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Abstract 

There is no unified planning standard for unstructured roads, and the morphological structures of these roads 
are complex and varied. It is important to maintain a balance between accuracy and speed for unstructured road 
extraction models. Unstructured road extraction algorithms based on deep learning have problems such as high 
model complexity, high computational cost, and the inability to adapt to current edge computing devices. Therefore, 
it is best to use lightweight network models. Considering the need for lightweight models and the characteristics 
of unstructured roads with different pattern shapes, such as blocks and strips, a TMB (Triple Multi-Block) feature 
extraction module is proposed, and the overall structure of the TMBNet network is described. The TMB module 
was compared with SS-nbt, Non-bottleneck-1D, and other modules via experiments. The feasibility and effectiveness 
of the TMB module design were proven through experiments and visualizations. The comparison experiment, using 
multiple convolution kernel categories, proved that the TMB module can improve the segmentation accuracy 
of the network. The comparison with different semantic segmentation networks demonstrates that the TMBNet 
network has advantages in terms of unstructured road extraction.
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1 Introduction
As the core subject of modern transportation systems, 
roads are highly significant in terms of geography, 
politics, and economies. Moreover, roads are also the 
main components of recording and marking objects in 
the transportation and global geographic information 
systems [1]. In the field of modern smart agriculture, the 
efficient extraction of farmland roads from aerial images 
helps to quickly divide farmland areas, greatly improving 
the statistical efficiency of cultivated land. Therefore, 
the use of modern unmanned aerial vehicle (UAV) 

photography to extract road information accurately and 
quickly is crucial to the development of agriculture, and 
it has gradually become a research hotspot.

Rural farmland roads are representative examples 
of unstructured roads. There are no unified planning 
indicators for roads, and the roads have complex and 
variable morphological structures. Owing to the complex 
shape features and blurred road edges, road extraction 
becomes more difficult. Traditional road extraction 
algorithms based on different prominent features 
of roads in images include threshold segmentation 
algorithms based on image pixel statistics [2, 3], 
edge segmentation algorithms based on image road 
edge details [4], extraction algorithms based on road 
geometric features [5], and road extraction algorithms 
based on the probability graph model [6–8]. However, 
these algorithms exhibit poor performance in road 
extraction.

In road segmentation algorithms based on deep 
learning, numerous network parameters are used 
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to learn feature information from images. In road 
extraction, road segmentation can be regarded as a 
semantic segmentation problem [9]. Many studies 
on road extraction based on deep learning have 
demonstrated effective extraction of structured roads 
[10, 11]. Li et  al. [12] and others proposed a linear 
integrated convolution algorithm using a large sample 
dataset based on a convolutional neural network. 
By predicting the probability that a pixel region in 
an image is part of a road, this approach determines 
whether each image pixel belongs to a road area. Xin 
et al. [13] used an improved UNet algorithm to improve 
the accuracy of the network for road segmentation 
through dense links and skip connections.

Current road extraction algorithms based on deep 
learning technology mostly focus on improving the 
accuracy of road segmentation algorithms, while ignoring 
the forward inference speed. However, this approach has 
the disadvantages of high model complexity and high 
computational cost, making it unable to adapt to current 
edge computing devices. Balancing the accuracy and 
real-time performance of a network model and designing 
a lightweight unstructured road extraction model have 
significant research value. This study attempted to design 
a lightweight network model for unstructured road 
extraction.

In the traditional encoding-decoding network 
structure, the shallow network in the encoder contains 
detailed features, such as edges, which are helpful for 
edge segmentation. Deep networks can obtain large 
receptive fields from small-resolution input images, 
thereby capturing global semantic information. The 
semantic information in the segmentation object is 
extracted by the deep network, which provides the 
basis for determining the category of the segmentation 
object. For feature information fusion, in the encoding 
stage, the equal-proportional fusion method is used; this 
approach does not consider the impact of the feature 
information contained in different feature layers for the 
final segmentation result when the encoder encodes the 
information. A large amount of information is redundant, 
and this method has the problems of road breaks 
and blurred edges in the results of unstructured road 
segmentation. In the design of a lightweight semantic 
segmentation network model, methods such as separable 
convolution, convolution kernel decomposition, and 
dilated convolution are used to reduce the number of 
parameters and calculations of the network model, 
reduce the downsampling rate, and output larger feature 
maps, retaining more spatial information. Bilinear 
interpolation does not require additional parameters 
or backpropagation calculations, can run quickly, and 
is widely used in the upsampling design of lightweight 

models for semantic segmentation [14–16]. The 
lightweight road extraction network model designed 
in this study uses bilinear interpolation to restore the 
feature sizes through upsampling.

