. Predictive cruise control (PCC) technolo-
gies, which can avoid the unnecessary braking by allow-
ing the vehicle speed to vary around the set speed, has 
attracted a tremendous attention for heavy-duty trucks, 
considering the increasing demand for fuel economy [4–
6]. As an optimal control problem, PCC uses the upcom-
ing road traffic information to optimize the longitudinal 
driving strategies [7, 8].

Given that dynamic programming (DP) can provide a 
global optimal control solution of the optimization prob-
lem of PCC, it is used as a benchmark to analyze the 
optimal trajectories [9]. However, DP cannot be directly 
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applied to real-time control because of the heavy com-
putation burden (known as the curse of dimensional-
ity)  [10]. Similar to other advanced driving assistance 
system, PCC should be run on vehicle control unit in 
real time. Biswas et  al. divided the real-time controllers 
in energy management systems into three categories, 
namely, (i) precomputed control laws, (ii) online com-
puted control laws, and (iii) blended pre- and online 
computed control laws  [11]. The precomputed control 
laws, such as rule-based and fuzzy logic controllers  [12, 
13], need tremendous calibration of the control param-
eters. Traditionally, these approaches are less robust to 
model inaccuracies and the change of the driving condi-
tions. An example of the blended pre- and online com-
puted control laws is explicit model predictive control 
(MPC)  [14]. However, the explicit MPC involves the 
exponential growth of the number of control regions for 
the long predictive horizon and many constraints [15].

MPC is expected to generate online computed control 
laws of the real-time controllers  [16, 17]. However, the 
considerable computational burden from finding an opti-
mal solution restricts the application of MPC in real-time 
manner  [18, 19]. If the optimization problem can be for-
mulated as a linear convex quadratic programming (QP) 
problem, the fast computation time can be achieved [20]. 
Unfortunately, the PCC problem is a nonlinear and con-
strained optimization problem. Finding an analytical solu-
tion for such problem is often impossible or extremely 
difficult. To avoid solving complex optimization problems 
directly, some hierarchical optimization methods are uti-
lized, for example, double-layer scheme for energy-opti-
mal braking control  [21], bi-level MPC for eco-driving 
applications [22].

At present, many studies are focused on numerical 
solution methods instead of the analytical solution for 
MPC problems [23, 24]. These numerical approaches fall 
into two broad categories  [25], namely, (i) direct meth-
ods, and (ii) indirect methods. In the direct method, 
the original optimization problem is transcribed to a 
nonlinear programming problem by parameterizing the 
state and control input, while in the indirect method, the 
original optimization problem is converted into a bound-
ary-value problem by using optimality conditions  [26]. 
Pontryagin’s maximum principle (PMP) can be used as 
an optimal control theory to obtain the optimality con-
ditions [27]. Then, the shooting method is used to solve 
a boundary value problem by guessing an initial value 
of the costate variable. In Ref. [28], the authors used the 
indirect shooting method to derive an online optimal 
control law of the gearshift command for multispeed 
electric vehicles. Many heavy-duty trucks are equipped 
with automated manual transmission with discrete gear 

ratios. Thus, co-optimization of gear shifting and engine 
torque for PCC problem involves a mixed-integer pro-
gramming problem  [29]. Considering that finding a fast 
optimal solution for the mixed-integer programming 
problem is extremely challenging, two sub-step optimiza-
tion method is proposed by converting an original opti-
mization problem into two sub-optimization problems 
in Ref. [30].

Based on the above previous works, a real-time imple-
mentable PCC is proposed to simultaneously optimizes 
engine torque and gear shifting for heavy-duty trucks. 
The main contributions of this study are devising a real-
time implementable co-optimization method and deriv-
ing an MPC-based solution. The MPC-based solution 
performs nearly the same as a global optimal control 
solution for the PCC optimization problem. The proce-
dure to achieve this goal is summarized as follows. First, 
the PCC problem for heavy-duty trucks is formulated as 
a nonlinear MPC with discrete control input of the gear 
shifting command. Second, after simplifying that gear 
shifting only occurs in the first step of the predictive 
horizon, a fast solution is derived using PMP and an indi-
rect shooting method, in which the state constraints on 
the truck speed and gear position are treated in practi-
cal implementation approaches. Third, hardware-in-the-
loop (HIL) experiments on a embedded computer and a 
vehicle control unit are carried out to show the real-time 
capability of the proposed co-optimization controller. 
Fourth, real-truck experiments are conducted to evaluate 
the fuel-saving performance of the proposed MPC-based 
controller, and a fuel-saving rate of 7.9% is achieved.

The remainder of this paper is organized as follows. The 
PCC system and system model of heavy-duty trucks are 
presented in Section 2. The optimization formulation of 
the PCC problem is discussed in Section 3. The solution 
methods are derived based on MPC and DP in Section 4. 
The proposed PCC solutions are evaluated through simu-
lation, HIL and real-truck experiments, and some main 
results are represented in Section 5 and Section 6. Finally, 
the conclusions are provided in Section 7.

2 � PCC System and System Model
In this section, the fuel-saving reasons of PCC system are 
firstly demonstrated by comparison to the conventional 
CC. Then, the longitudinal dynamic model of a heavy-
duty truck is constructed. Thereafter, the fuel consump-
tion rate is fitted by a 2D polynomial function.

2.1 � Fuel‑Saving Reasons of PCC System
The conventional CC is designed to maintain the driv-
er’s set speed. It can be regarded as a speed tracking 
problem. PCC uses the information on the road profile 
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to optimize the velocity profiles to reduce fuel con-
sumption. It can be regarded as a speed optimization 
problem with upcoming road information. The differ-
ence between PCC and CC is shown in Figure 1. Com-
pared with CC, the main fuel-saving reason for typical 
uphill and downhill conditions can be summarized as 
follows. 

	I.   	 When approaching an ascent, the truck with PCC 
accelerates in advance, but the truck with CC does 
not have any uphill preparation. When climbing 
the ascent, the engine for CC works in a low-speed 
and high-torque region, and the truck often gains 
more torque by downshifting. The truck with PCC 
can maintain a high gear due to the early accelera-
tion. Because working in a high gear is conducive 
to fuel saving, PCC saves more fuel than CC.

	II.	   When approaching a descent, the truck with PCC 
decelerates in advance, but the truck with CC does 
not have any downhill preparation. When on the 
descent, CC often brakes the truck to avoid exces-
sive speed, while PCC can reduce the brake opera-
tion due to the early deceleration. Brake dissipates 
the energy in the form of heat; thus, PCC saves 
more fuel by avoiding unnecessary braking.

2.2 � Longitudinal Dynamic Model
The vehicle under discussion is a heavy-duty truck. Its 
power comes from an internal combustion engine (ICE) 
mated to an automated manual transmission (AMT). 
Engine torque, brake torque, and gear number are the 
control inputs to determine the longitudinal motion of 
the truck. Traditionally, the engine and the brake sys-
tem do not work simultaneously. The engine works in 
the traction mode, and the brake system works in brake 
mode. When the truck is in the brake mode, engine drag 
occurs, and the engine drag resistance force is equal to 
the minimum (negative).

2.2.1 � Traction Mode
The longitudinal dynamic motion of the truck can be 
described using the truck distance s, the truck speed v 
and the longitudinal acceleration a, as follows:

The force diagram of the heavy-duty truck moving on a 
slope is shown in Figure  2. According to the force bal-
ance, the engine traction force is the sum of various 
external forces, as follows:

(1)
ṡ = v,

v̇ = a.

Figure 1  Demonstration on the difference between PCC and CC
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where Ft is the traction force, Ff  is the rolling resistance, 
Fw is the aerodynamic friction, Fi is the gravitational 
resistance, and Fj is the acceleration resistance.

The discrete equation of the engine traction force is as 
follows:

where ηt is the combined transmission efficiency, which 
accounts for both the efficiency of the transmission and 
the main gearbox, if  is the final drive ratio, G(k) is the 
gear number at step k, ig (G(k)) is the transmission ratio 
in gear G(k), Te(k) is the engine torque at step k, and rw is 
the wheel radius. The transmission ratio ig is determined 
by the selected gear G(k).

The discrete equations of the resistance force are given as 
follows:

where m is the mass of the truck, g is the gravity constant, 
f is the rolling resistance coefficient, α(k) is the slope 
angle at step k that varies along with the position of the 
truck, CD is the aerodynamic drag coefficient, A is the 
frontal area, ρ is the air density, and δ is the lumped rota-
tional inertia coefficient.

The discrete equation of the longitudinal dynamic 
motion in the traction mode can be expressed as follows:

where �t is the time interval from step k to step k + 1.

(2)Ft = Ff + Fw + Fi + Fj ,

(3)Ft(k) =
ηt if ig (G(k))Te(k)

rw
,

(4)

Ff (k) = mgf cos(α(k)),

Fw(k) =
1

2
CDAρv

2(k),

Fi(k) = mg sin(α(k)),

Fj(k) = δma,

(5)
a =

v(k + 1)− v(k)

�t

=
Ft(k)− Ff (k)− Fw(k)− Fi(k)

δm
,

2.2.2 � Brake Mode
According to the force balance, the longitudinal dynamic 
motion in the brake mode is given as follows:

where Fdrag is the engine drag resistance force, and Fb is 
the braking force.

The discrete equation of the longitudinal dynamic 
motion in the brake mode can be expressed as follows:

2.2.3 � Gear Shifting
The transmission system for the investigated truck is 
12-speed AMT. A gear shift input ug (k) is introduced to 
describe the gearshift operation, as follows:

Gear skipping in the gearshift operation is not allowed. 
The gearshift operation only includes downshift, hold, 
and upshift. Thus, the gear shift input ug (k) has three 
entries, ug (k) ∈ {−1, 0, 1} , which respectively represent 
downshift, hold, and unshift.

2.3 � Fuel Consumption Rate
Fuel consumption rate (g/s) is used to model the fuel con-
sumption of ICE. Traditionally, the engine manufacturer 
provides a map of brake specific fuel consumption (BSFC) 
(g/kW·h). The fuel consumption rate can be obtained from 
the BSFC map by unit conversion. For a convenient math-
ematical formulation, the fuel consumption rate Qt is fitted 
by a 2D polynomial function

where ιi,j represent the fitting coefficients, and ωe is the 
engine speed. The fitting performance of the fuel con-
sumption rate is shown in Figure  3. Black dots in the 
upper subfigure of Figure 3 are experimental data points, 
which are obtained by a large number of steady state 
experiments. The bottom subfigure of Figure 3 shows the 
model residuals of the 2D polynomial function (9). The 
root mean square error (RMSE) is 0.1493.

The relationship between the engine speed ωe and the 
vehicle speed v(k) can be described as follows:

(6)Fj = Fb + Ff + Fw + Fi + Fdrag ,

(7)
a =

v(k + 1)− v(k)

�t

=
Fb(k)+ Ff (k)+ Fw(k)+ Fi(k)+ Fdrag

δm
.

(8)G(k + 1) = G(k)+ ug (k).

(9)Qt(k) =

2
∑

i=0

2
∑

j=0

ιi,jT
i
e(k)ω

j
e(k),

(10)ωe(k) =
30

πrw
if ig (G(k))v(k).