In convolutional neural networks, only a small number 
of parameters are required to achieve accurate prediction 
results [17], which shows that there is a large amount of 
information redundancy in the process of convolution 
operations on images performed by the convolution 
kernel. Therefore, improving the convolution kernel 
can reduce the number of parameters and information 
redundancy. Channelwise convolution is often combined 
with point convolution to achieve depthwise separable 
convolution [18, 19]. MobileNet [20–22] combines 
channel-by-channel convolution and point convolution 
to form a separable convolution method that reduces the 
number of calculations performed by the convolution 
kernel. Inception [23] uses 1 ×  1 convolution to reduce 
the feature dimension, and uses the superposition of 
different convolution kernels to fuse information between 
high- and low-level features under the same feature layer. 
Simultaneously, multi-scale receptive fields are used 
to obtain contextual information in different ranges to 
improve the accuracy of the network. ShuffleNet [24] 
uses grouped convolution for convolution, cross-mixes 
the feature information between different groups, and 
reduces the number of calculations through grouped 
convolution. The fusion of feature information between 
different groups can make full use of the exchange of 
information to improve network performance. The above 
network uses changes in the convolution method, as well 
as grouped convolution, decomposable convolution, etc., 
to reduce the number of calculations and parameters. 
ENet [25] adopts the design concept of ResNet [26] and 
is designed using a lightweight bottleneck module. This 
module uses 1  ×  1 convolution to reduce the number 
of input channels. After extracting features through the 
middle convolution module, the number of features is 
restored through 1 ×  1 convolution, which significantly 
reduces the number of model parameters. Additionally, 
the diversified convolution kernel construction method 
enhances the model’s ability to extract different features. 
The convolution decomposition design concept of 
ENet provided ideas for the network structure design 
of ERFNet [27], ESPNet [28], and other networks to a 
certain extent. However, ENet focuses excessively on 
efficiency improvement. Although it reduces the number 
of model parameters, the model accuracy also decreases 
significantly.

ERFNet takes advantage of decomposition convolution 
and proposes a one-dimensional non-bottleneck module 
to reduce the number of calculations. Additionally, 
it uses dilated convolution in the one-dimensional 
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non-bottleneck module to capture more contextual 
information and enter the next layer of the network. 
Excessive downsampling of feature maps results in 
the loss of spatial information of road targets and 
increases the number of parameters and calculations of 
the network, resulting in a further loss of accuracy and 
model forward inference speed in road extraction [29]. 
The purpose of dilated convolution is to expand the range 
of the receptive field and retain the spatial information of 
the road targets in the image without downsampling the 
feature map. Although EDANet [14] maintains the use of 
decomposed convolutions to form the basic asymmetric 
convolution module, it also introduces the concept of 
dense connections, which can jointly collect multi-
scale information, allowing EDANet to achieve good 
segmentation performance at a low computational cost. 
CGNet [30] introduces a context module in the feature 
extraction process of the encoder, using joint learning of 
the local features of the target and contextual information 
around the target to improve network segmentation 
accuracy. LEDNet makes full use of decomposed 
convolution and grouped convolution to fully integrate 
the features between different channels while reducing 
the computational complexity of the network.

Compared with traditional network models that 
pursue accuracy, such as DeepLab [31], lightweight 
network models must make fuller use of the advantages 
of decomposed convolution, separable convolution, 
and atrous convolution in the structure design. While 
ensuring that the encoder can fully extract the image 
feature information, the number of parameters and 
network calculations must be reduced, and a balance 
must be achieved between the accuracy and inference 
speed of the model. In the lightweight road extraction 
network introduced in this paper, the application of 
depth-separable convolution and atrous convolution 
can reduce the amount of feature network parameters, 
expand the scope of the receptive field, retain more 
spatial information of road targets, and extract 
information features of road targets in images.

A multi-branch semantic segmentation model uses 
different branches to extract different features from 
an input image. ICNet adopts the structural form 
of PSPNet [32] and uses three different branches 
to extract features from input images at different 
resolutions. For feature fusion, high-order contextual 
information is used to perform layer-by-layer 
upsampling and combine the result with high-order 
features. The refined fusion method fully utilizes the 
feature information extracted from different branches 
to obtain the final segmentation result. ContextNet [33] 
uses a dual-branch structure network, taking images of 
different resolutions as inputs and applying separable 

convolution to further reduce the number of network 
parameters and calculations. Fast-SCNN [34] aims 
to solve the problem in which the initial convolution 
features cannot be shared in the dual-branch network. 
It performs initial convolution on the input image 
to obtain the feature map and uses the dual-branch 
network to extract subsequent high-order semantic 
features and spatial detail information features from 
the feature map. ContextNet and Fast-SCNN adopt 
dual-branch network structures to segment different 
targets based on lightweight models.

BiseNet [35] adopts a multi-branch design structure 
and uses a fast downsampling context path to extract 
context information. Spatial paths are used to produce 
high-resolution output features to preserve the spatial 
information. After feature fusion of the feature maps 
generated by the two branches, the final segmentation 
result is output through upsampling. ShelfNet [36] 
provides a more complex network structure design, using 
a multi-path convolutional neural network, and draws 
on the design ideas of recurrent neural networks to 
achieve weight sharing. To a certain extent, ShelfNet can 
be regarded as a variant of the FCN network structure; 
however, its network structure is lighter and smaller, and 
its network inference speed is faster. The lightweight 
network model developed in this study employs a multi-
path approach to extract roads.