Figure 2  Force diagram of the truck moving on a road
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3 � Problem Formulation
This section formulates the optimization problem of PCC. 
PCC allows the speed of the truck to vary around the driv-
er’s set speed. The speed variation range provides oppor-
tunity to reduce fuel consumption by using the upcoming 
road slope information. PCC can be regarded as a speed 
optimization problem. Compared with our previous work 
in Refs. [16, 31], the optimal control input of the gear selec-
tion is considered.

3.1 � Objective Function
Evidently, the goals of PCC are to track the driver’s set 
speed and to reduce the fuel consumption. Thus, the prob-
lem of the PCC can be described as a nonlinear multiobjec-
tive optimization. The performance index to be minimized 
is formulated as follows:

with

(11)J =

N−1
∑

k=0

L[x(k),u(k), k] + ϕ[x(N ),N ],

(12)

L[x(k),u(k), k] = Qt(k)�t + κ1
(

v(k)− vref
)2
�t,

ϕ[x(N ),N ] = κ2
(

v(N )− vref
)2
,

where N is the predictive horizon, vref  is the driver’s set 
speed, and κ1 and κ2 are weighting coefficients. The item 
Qt(k)�t is penalized to minimize the fuel consumption. 
The item 

(

v(k)− vref
)2
�t is penalized to minimize the 

tracking error of the driver’s set speed. The terminal con-
straint (v(N )− vref )

2 is penalized to guarantee that the 
vehicle reaches the reference speed at step N. The termi-
nal constraint ϕ[x(N ),N ] is a soft constraint with respect 
to the terminal state v(N).

3.2 � System Dynamics
The state equation of the discrete system is given as 
follows:

3.3 � Capacity Constraints
When the engine is working, the engine torque Te(k) has 
a capacity constraint, expressed as follows:

where Te,l and Te,u are the minimal and maximal torques, 
respectively.

PCC allows the speed of the truck to vary within a 
specified range. Thus, the speed of the truck has a band 
constraint,

where vmin and vmax are the minimal and maximal speeds, 
respectively.

The truck under investigation has a 12-speed transmis-
sion. The transmission ratio ig (G(k)) in different gears is 
designed to meet not only the maximum climbing slope, 
but also the maximum speed. The lowest gear is related 
to the maximum climbing slope, and the highest gear is 
related to the maximum speed. The applicable gear ratio 
for a specified truck speed is constrained by the engine 
speed range because the engine has a speed range. 
According to Eq.  (10), the constraints of the applicable 
gears G(k) can be expressed as follows:

where ωe,min and ωe,max are the minimal and maximal 
engine speeds, respectively. To determine the suitable 

(13)

s(k + 1)− s(k) = v(k)�t,

v(k + 1)− v(k) =
Ft(k)− Ff (k)− Fw(k)− Fi(k)

δm
�t,

G(k + 1)− G(k) = ug (k).

(14)Te,l(ωe(k)) ≤ Te(k) ≤ Te,u(ωe(k)),

(15)vmin ≤ v(k) ≤ vmax,

(16)

G(k) =

{

1, 2, · · · , 12 |
πrwωe,min

30if v(k)
≤ ig (G(k)) ≤

πrwωe,max

30if v(k)

}

,

Figure 3  Fitting performance: fuel consumption rate (upper 
sub-figure) and model residuals (bottom sub-figure)
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gears for the current vehicle speed, we can use the given 
velocity v(k) and Eq. (16), along with the maximum speed 
ωe,max , to calculate the transmission ratio ig (G(k)) of the 
large value, which corresponds to the low gear. Similarly, 
by combining v(k) with the minimum speed ωe,min , we 
can calculate the transmission ratio ig (G(k)) of the small 
value, corresponding to the high gear. These calculations 
help us determine the range of the transmission ratio, 
and subsequently, we can check if the transmission ratio 
of gears 1 to 12 falls within this range. On this basis, we 
can determine which gears are appropriate for the pre-
sent vehicle speed. As a result, only some of the twelve 
gears can satisfy the constraint  (16) for a given vehicle 
speed.

3.4 � Formulation Summary
In summary, the PCC problem is formulated as a con-
strained nonlinear optimization problem, written as 
follows:

In the formulation of Eq. (17), the optimal control inputs 
are the engine torque and the gear shifting command, i.e., 
u(k) =

[

Te(k) ug (k)
]T . Note that the engine torque is 

a continuous variable and the gear shifting is a discrete 
variable. The actuator system of the gear shifting ug (k) is 
a transmission control unit, and the actuator system of 
the engine torque Te(k) is an engine control unit (ECU). 
Traditionally, the ECU receives the position signal of the 
accelerator pedal, then a two-dimensional map of the 
pedal position and the engine speed is used to deter-
mine an engine torque command. The engine responds 
to the torque demand via many control loops, such as the 
air/fuel ratio feedback loop and the ignition angle feed-
forward loop. The ECU under investigation can directly 
receive the torque demand by a controller area network. 
Thus, the engine torque demand, instead of the pedal 
position, is selected as the optimal control input.

The system states are the truck distance, the truck speed, 
and the gear position, i.e., x(k) =

[

s(k) v(k) G(k)
]

T  . 

(17)

J =

N−1
�

k=0

L[x(k),u(k), k] + ϕ[x(N ),N ],

s.t.,



























































�s = s(k + 1)− s(k) = v(k)�t,
�v = v(k + 1)− v(k)

=
Ft (k)−Ff (k)−Fw(k)−Fi(k)

δm �t,
�G = G(k + 1)− G(k) = ug (k),

Ft(k) =
ηt if ig (G(k))Te(k)

rw
,

vmin ≤ v(k) ≤ vmax,
πrwωe,min

30if v(k)
≤ ig (G(k)) ≤

πrwωe,max

30if v(k)
,

Te,l(ωe(k)) ≤ Te(k) ≤ Te,u(ωe(k)),
ug (k) ∈ {−1, 0, 1}.

The optimization problem is subject to state and input 
constraints.

4 � Solution
Bearing the real-vehicle implementation in mind, this 
section proposes a real-time implementable solution 
for PCC optimization problem with consideration of 
gear shifting. First, a real-time solution is derived based 
on PMP under the framework of MPC. Then, a non-
real-time solution is given based on DP as a benchmark.

4.1 � Solution Method Based on MPC
In this part, an indirect method is discussed firstly on 
the basis of PMP for optimization problem (17). Then, 
the implementation of the fast solver is summarized. 
Thereafter, the treatment on state constraint and gear 
shifting implementation are discussed from an engi-
neering implementation perspective.

4.1.1 � Pontryagin’s Minimum Principle
The PCC optimization problem considering gear 
selection is a challenging task due to the discrete 
nature of gears. To obtain rapid solution method, 
a simplification that the gear position in the predic-
tive horizon remains unchanged is made. In other 
word, the gear shifting only occurs in the first step 
of the predictive horizon, and the gear position does 
not change for the remaining steps of the predictive 
horizon. Thus, the gear position G(k) in the predictive 
horizon has three states, namely, downshift, hold, and 
upshift.

Benefit from this simplification, only two of the sys-
tem states need to be well treated for finding the opti-
mal solution of the optimization problem  (17), i.e., 
states of the truck distance and the truck speed. Fol-
lowing the idea of Ref. [32], the Hamiltonian function is 
defined by the following:

where �1(k + 1) and �2(k + 1) are the costate variables 
with respect to states s(k) and v(k), respectively.

According to the statement of Pontryagin’s Minimum 
Principle, the optimal control input u∗(k) , the optimal 
state trajectory x∗(k) , and the corresponding costate 
variables �∗(k + 1) =

[

�
∗
1(k + 1) �

∗
2(k + 1)

]T must min-
imize the hamiltonian function so that

(18)

H(k) = H(x(k),u(k), �(k + 1), k)

= L[x(k),u(k), k] + �1(k + 1)v(k)�t

+ �2(k + 1)
Ft(k)− Ff (k)− Fw(k)− Fi(k)

δm
�t,
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for all steps, k = 1, 2, · · · ,N  and for all permissible con-
trol inputs u ∈ � . In addition, the update equation for 
costate variables 

 must be satisfied. The boundary conditions of the costate 
variables are as follows: 

Given that the slope angle α(k) varies slowly along the 
truck distance s(k), i.e., ∂α(k)

∂s(k)
≈ 0 , the update equation 

for the costate �1(k) becomes as follows:

In addition, the boundary condition of the costate �1(k) 
is as follows:

Thus, the following relationship can be obtained:

for all steps k = 1, 2, · · · ,N  . The Hamiltonian func-
tion (18) then becomes as follows:

For clarity of expression, the Hamiltonian is reformulated 
by a 2D polynomial using control variable Te(k) and state 
variable v(k) as follows:

(19)
H
(

x∗(k),u∗(k), �∗(k + 1), k
)

≤ H
(

x∗(k),u(k), �∗(k + 1), k
)

(20a)�1(k + 1)− �1(k) = −
∂H(k)

∂s(k)
,

(20b)�2(k + 1)− �2(k) = −
∂H(k)

∂v(k)

(21a)�1(N ) =
∂ϕ[x(N ),N ]

∂s(N )
,

(21b)�2(N ) =
∂ϕ[x(N ),N ]

∂v(N )
.

(22)�1(k + 1)− �1(k) = −
∂H(k)

∂s(k)
≈ 0.

(23)�1(N ) =
∂ϕ[x(N ),N ]

∂s(N )
= 0.

(24)�1(k) ≡ 0,

(25)

H(k) =Qt(k)�t + κ1
(

v(k)− vref

)2
�t

+ �2(k + 1)

[

Ft(k)− Ff (k)− Fw(k)− Fi(k)

δm
�t

]

.

where

By substituting Eq. (26) into Eq. (20b), the update equa-
tion for the costate �2(k) becomes as follows:

Using the expansion formula of ρ4(k) and ρ5(k) , the 
transformation relationship between the costate variables 
�2(k) and �2(k + 1) can be expressed as follows:

where δm−CDAρv(k)�t
δm ≈ 1 is used.

(26)
H(k) = ρ1(k)T

2
e (k)+ ρ2(k)Te(k)+ ρ3(k)

= ρ4(k)v
2(k)+ ρ5(k)v(k)+ ρ6(k),

ρ1(k) =

2
�

j=0

ι2,jω
j
e(k)�t,

ρ2(k) =





2
�

j=0

ι1,jω
j
e(k)+ �2(k + 1)

ηt if ig (G(k))

δmrw



�t,

ρ3(k) =

2
�

j=0

ι0,jω
j
e(k)�t + κ1

�

v(k)− vref
�2
�t

− �2(k + 1)
Ff (k)+ Fw(k)+ Fi(k)

δm
�t,

ρ4(k) =

2
�

i=0

ιi,2T
i
e(k)

�

30if ig (G(k))

πrw

�2

�t + κ1�t

− �2(k + 1)
CDAρ

2δm
�t,

ρ5(k) =

2
�

i=0

ιi,1T
i
e(k)

�

30if ig (G(k))

πrw

�

�t

− 2κ1vref�t,

ρ6(k) =

2
�

i=0

ιi,0T
i
e(k)�t + κ1v

2
ref�t

+ �2(k + 1)
Ft(k)− Ff (k)− Fi(k)

δm
�t.

(27)�2(k + 1)− �2(k) = −2ρ4(k)v(k)− ρ5(k).