The design of a lightweight model structure requires 
full simplification of the network structure. In the 
encoder stage, the structures of different convolution 
kernels are fully utilized to extract multi-scale contextual 
information. To avoid the loss of spatial information 
caused by excessive downsampling and increase 
the receptive field of the convolution kernel, dilated 
convolution can be added in the network encoder stage. 
In the decoder stage, linear upsampling is used to restore 
the size to ensure a lightweight network design.

In this study, we investigated a lightweight semantic 
segmentation algorithm for unstructured rural farmland 
roads, adopted a coding-decoding structure design 
form, and proposed the TMBNet network model. In the 
encoder stage, the triple multi-block (TMB) module is 
used to fully extract various contextual information of the 
input features using multiple paths, multiple receptive 
fields, and multi-convolution kernels. In addition, the 
network parameters and number of calculations are 
significantly reduced. The TMB module has a highly 
flexible structural form, and can dynamically adjust the 
number of branches and change the convolution kernel 
form of the branches simultaneously. In the decoder 
stage, linear interpolation is used for upsampling to 
restore the feature map size. The remainder of this 
paper is organized as follows. Section  2 introduces the 
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principles of the triple multi-block module. Section  3 
describes the architecture of the TMBNet network. 
Section 4 describes the comparative experiments. Finally, 
the conclusions are presented in Section 5.

2  Triple Multi‑Block Design
For the triple multi-block module, based on the design 
idea of InceptionNet and on the basis of multi-path 
and multi-receptive-field input feature extraction, deep 
separable convolution and asymmetric convolution are 
used to reduce the number of parameters of the module. 
A good balance is achieved between input feature 
extraction, reducing the number of parameters, and 
reducing the computational cost.

2.1  Multi‑path‑based Design
The multi-path design method is feasible for 
implementing different types of convolution kernels 
in the same module. In terms of structural design, the 
multi-branch design has a high degree of flexibility, 
and the number of branches can be flexibly increased 
or decreased. For the multi-path design method, to 
reduce the number of parameters and the number of 
calculations, 3  ×  3 convolution is used to extract the 
input features while reducing the channel dimension of 
the input features. Then, different branches are used to 
perform feature extraction on the same feature, and 
the features are superimposed according to the feature 
channel dimension. The corresponding mathematical 
expression is given in Eq. (1):

where N represents the number of paths; ki represents the 
convolution kernel types of different branches; C ,H ,W  
respectively represent the number of channels inputting 
different branch features and the height and width of the 
feature map; and f  represents the activation function.

2.2  Design Analysis Based on Multiple Convolution 
Kernels

Because there is no unified planning and design method 
for unstructured roads, there are large differences in the 
shapes and structures of roads, and different modes, such 
as block and strip shapes, exist. The multi-convolution 
kernel design mode can extract specific mode response 
features for unstructured roads with different structures. 
In Figure  1, the schematic on the left shows an enlarged, 
detailed display of the convolution on the right. On the left 
side of the figure, the yellow module represents the con-
volution kernel, and the black and white areas represent 

(1)

Mapout =
N

Concat
i=1

f

(

C
∑

c=1

H
∑

h=1

W
∑

w=1

ki × xh,w + b

)

,

the background and road, respectively. For the block road 
area, feature information can be quickly extracted by using 
the convolution kernel of the N×N structure. For the fea-
ture information of long and narrow roads, the asymmet-
ric structure of the N × 1 convolution kernel is used to 
reduce the number of parameters and calculations, and it 
provides a good feature response to long and narrow roads. 
The asymmetric convolution kernel performs convolution 
calculations along the edge of the road. Compared with the 
N×N symmetric structure convolution kernel, the asym-
metric convolution kernel is better able to distinguish 
between road and non-road information under a slender 
road structure. Different types of convolution kernels can 
be used to respond to specific patterns of road structures 
with different pattern characteristics, thereby improving 
the network’s road segmentation accuracy.

2.3  Design Analysis Based on Multiple Receptive Fields
For road extraction, the road in the image used as saliency 
information exhibits significant variation in size and 
spatial position information. The single structure of the 
convolution kernel limits the range of the receptive field, 
and the range of the receptive field in practical applications 
is smaller than the theoretical receptive field [37]. The 
contextual information in the input features cannot be fully 
mined. Thus, this approach is significantly limited in its 
ability to capture the characteristic information of roads of 
different sizes. A wide range of receptive fields is conducive 
to the acquisition of global information, whereas a small 
range of receptive fields is advantageous for the extraction 
of local information. Therefore, by using multiple 
convolution kernels, feature information under different 
receptive fields can be obtained in the same module, and 
global and local information can be better captured. The 
size of the receptive field of the convolution kernel in the 
feature map is calculated using Eq. (2):

For the dilated convolution, the receptive field size is 
calculated using Eq. (3):

(2)RFl+1 = RFl + (kl+1 − 1)× sl .