(28)

�2(k + 1) = �2(k)− 2κ1
(

v(k)− vref
)

�t

− 2v(k)

2
∑

i=0

li,2T
i
e(k)

(

30if ig (G(k))

πrw

)2

�t

−

2
∑

i=0

ιi,1T
i
e(k)

(

30if ig (G(k))

πrw

)

�t,
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From Eq. (21b), the boundary condition of the costate 
�2(k) is as follows:

We now turn our attention to treat the necessary condi-
tion  (19) of the optimal control. The gear shifting com-
mand ug (k) is a discrete variable, while the engine torque 
Te(k) is a continuous variable. In the predictive horizon, 
the gear shifting command ug (k) is used only in the first 
step, and the gear position G(k) has three possible states. 
Thus, the three different gear shift operation (downshift, 
hold, and upshift) have three independent Hamiltonian 
functions, defined as

where subscripts −1, 0, 1 represent downshift, hold, and 
upshift, respectively.

The optimal control 
{

T ∗
e (k),u

∗
g (k)

}

 must minimize the 
Hamiltonian function H at every step instant, written as 
follows:

(29)�2(N ) = 2κ2(v(N )− vref ).

(30)

H−1(k) = H
(

x(k),Te(k),ug (k) = −1, �(k + 1), k
)

,

H0(k) = H
(

x(k),Te(k),ug (k) = 0, �(k + 1), k
)

,

H1(k) = H
(

x(k),Te(k),ug (k) = 1, �(k + 1), k
)

,

(31)

{

T ∗
e (k),u

∗
g (k)

}

= arg min
{

H−1(k),H0(k),H1(k)
}

.

Given that each Hamiltonian function in Eq.  (30) is 
the quadratic function of the optimal input Te(k) (see 
Eq.  (26)), the explicit optimal solution can be solved to 
minimize the Hamiltonian function, as follows:

4.1.2 � Implementation of the Fast Solver
It can be seen from Eq. (32) that if the optimal state vari-
able v∗(k) and the optimal costate variable �∗2(k) are 
known, the optimal control inputs 

{

T ∗
e (k),u

∗
g (k)

}

 can be 

(32)

To
e

�

�

ρ1(k)>0
=











−
ρ2(k)
2ρ1(k)

, Te,l(k) ≤ −
ρ2(k)
2ρ1(k)

≤ Te,u(k),

Te,u(k), −
ρ2(k)
2ρ1(k)

> Te,u(k),

Te,l(k), −
ρ2(k)
2ρ1(k)

< Te,l(k),

To
e

�

�

ρ1(k)<0
=







































Te,u(k), (Te,l(k) ≤ −
ρ2(k)
2ρ1(k)

≤ Te,u(k))

∩ (H
�

Te,l(k)
�

> H
�

Te,u(k)
�

),

Te,l(k), (Te,l(k) ≤ −
ρ2(k)
2ρ1(k)

≤ Te,u(k))

∩ (H
�

Te,l(k)
�

,≤ H
�

Te,u(k)
�

),

Te,l(k), −
ρ2(k)
2ρ1(k)

> Te,u(k),

Te,u(k), −
ρ2(k)
2ρ1(k)

< Te,l(k),

To
e

�

�

ρ1(k)=0
=







Te,u(k), ρ2(k) < 0,

0, ρ2(k) = 0,

Te,l(k), ρ2(k) ≥ 0.

Figure 4  Illustration of the DP calculation
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obtained. When the initial co-variate �2(0) is given, the 
corresponding terminal costate �2(N ) can be obtained 
step by step by using the update Eq. (28). If the obtained 
the terminal costate �2(N ) satisfies the boundary condi-
tion (29), then, the optimal control input for the initial 
co-variate �2(0) is the optimal solution of the optimiza-
tion problem (17). If the obtained terminal costate �2(N ) 
does not satisfy the boundary condition (29), then, we 
need to adjust the initial co-variate �2(0) . This descrip-
tion is the so-called shooting method. The original opti-
mization problem  (17) is formulated as a problem of 
finding an initial value. Here, the bisection method is 
used to solve the problem of finding an initial value. 
Detailed information on using the bisection method can 
be found in our previous work [16].

4.1.3 � Discussion on the Braking Torque Input and the Band 
Constraint of Vehicle Speed

In the solution derivation, the state constraint 
vmin ≤ v(k) ≤ vmax is inefficiently considered mainly 
because considering this constraint directly complicates 
the solution method, and the computational burden 
becomes huge. Instead of directly considering ths con-
straint, an engineering method is used to deal with the 
constraint. If the state constraint vmin ≤ v(k) ≤ vmax is 
violated, the control input is determined by a prescribed 
lookup table, i.e.,

By defining Freq = Fw + Fi + Fj , e1 = v − vmin and 
e2 = v − (vmax + ς) , the prescribed lookup tables are 
written as

where ς is the speed tolerance, kp0(e1) and ki0(e1) are the 
controller gains of the traction mode, and kp1(e2) and 
ki1(e2) are the controller gains of the brake mode. When 
the state constraint vmin ≤ v(k) ≤ vmax is not violated, 
the fast solver is used to determine the optimal control 
input.

4.1.4 � Discussion on Gear Shifting Implementation
Eq.  (16) shows that the gear G(k) has twelve candidates 
which are constrained by the velocity v(k) and the engine 
speed ωe(k) . Therefore, the optimal control laws for 
downshift, hold, and upshift operations from the three 

(33)
v(k) ≤ vmin =⇒

{

Te(k) = ft,map(x(k)),
Tb(k) = 0,

v(k) ≥ vmax =⇒

{

Te(k) = 0,

Tb(k) = fb,map(x(k)).