Figure 1 Convolution diagram of multiple convolution kernels
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where RF  represents the size of the receptive field, l 
represents the number of layers, s represents the step 
length information, and d represents the dilation rate.

2.4  Triple Multi‑Block Module
The structure of the TMB module is shown in Figure 2. 
In the TMB module, 3×3 convolution is used for input 
feature extraction and the number of channels for the 
output features is reduced according to the number of 
branches, as shown in Eq. (4), where Npath denotes the 
number of branches:

 
According to Eq. (4), the number of output channels 

is reduced based on changes in Npath , so there will not 
be a significant increase in the number of calculations 
or the number of parameters. In different branches, all 
convolution operations adopt the operation mode of 
depthwise separable convolution, which reduces the 
number of calculations and the number of parameters, 
while performing regularization to prevent the network 
from overfitting. Each branch makes full use of the key 
ideas of lightweight model design, and uses factorized 
convolution, dilated convolution and other methods to 
form receptive fields of different sizes. After the features 
are superimposed, the 1×1 convolution operation is 
used to fuse the feature information under different 
receptive fields to further enhance the exchange of global 
information and local information and to improve the 
understanding of unstructured road information. Using 
the idea of residual networks as a reference, the input 
feature and output feature are added together, and the 
result is output to the next module.

(3)RFl+1 = RFl + (kl+1 − 1)× sl × dl+1,

(4)Channelout = Channelin//Npath.

In the TMB module shown in Figure 2, the input fea-
ture map passes through a 3 ×  3 convolution and then 
enters three branches. On the left, 3 × 1 and 1 × 3 con-
volution kernels are successively applied. The middle 
branch uses a 3  ×  3 convolution kernel. On the right 
side, 3 × 1 and 1 × 3 convolution kernels are successively 
applied, and dilated convolution is used. After the fusion 
of the three branches, a 1 × 1 point convolution is used to 
change the number of output channels, and the result is 
finally fused with the input feature map.

In Figure 2, assuming that the initial receptive field size 
is 1, the stride is 1, and the dilation rate is 2, the receptive 
field sizes of the different branches are calculated using 
Eq. (5):

The multi-convolution kernel design method of the 
TMB module exhibits a characteristic form of multiple 
receptive fields. Compared with EDANet and other 
networks, TMBNet has a multi-branch structure and 
provides path support for multiple receptive fields. 
Compared with LEDNet, TMBNet adds a multi-
convolution kernel structure based on multiple paths 
and provides a multi-receptive-field feature extraction 
method.

3  TMBNet Network Structure
Based on the TMB module, the detailed design of 
the structure of the final TMBNet network model is 
provided.

TMBNet adopts the encoding-decoding structure 
of the multi-scale FCN and extracts image features by 
downsampling the convolutional network in the encod-
ing stage. To improve the inference speed of the network 
model in the decoding stage, TMBNet uses bilinear inter-
polation to replace deconvolution with feature upsam-
pling. To fully integrate spatial and semantic information 
in the downsampling process, TMBNet merges more 
feature information elements by superimposing feature 
maps before upsampling to improve the accuracy of 
the network model. The TMBNet model structure was 
designed to consider both speed and accuracy, as well 
as the balance between the forward inference speed and 
accuracy of the network model. The model structure is 
shown in Figure 3.

In the encoder part, while the network performs 
feature extraction through downsampling, a rapid decline 
in the resolution of the feature map will cause a large 
loss of spatial information of the road object. Therefore, 
compared with UNet, FCN, and other networks, the 

(5)

RFleft1 = 1+ (3− 1)× 1 = 3, 1+ (1− 1)× 1 = 1,

RFmiddle = 1+ (3− 1)× 1 = 3, 1+ (3− 1)× 1 = 3,

RFright1 = 1+ (3− 1)× 1× 2 = 5, 1+ (1− 1)× 1× 2 = 1.

Figure 2 TMB module



Page 6 of 13Zhang et al. Chinese Journal of Mechanical Engineering           (2024) 37:45 

TMBNet network performs downsampling only three 
times, and the original input image is downsampled eight 
times. A feature layer with a higher resolution can better 
retain the spatial information of a segmented object and 
provide more accurate edge detail information for feature 
information fusion. In the decoder stage, TMBNet uses 
an upsampling method of bilinear interpolation to restore 
the size of the feature map to that of the input image.