(34)

ft,map(x(k)) = Freq
rw

ηt if igG
+ kp0(e1)e1

+ ki0(e1)

∫

e1dt,

fb,map(x(k)) = kp1(e2)e2 + ki1(e2)

∫

e2dt,

Figure 5  Control architecture of the proposed predictive cruise control



Page 10 of 24Chu et al. Chinese Journal of Mechanical Engineering           (2024) 37:42 

Hamiltonian functions Eq.  (31) should be met the gear 
constraint Eq.  (16). If the upshift and downshift opera-
tions violate the constraint, then the gear position will 
hold the last step’s value. In addition, a gear hold time, 
such as 2 s, is introduced to prevent frequent shifting. 
Once the gear is shifted, the current gear position needs 
to be held for 2 s.

4.2 � Solution Method Based on DP (Benchmark)
The DP algorithm is selected as a benchmark because it 
can provide a global optimal control. The illustration of the 
DP calculation is shown in Figure  4 for the optimization 
problem (17). The driving distance is divided into N equal 
segments. Every segment of the distance has a truck speed 
v(k). The truck speed v(k) is discretized as follows:

(35)v(k) = {vmin, vmin + σ , vmin + 2σ , · · · , vmax},

Figure 6  Simulation results for the ascent condition
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where σ is the discretization interval.
According to Bellman’s optimality principle, the recursive 

equation of DP is given for the optimization problem (17), 
as follows:

(36)

J∗k [x(k)] = min
u(k)∈�

{

L[x(k),u(k), k] + J∗k+1[x(k + 1)]
}

,

where (k = 0, 1, · · · ,N − 1) . Starting from the terminal 
state, the optimal solution and the corresponding value 
function can be obtained by a backward iterative proce-
dure. Setting k = N − 1 , Eq. (36) becomes

(37)

J
∗
N−1[x(N − 1)] = min

u(N−1)∈�
{L[x(N − 1),u(N − 1),N − 1]

+J
∗
N [x(N )]

}

,

Figure 7  Simulation results for the descent condition
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where J∗N [x(N )] is the value function of the terminal state. 
The value function of the terminal state is as follows:

The corresponding optimal input at step N − 1 can be 
obtained by the following argument,

Then,   setting k = N − 2, · · · , 1, 0 ,   the value functions 
{

J∗N−2
[x(N − 2)], · · · , J∗1 [x(1)], J

∗
0 [x(0)]

}

 and optimal 
control sequence {u∗(N − 2), · · · ,u∗(1),u∗(0)} can also 
be obtained by the backward iterative procedure.

Given an initial state x(0), the optimal control input 
u∗(0) at step k = 0 is generated. Then, applying the opti-
mal control input u∗(0) on the system model (13) yields 
a new state x(1). For the new state x(1), the optimal con-
trol input u∗(1) at step k = 1 is generated. Similarly, the 
optimal state trajectories and the optimal control policy 
can be generated by a forward iterative procedure.

5 � Simulation Results
The simulations are conducted in a joint simulation 
environment to demonstrate the effectiveness of the 
proposed PCC scheme. The high-fidelity model of the 
heavy-duty truck is constructed using the commer-
cial software Trucksim, and the proposed PCC is built 
in Matlab/Simulink. The important parameters of the 
truck are given in Table  1. More detailed information 
on parameters can be found in  Ref.  [33]. The complete 
control architecture of the proposed predictive cruise 
control is shown in Figure 5. The reference speed is set 
by the driver. The vehicle speed is measured by speed 

(38)J∗N [v(N )] = min

{

κ2
(

v(N )− vref
)2
}

= 0.

(39)

u
∗(N − 1) = arg min {L[x(N − 1),u(N − 1),N − 1]

+J
∗
N [x(N )]

}

.

sensor. The position and road-slope information are 
provided by GPS and HD map, respectively. The pro-
posed controller receives this information and provides 
the co-optimization control law. Then, the actuators of 
engine control unit, electronic stability control system 
and AMT respond to the co-optimization control law by 
controlling the heavy-duty truck.

In the simulation validation, three methods, namely, 
PID controller, DP algorithm, and MPC algorithm, are 
used. PID controller represents the traditional constant-
speed cruise. DP algorithm as the benchmark of optimal 
control problem provides a global optimal solution. The 
artificial and authentic roads are used to evaluate the 
control performance of the proposed predictive cruise 
controller. The cruise speed is set as 90 km/h to simulate 
a high-speed cruise condition.

The performance index of the fuel saving rate will be 
used to evaluate the performance of each control algo-
rithm, which is defined as

where fPID and SPID are the fuel consumption and travel 
distance of the PID controller, fDP,MPC and SDP,MPC are 
the fuel consumption and travel distance of the MPC 
controller or DP controller.

5.1 � Artificial Road
A single ascent road is first used to conduct the simu-
lation to show the fuel-saving mechanism. The initial 
speed of the truck is set to the driver’s set speed, i.e., 
vref = 90 km/h. The allowed range of the speed is set as 
[80 100] km/h. Simulation results for the single ascent 
road are shown in Figure 6. Figure 6 shows that the truck 
with MPC algorithm and DP algorithm accelerates in 
advance when approaching an ascent. Acceleration in 
advance can avoid excessive reduction in the truck speed 
for the uphill process. The times to downshift gear for 
MPC algorithm and DP algorithm are later than that of 
the PID controller. The proposed controller saves more 
fuel than PID controller because working in a high gear is 
conducive to fuel saving.

Similarly, the simulation is conducted with a descent 
road. The corresponding results are shown in Figure 7. 
It is can be seen from Figure 7 that the truck with MPC 
algorithm and DP algorithm decelerates in advance 
when approaching a descent, while the truck with PID 
controller does not have any downhill preparation. 
When on the descent, the truck with PID controller 
has brake operation, whereas the proposed PCC has no 

(40)R =

fPID
SPID

−
fDP,MPC

SDP,MPC

fPID
SPID

,

Figure 8  Authentic routes
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brake operation. Brake dissipates the energy in the form 
of heat; thus, PCC saves more fuel by avoiding unneces-
sary braking.