The TMBNet network uses the initial convolution mod-
ule of the three-layer convolutional network to extract 
the bottom-layer feature information of the image, and 
the input image is downsampled twice, reducing the 
number of calculations performed in the subsequent 
modules. In the downsampling module (Downsample1, 
Downsample2), the network uses convolution + pooling 
to halve the feature map in the two dimensions of height 
and width, and double the channel dimension; then, 
spatial information is used to exchange feature dimen-
sion information. In the TMB Block1 and TMB Block2 
components constructed by the TMB module, the input 
feature map is extracted through the TMB module, and 

the input and output features are superimposed to fuse 
the spatial and semantic information of the local TMB 
component. The TMB component expands the receptive 
field of the convolution kernel via dilated convolution. 
By fully capturing the input feature map information, the 
spatial resolution of the input feature map is retained, 
and the feature map is not downsampled. The feature 
map extracted by the TMB Block2 component is passed 
through a 1 × 1 convolutional network layer (Classifier) 
to reduce the dimensionality of the output feature map; 
the number of channels of the output feature map is the 
number of classified categories. The final output charac-
teristic result is obtained through bilinear interpolation.

The size of the input network RGB image was set 
as 256  ×  256  ×  3 pixels. For the network structure in 
Figure  3, specific information on the implementation 
details of the network operation, output feature map size, 
convolution step size, and dilation rate is given in Table 1.

Figure 3 The structure of the TMBNet network

Table 1 The implementation details of TMBNet

Network layer operation Convolution stride/the dilation 
rate

Output feature channel Output feature size

1 3×3 Conv 2/1 32 128 × 128

2 3×3 Conv 1/1 32 128 × 128

3 3×3 Conv 1/1 32 128 × 128

4 Downsample – 64 64 × 64

5–7 TMB 1/2 128 64 × 64

8 Downsample – 128 32 × 32

9–10 TMB 1/4 128 32 × 32

11–12 TMB 1/8 128 32 × 32

13–14 TMB 1/16 256 32×32

15 1×1 Conv 1/1 2 32 ×32

16 Upsample – 2 256×256
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4  Experimental Results and Discussion
4.1  Network Model Evaluation Criteria Based 

on Lightweight Road Extraction
To ensure the accuracy and real-time performance 
of the road extraction network model, as well as the 
usability of the segmentation network model in practical 
applications, it is necessary to conduct a comprehensive 
and fair analysis and comparison between the road 
extraction network model and existing network models 
in terms of model segmentation accuracy, forward 
reasoning speed, and model size. In terms of network 
model accuracy, the evaluation criteria included the 
mean intersection over union, accuracy, and recall. To 
examine the reasoning speed of the network model, the 
evaluation criteria included Hz (FPS) and the number 
of model parameters.

(1) Mean Intersection over Union

 The intersection over union (IOU) measures the ratio 
of the number of true positives (intersection) to 
the sum of true positives, false negatives, and false 
positives (union). This is an important criterion for 
measuring the accuracy of image segmentation. 
As shown in Figure  4, the intersection of the true 
value (TV) and predicted value (PV) is the true 
positive (TP), and the union of TV and PV is the 
true negative (TN). The intersection between 
TV and non-PV is the false negative (FN) and the 
intersection between PV and non-TV is the false 
positive (FP). The IOU is expressed by Eq. (6):

 

 

(6)IOU =
TP

TP + FP + FN
.

 For two-dimensional image data, we assumed a 
total of k + 1 classes in the image to be classified. 
pij denotes a case in which the true class is i , but 
it is incorrectly classified as class j ; this are usually 
interpreted as FP, whereas pji represents FN and 
pii represents TP. The mIOU can be obtained by 
calculating the mean intersection over union of the 
k + 1 classes, as shown in Eq. (7):

(2) Accuracy

 The accuracy represents the percentage of samples 
that were correctly predicted relative to the total 
number of samples, as shown in Eq. (8):

 

(3) Recall

 The recall represents the ratio of the samples 
whose value is the true value in the predicted 
value to all samples with the true value, as 
shown in Eq. (9):

(4) Hz

 Hz expresses the number of frames that the model 
can process in one second, that is, the number of 
road images that can be extracted per second. The 
Hz value of the road extraction network model is 
affected by the computing power of the hardware 
platform and the size of the input image. Under the 
same hardware computing conditions and input 
image size, the larger the Hz number of the model, 
the faster the forward inference speed.

(5) Number of Model Parameters
 The number of parameters of the road extraction 

model determines the amount of memory required. 
The traditional road segmentation network 
necessitates a large number of parameters and 
high computing power requirements, and cannot 

(7)

mIOU =
1

k + 1

k
∑

i=0

pii
∑k

j=0 pij+
∑k

j=0 pji − pii
.

(8)accuracy =
TP + TN

TP + TN + FP + FN
.

(9)recall =
TP

TP + FN
.

The true 

value

The predicted 

value

TP TN

FN FP

 

Figure 4 The diagram of intersection over union
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be deployed and operated on mobile terminals. 
The lightweight road segmentation model can be 
deployed in edge computing equipment to realize 
real-time model operation with few parameters and 
calculations.