Table  2 summarizes the performance comparison for 
the three different controllers. Compared with the PID 
controller, the fuel saving rate for the PCC with MPC 
algorithm and DP algorithm is approximately 1% for the 
ascent condition, approximately 17% for the descent con-
dition. The deviation of fuel saving rates between MPC 
algorithm and DP algorithm is small. Note that the fuel 

saving-performance of Table 2 depends on how long the 
flat road before and after the slopes. The greater the pro-
portion of flat roads is, the smaller fuel savings the PCC 
controller obtains.

5.2 � Authentic Road
Two expressway routes are used to persuasively com-
pare the control algorithms. The selected test roads are 
authentic roads, as shown in Figure 8. One route is from 
Yicheng service area to Chenan toll station (Route I), and 

N·
m

N·
m

Figure 9  Simulation results for the authentic road: route I
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the other is from Caopuyuan to Xijin (Route II). Their 
mileages are approximately 33  km and 40  km, respec-
tively. Route I is an expressway section between two cit-
ies. Route II is an expressway across the city of Quzhou. 
The slope information on these two routes is provided 
by the map vendor of NavInfo. Simulation results are 
shown in Figure  9 and Figure  10. From Figure  9, a dis-
cernible discrepancy exists in vehicle speed between the 
DP algorithm and the MPC algorithm within the range of 

25000 m to 30000 m. This disparity arises because the DP 
algorithm, serving as a global optimal controller, employs 
a more extensive set of global road slope information. 
Consequently, it initiates deceleration earlier when 
approaching a descent. In contrast, the MPC algorithm 
relies solely on the road slope information within the pre-
dictive horizon, resulting in less advanced deceleration. 
The findings within the 25000 m to 30000 m range align 
with those illustrated in typical descent roads in Figure 7. 

N·
m

N·
m

Figure 10  Simulation results for the authentic road: route II
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Similarly, the results in the 28000 m to 32000 m range of 
Figure 10 exhibit similar patterns.

To further compare the fuel efficiencies for the three 
different controllers on authentic roads, the distribution 
of engine operating points for Figure 9 and Figure 10 are 

shown in Figure  11 and Figure  12. Probability distribu-
tion graphs are presented to evaluate the distributions 
quantitatively. BSFC values are divided into five regions, 
ranging from less than 207 g/kW·h to more than 252 g/

N
·m

g/kW·h
Figure 11  Distribution of working points in BSFC map: route I

Figure 12  Distribution of working points in BSFC map: route II
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kW·h. Given that the engine does not inject fuel under 
zero or negative torque conditions, this portion of the 
data is not utilized as the statistical data. Judging from 
Figure 11 and Figure 12, it can be seen that the number 
of operating points in high efficiency area are near for DP 
algorithm and MPC algorithm, greater than that of the 
PID controller. The difference in the distribution of work-
ing points leads to the difference in fuel saving.

Table  3 summarizes the performance comparison for 
these two expressway routes. Compared with the PID 
controller, the fuel saving rate for the PCC with MPC 
algorithm and DP algorithm is approximately 4%−6% 
for the authentic roads. As revealed in Table 3, the con-
trol performance of the proposed MPC-based solution 
is nearly the same as that of the DP-based solution with 

less than 1% deviation and considerably better than PID 
controller.

6 � Experimental Results
HIL and real-truck experiments are conducted to verify 
the real-time capability of the proposed co-optimization 
controller. The experiments are first implemented in an 
embedded computer with high computation capability, 
then in an in-vehicle control unit, and finally on a real 
truck driving on real roads.

6.1 � Embedded Computer
The HIL test bench of the embedded computer is shown 
in Figure  13. The series of the embedded computer is 

Figure 13  HIL test bench of the embedded computer
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N·
m

N·
m

Figure 14  HIL experimental results on embedded computer: (a) Constant slope, (b) Varying slope
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DS-1002, which uses the NI-RT as the real-time control-
ler environment. The embedded computer communi-
cates with the host PC via TCP/IP. The monitor are used 
to display the computational state and the experimental 
results. Before HIL experiments, C source codes of the 
vehicle plant model and controller model are generated 
by using the MATLAB toolbox C/C++ Coder, and then 
are downloaded to the embedded computer. A commer-
cial software VeriStand as a real-time test application is 
used for data acquisition and real-time logging. The sam-
pling time in HIL experiments is 0.05 s.

The testing road consists of two types. One is the 
constant slope, and the other is the varying slope. The 
set cruise speed and the initial speed of the vehicle are 

N·
m

N·
m

Figure 14  continued

Figure 15  HIL test bench of the vehicle control unit
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90  km/h. The proposed co-optimization controller is 
implemented in real-time manner under the hardware 
conditions of the HIL platform. The results of HIL 
experiments are shown in Figure 14. It can be seen that 
the simulation results and HIL experimental results 
are consistent. This agreement is primarily attributed 
to the utilization of identical algorithms, parameters, 
and initial conditions in both environments. Addition-
ally, both the HIL platform and Matlab/Simulink soft-
ware employ floating-point calculations, ensuring the 
absence of computational deviation.

6.2 � Vehicle Control Unit
The HIL test bench of the vehicle control unit is shown 
in Figure  15. The vehicle control unit is an automo-
tive-grade processing chip, SAK-TC233L, which is 
developed by Infineon. The vehicle control unit com-
municates with the upper computer via LAUTER-
BACH Debugger and ValueCAN. The C source code of 

the proposed controller was generated via MATLAB 
toolbox C/C++ Coder, after which it was compiled by 
the HighTec’s compiler. An upper computer was used 
to monitor and record the inputs and outputs of the 
vehicle control unit.