4.2  Model Training Details
To train the model, weighted cross-entropy was used as 
the loss function, and the stochastic gradient descent 
algorithm was used to optimize the loss function. To 
adjust the learning rate, the warm-up learning rate 
adjustment strategy [26] was adopted. In the initial train-
ing stage, a smaller learning rate was selected, and when 
the model iteration reached a preset standard, the learn-
ing rate of the model was switched to a preset value. 
Using the warm-up learning strategy can avoid overfit-
ting in the initial stage of model training while simulta-
neously improving the deep stability of the model. The 
decay mode of the learning rate is shown in Figure 5.

The FROBIT training set was used as the training data. 
In the model training process, the batch size was set to 8, 
the data were randomly inverted, and random noise was 
added to enhance the data. The FROBIT test set was used 

as the test data to evaluate the performance of the model. 
In terms of model accuracy, the mean intersection over 
union, accuracy, and recall were used as the evaluation 
criteria. In terms of the forward reasoning speed, the 
FPS, model parameters, and storage space required by 
the model were used as the evaluation criteria.

4.3  Comparative Experiment Based on TMB Module
Based on the control variables, the rationality and 
effectiveness of the TMB module for unstructured road 
extraction were observed through ablation comparison 
experiments between different modules and analysis 
of the experimental results. Three sets of comparative 
experiments were conducted using the TMB module.

4.3.1  Experimental Analysis of the Effectiveness of the TMB 
Module

For the TMBNet network structure, a TMB Block 
component is constructed using the TMB module. To 
verify the effectiveness of the TMB module in the overall 
network architecture, the TMB module was replaced 
with the feature extraction modules of other networks, 
and the following four groups of comparison networks 
were designed.

The Net1 network references the non-dense module 
in EDANet. This module was used to replace the TMB 
module in Figure  6. The number of modules was 3 and 
6, respectively. The network structure details, excluding 
the replaced non-dense module, are listed in Table 1. The 
number of output feature channels changed to 284 in lay-
ers 5 to 7 and to 736 in layers 13 to 14. The output feature 
size remained unchanged.

The Net2 network references the Non-bottleneck-1D 
module in ERFNet. The Non-bottleneck-1D module was 
used to replace the TMB module in Figure 6. The number 
of Non-bottleneck-1D modules was three and six, 
respectively. Except for the replaced non-bottleneck-1D, Figure 5 The decay of warm-up learning rate

Figure 6 Diagram of test model to evaluate TMB module effectiveness
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the network structure details were consistent with those 
of TMBNet in Table 1.

The Net3 network references the SS-nbt module in 
LEDNet. The SS-nbt module was used to replace the 
TMB module in Figure 6. The number of SS-nbt modules 
was three and six, respectively. Except for the replaced 
SS-nbt module, the network structure details were 
consistent with those of TMBNet in Table 1.

The structural diagram of the Net4 network is also 
shown in Figure  6, containing 3 and 6 TMB modules 
respectively. The network structure details are listed in 
Table 1.

From the evaluation indicators in Table 2, it can be seen 
that Net4 with the TMB module as the core module had 
the smallest number of network parameters in terms of 
model computing resources. The number of parameters 
of Net4 was only 36% of that of Net2. The Channel 
Shuffle operation of Net3 requires many pointer jumps, 
and additional feature storage space is required during 
the calculation process.

During the downsampling process of Net4, there is no 
need to consume additional storage space or perform 

complex calculations; thus, the training time of the model 
is reduced.

Net4 also achieved the best performance in precision 
comparison indicators, such as the mean intersection 
over union and recall rate. For example, Net4 has 
a mean intersection over union 3.57% higher than 
that of Net2 and 4% higher than that of Net3. The 
experimental results show that the multi-branch and 
multi-receptive-field design of the TMB module can 
fully extract multi-scale feature object information and 
improve the segmentation accuracy of the network 
model by ensuring a favorable forward reasoning speed.

To demonstrate the effectiveness of the TMB module 
in extracting unstructured roads more intuitively, the 
results of road extraction are visually displayed. A com-
parison and analysis of the road extraction results for 
the above four groups of networks on the FROBIT test 
set are shown in Figure 7. The first and second columns 
in Figure 7 show the real images in the test set and the 
unstructured road labels in the images, respectively. 
The third to sixth columns represent the road extrac-
tion results of the real images by different networks. As 
shown in Figure  7, the three groups of networks from 
Net1 to Net3 all had road extraction fractures and 
incomplete road segmentation during the extraction 
of roads. The continuity and accuracy of Net4 are bet-
ter than those of the other three groups of comparative 
networks.

In the road extraction shown in the second row of 
Figure 7, the surrounding building features of the road 
in the lower left corner are complex, and there is a 

Table 2 Performance comparison of different modules

Network Parameters mIOU (%) Recall Accuracy FPS

Net1 0.86 M 77.30 0.7993 0.9515 110

Net2 1.51 M 74.16 0.7655 0.9615 150

Net3 0.85 M 73.73 0.7624 0.9583 108

Net4 0.55 M 77.73 0.8035 0.9521 120

Figure 7 Visual display of FROBIT test set under different network modules



Page 10 of 13Zhang et al. Chinese Journal of Mechanical Engineering           (2024) 37:45 

high degree of similarity in color and texture features 
between the road and the surrounding buildings. 
Net4 can make better use of the contextual feature 
information in the image so that the road can be 
segmented and extracted accurately. The third row 
presents unstructured roads of different widths. Net4 
could extract roads more continuously and completely, 
reflecting the superior performance of the TMB module 
as well as its ability to improve the segmentation 
accuracy of the network.