The proposed control method is integrated into the 
system as a functional component, constituting only 
a fraction of the entire framework. Consequently, the 
choice of the sampling time necessitates considera-
tion of other functional components and the real-time 
characteristics of the entire system. A small sampling 
time may impede real-time execution, leading to sys-
tem overrun prompts. Inheriting the original engi-
neering requirements of the developed control unit, 
the sampling time of the vehicle control unit is set at 
0.02 s. In this case, the proposed control method can 
be implemented in a real-time vehicle control unit, 
and the HIL experimental results of the vehicle con-
trol unit are shown in Figure  16. The test scenario is 
from an authentic road. The road slope information 

Figure 16  HIL experimental results on the vehicle control unit for the authentic road



Page 20 of 24Chu et al. Chinese Journal of Mechanical Engineering           (2024) 37:42 

is provided by the map vendor. The set reference 
speed is 78  km/h. The initial speed differs from that 
in Figure  14. The divergence in initial speeds allows 
us to assess the adaptive performance of the proposed 
algorithms under various initial conditions, simulat-
ing real-world scenarios where vehicles may initiate 
tasks at different vehicle speeds. The results in both 
Figure 14 and Figure 16 show that the proposed con-
troller works well for different initial speeds. As dem-
onstrated in Figure  16 that the simulation results are 

nearly consistent with the results of the HIL test. The 
zoomed subfigure reveals slight deviations around 
410  s. This is mainly due to the effect of data type 
conversion. Typically, the vehicle control unit does 
not support floating-point operations due to their 
large memory occupation and computational burden. 
In HIL test, SAK-TC233L employs fixed-point opera-
tions, whereas Matlab/Simulink software utilizes dou-
ble-type floating-point operations.

Figure 17  Experimental truck and test route
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6.3 � Real Truck Implementation
To validate the capability of implementing the proposed 
algorithm in real trucks and its fuel-saving performance, 
a real-truck experiment is conducted in Hubei Province 
using the test truck shown in Figure 17. The experiment 
covers a test route from HeDianzhen to Gucheng toll sta-
tion, as illustrated in Figure 17. The test distance is 100 
km, and the speed limit for trucks is 100 km/h. During 
the experiments, a digital map is equipped to the test 
truck to provide up-coming road information. Moreo-
ver, the driver is required to intervene in emergency 
circumstances by applying brakes. The rule-based PCC 
developed by a component company is employed as the 
benchmark controller.

The experimental results, as depicted in Fig-
ure  18, show that the PCC algorithm outperforms the 

Figure 18  Real-truck experimental results

Table 1  Parameter values for the vehicle model

Symbol Description Value

m Vehicle mass 44000 kg

g Gravitational constant 9.8 m/s2

f Rolling resistance coefficient 0.00662

CD Air drag coefficient 0.7

A Face area 9.46 m2

ρ Air density 1.25 kg/m3

δ Rotating mass coefficient 1.03

ηt Powertrain efficiency 0.95

if Final ratio 3.44

rw Tire rolling radius 0.51 m

Fdrag Engine resistance force − 100 N·m
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rule-based PCC on the same road section without any 
driver intervention. Specifically, the fuel consumption 
of the rule-based PCC and the proposed MPC-based 
PCC algorithm are 40.56  L and 37.35  L, respectively. 
Furthermore, the average vehicle speeds of the rule-
based PCC and the proposed MPC-based PCC algo-
rithm are 89.95 km/h and 89.19 km/h, respectively, with 
corresponding travel times of 1.11 h and 1.12 h. The 
proposed MPC-based PCC algorithm achieves a fuel 
saving rate of 7.9%, without compromising the truck’s 
travel time.

7 � Conclusions
The paper designs a real-time co-optimization of gear 
shifting and engine torque in PCC problem of heavy-
duty trucks. After simplifying that the gear shifting only 
occurs in the first step of the predictive horizon, a fast 
solution is derived using PMP and an indirect shooting 
method. The simulations in a joint simulation environ-
ment, and the experiments on the HIL platforms and the 
real truck are conducted to demonstrate the effective-
ness of the proposed PCC scheme. The main results are 
as follows. (1) The control performance of the proposed 
MPC-based solution is nearly the same as that of the DP-
based solution with less than 1% deviation for testing 
roads. (2) The proposed co-optimization controller can 
be realized in a real-time vehicle control unit. (3) A real-
truck experiment is conducted to evaluate the fuel-saving 

performance of the proposed MPC-based controller, and 
a fuel-saving rate of 7.9% is achieved.

Future work will focus on the real-time co-optimiza-
tion method with the removal of assumption that the 
gear shifting only occurs in the first step of the predic-
tive horizon. The potential directions are fast solution of 
mixed-integer programming problems and hierarchical 
controller design.
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Table 2  Performance comparison for ascent and descent conditions

Road type Algorithm Fuel consumption (g) Average velocity 
(km/h)

Fuel consumption rate 
(L/100 km)

Fuel saving rate R 
(%)

Ascent PID 986.05 88.48 58.00 -

MPC 977.42 89.00 57.50 0.86

DP 975.81 89.54 57.40 1.03

Descent PID 412.36 90.02 24.26 -

MPC 342.20 89.89 20.13 17.02

DP 341.87 89.94 20.11 17.10

Table 3  Performance comparison for authentic roads

Road type (mileage) Algorithm Fuel consumption (g) Average velocity 
(km/h)

Fuel consumption rate 
(L/100 km)

Fuel saving rate R 
(%)

Route I (33 km) PID 10414.46 90.00 37.09 -

MPC 9904.19 89.92 35.28 4.90

DP 9842.19 89.53 35.06 5.49

Route II (40 km) PID 11907.27 89.92 35.02 -

MPC 11420.98 90.09 33.59 4.08

DP 11334.69 89.55 33.34 4.81
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