4.3.2  Experimental Analysis of Multi‑convolution Kernel 
Design

In the experiment on the effectiveness of the TMB 
module, the effectiveness of the TMB structure was 
proven by comparing different feature extraction 
modules. In the experiments described in this section, 
by comparing the different receptive field sizes under 
different convolution kernel structures, it was further 
verified that the convolution method of multiple 
convolution kernels in the TMB module produces 
multiple receptive fields, which are conducive to feature 
extraction. In this experiment, four groups of comparison 
networks were designed based on the TMB module. The 
convolution kernel shape of each branch was changed 
to maintain the three different branches of the TMB 
module. The method for changing the convolution kernel 
in the network structure is as follows.

Net_Left network: The left branch of the TMB module 
was kept unchanged, and the middle and right branches 
were replaced with the convolution kernel form of the 
left branch.

Net_Middle network: The middle branch of the TMB 
module was kept unchanged, and the left and right 
branches were replaced with the convolution kernel form 
of the middle branch.

Net_Right network: The right branch of the TMB 
module was kept unchanged, and the left and middle 
branches were replaced with the convolution kernel form 
of the right branch.

TMBNet network: Based on the TMB module, it 
maintains the convolution form of multiple convolution 
kernels and receptive fields.

The experimental results are listed in Table 3. The com-
parative analysis of experiments indicated that the num-
ber of parameters of the models was the same in each of 
the four compared networks. In the process of convolu-
tional feature extraction, each branch of the Net_Middle 
network performs the convolution process only once; 
therefore, it has an advantage in terms of FPS. In the 
comparison of model accuracy, the performance of the 
network with a single receptive field was similar in terms 
of the mean intersection over union, recall, and accuracy. 
The TMBNet network based on multiple receptive fields 
was better than the other three groups of networks in 
terms of accuracy, which reflects the advantages of the 
TMB module. This indicates that the TMB module based 
on multiple convolution kernels can effectively use recep-
tive fields at different scales and fully extract the object 
feature information from the input features, thereby 
improving the segmentation accuracy and performance 
of the network.

4.3.3  Comparative Experiment Based on the Number of TMB 
Modules

Based on the comparative experiments described 
in Sections  4.3.1 and 4.3.2, the effectiveness of the 
structural design of the TMB module for the extraction 
of unstructured road features has been proven. In this 
section, to further verify the influence of the number 
of TMB modules on the performance of the TMBNet 
network, in this section, experiments related to the 
number of TMB modules are reported.

Five groups of comparison networks were designed 
according to different numbers of TMB modules in 
TMB block1 and TMB block2 in the TMBNet network. 
The networks were named following the structure of 
TMBNet_{TMB block1}_{TMB block2}. For example, 
TMBNet_3_6 indicates a network in which TMB block1 
contains three sets of TMB modules and TMB block2 
contains six sets of TMB modules. To ensure that the 
feature map was not downsampled while expanding 
the receptive field, the dilated convolution rate of TMB 
block2 was set as [4, 4, 8, 8, 16, 16, 31]. The experimental 
results are listed in Table 4. By analyzing the experimen-
tal data in Table 4, it can be concluded that the number 
of parameters and amount of memory required by the 

Table 3 Multi-convolution kernel design comparison experiment

Network Parameters Memory mIOU(%) Recall Accuracy FPS

Net_Left 0.55 M 2.35 M 77.21 0.8013 0. 9439 105

Net_Middle 0.55 M 2.17 M 77.07 0.7985 0. 9475 132

Net_Right 0.55 M 2.35 M 77.03 0. 7966 0.9514 105

TMBNet 0.55 M 2.27 M 77.73 0.8035 0.9521 120
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network model increase as the number of TMB modules 
in block1 and block2 increases. In the encoder stage, as 
the number of network layers increases, the number of 
output feature map channels increases. For example, 
TMBNet_3_7 and TMBNet_4_6 contained the same 
number of TMB modules. However, because the number 
of input feature map channels in block2 is twice that in 
block1, TMBNet_3_7 has a larger number of parameters 
and requires a larger amount of memory storage. TMB-
Net_2_5 exhibited the best performance in terms of for-
ward reasoning speed and amount of memory required; 
however, it performed poorly in terms of model accuracy. 
A comprehensive comparison of the performance of the 
network model in Table 4 in terms of accuracy and speed 
shows that TMBNet_3_6 achieved the most reasonable 
balance between segmentation accuracy and forward 
reasoning speed.

In response to the poor accuracy of TMBNet_2_5, we 
added an attention mechanism. The attention mechanism 
has achieved satisfactory results in image processing. 
The channel attention mechanism SE-Net (squeeze-and-
excitation network) models the interdependence between 
channels and adaptively determines the importance of 

each channel [38]. Its core structure consists of two parts: 
compression and excitation. ECANet improves the exci-
tation module of SE-Net and uses a local cross-channel 
method to obtain adjacent channel information weights 
[39]. In this study, based on TMBNet_2_5, an efficient 
channel attention (ECA) module was added, and a sim-
ple experiment was performed. The network had 0.49M 
parameters, and the mIOU and recall were better than 
those before adding the ECA module, at 0.7715 and 
0.8020, respectively, whereas the accuracy was 0.9404, 
which is not as good as that before adding the ECA 
module.

4.4  Semantic Segmentation Network Model Comparison 
Experiment

To verify the effectiveness of the TMBNet network for 
unstructured road extraction, it was compared with other 
semantic segmentation networks in terms of model accu-
racy and inference speed. The experiment was divided 
into two parts: (1) Comparing TMBNet with traditional 
networks in terms of accuracy improvement, and (2) 
comparing TMBNet with other lightweight seman-
tic segmentation models. The experimental results are 

Table 4 Comparison network based on the number of TMB modules

Network Parameters Memory mIOU(%) Recall Accuracy FPS

TMBNet_3_6 0.55 M 2.27 M 77.73 0.8035 0.9521 120

TMBNet_3_7 0.61 M 2.50 M 76.90 0.8012 0.9361 108

TMBNet_4_6 0.57 M 2.34 M 77.52 0.8011 0.9528 105

TMBNet_2_5 0.49 M 1.96 M 77.01 0.7997 0.9429 130

TMBNet_4_7 0.63 M 2.56 M 77.79 0.8072 0.9444 93

Table 5 Comparing TMBNet and lightweight semantic segmentation network

Network Parameters Training time mIOU(%) Recall Accuracy FPS

CGNet 0.49 M 12 h 46 min 77.67 0.8043 0.9483 80

Liteseg 4.38 M 7 h 39 min 76.41 0.7933 0.9433 110

FDDWNet 0.81 M 24 h 30 min 72.59 0.7551 0.9431 65

LEDNet 0.92 M 56 h 36 min 75.10 0.7776 0.9507 86

TMBNet 0.55 M 6 h 7 min 77.73 0.8035 0.9521 120

Table 6 Comparing TMBNet and accuracy improvement semantic segmentation network

Network Parameters Training time mIOU(%) Recall Accuracy FPS

PSPNet 53.58 M 92 h 40 min 78.94 0.8136 0.9577 39

LinkNet 11.53 M 8 h 19 min 79.40 0.8229 0.9473 96

UNet 7.78 M 40 h 12 min 80.57 0.8364 0.9454 95

TMBNet 0.55 M 6 h 7 min 77.73 0.8035 0.9521 120



Page 12 of 13Zhang et al. Chinese Journal of Mechanical Engineering           (2024) 37:45 

presented in Tables  5 and 6. From the data in Tables  5 
and 6 in the comparison of lightweight networks, CGNet 
has advantages in terms of the number of parameters 
and can achieve better accuracy; however, a long training 
time is required and the model’s forward reasoning speed 
is slow.

In the comparison of mIOU, TMBNet achieved the best 
performance, achieving a 1.32% improvement compared 
to Liteseg. At the same time, the forward inference speed 
of TMBNet is approximately twice that of FDDWNet.

Compared with the network with improved accuracy, 
TMBNet can achieve significant advantages in terms of 
model parameters and forward reasoning speed with 
less accuracy loss. Compared with the PSPNet network, 
the number of parameters of TMBNet was only 1.03% 
of that of PSPNet, and the accuracy rate was only 
reduced by 1.21%. Through comparative experiments 
with different network models, it was demonstrated 
that the TMBNet can achieve a more efficient 
forward reasoning speed using fewer parameters and 
computational resources when extracting unstructured 
roads, and it can provide better results for this task.

5  Conclusions
This article first discusses the necessity of lightweight 
network design and proposes the TMB feature 
extraction module, considering the characteristics of 
unstructured roads and the key points of lightweight 
model structure design. Based on the TMB module, 
the overall structure and implementation process of the 
TMBNet network with an input size of 256×256×3 are 
presented.

(1) The TMB module was compared with the SS-nbt, 
Non-bottleneck-1D, and other modules. The 
effectiveness of the TMB module design was 
demonstrated through experimental results and a 
visual display of the test set.

(2) An experiment comparing multiple convolution 
kernel categories shows that in the TMB module 
design, using multiple convolution kernels can 
more fully extract object feature information under 
different sizes and improve the segmentation 
accuracy of the network.

(3) A comparison of TMBNet with the accuracy 
improvement network and existing lightweight 
semantic segmentation network models further 
proves the balanced advantage of TMBNet in terms 
of both network accuracy and forward reasoning 
speed.
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