
Deng et al. 
Chinese Journal of Mechanical Engineering           (2024) 37:55  
https://doi.org/10.1186/s10033-024-01019-3

ORIGINAL ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

Fiber Bundle Topology Optimization 
for Surface Flows
Yongbo Deng1*, Weihong Zhang2*, Jihong Zhu2, Yingjie Xu2 and Jan G Korvink3* 

Abstract 

This paper presents a topology optimization approach for the surface flows on variable design domains. Via this 
approach, the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can 
be optimized, where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold. 
The fiber bundle topology optimization approach is developed based on the description of the topological structure 
of the surface flow by using the differential geometry concept of the fiber bundle. The material distribution method 
is used to achieve the evolution of the pattern of the surface flow. The evolution of the implicit 2-manifold is realized 
via a homeomorphous map. The design variable of the pattern of the surface flow and that of the implicit 2-mani-
fold are regularized by two sequentially implemented surface-PDE filters. The two surface-PDE filters are coupled, 
because they are defined on the implicit 2-manifold and base manifold, respectively. The surface Navier-Stokes equa-
tions, defined on the implicit 2-manifold, are used to describe the surface flow. The fiber bundle topology optimiza-
tion problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space. Several 
numerical examples have been provided to demonstrate this approach, where the combination of the viscous dis-
sipation and pressure drop is used as the design objective.

Keywords Fiber bundle, Topology optimization, 2-manifold, Surface flow, Material distribution method, Porous 
medium model

1 Introduction
Surface flows can greatly decrease the computational cost 
in the numerical design of the related fluidic structures. 
The fluid flows in the channels attached on the walls of 
objects can be described as surface flows on the curved 

surfaces corresponding to the outer shapes of the objects. 
The streamsurfaces corresponding to the outer shapes 
of the objects with complete-slip boundaries can also be 
described as surface flows separated from the bulk flows, 
where the complete-slip boundaries can be approximated 
and achieved by chemically coating or physically struc-
turing solid surfaces to derive the extreme hydrophobic-
ity [1], using the optimal control method to manipulate 
the boundary velocity of flows [2], and producing vapor 
layers between the solid and liquid phases based on the 
Leidenfrost phenomenon [3], etc.

The topological structure of a surface flow can be 
described as the fiber bundle demonstrated in Figure  1. 
Fiber bundle is a concept of differential geometry [4]. It is 
composed of the base manifold and the fiber defined on it, 
where the manifold represents the topological space locally 
homeomorphous to an Euclidean space. For the surface 
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flow, the flow pattern together with its definition domain 
corresponds to the fiber of the fiber bundle. If there exists 
a 2-manifold homeomorphous to the fiber, it can be set as 
the base manifold of the fiber bundle. In computation, the 
existence of the base manifold can be ensured by preset-
ting a fixed geometrical surface as the base manifold, then 
the fiber can be found on the preset base manifold. This 
means the definition domain of the pattern is an implicit 
2-manifold defined on the preset base manifold, where the 
implicit 2-manifold is the fluid/solid interface correspond-
ing to the outer-shape surface. The reason for this paper 
to use the concept of fiber bundle is to describe the topo-
logical structure of the surface flow as an ensemble instead 
of three separated components. Therefore, the task for the 
fiber bundle topology optimization of the surface flow is 
to find the optimized matching between the pattern and 
the implicit 2-manifold defined on the preset base mani-
fold. Compared with the traditional topology optimiza-
tion approaches, the fiber bundle topology optimization 
inversely determines the pattern of the surface flow on a 
variable design domain, which is the base manifold of the 
fiber bundle. Therefore, the presented fiber bundle topol-
ogy optimization approach can provide more design free-
dom and larger design space.

Topology optimization is currently regarded to be one 
of the most robust methodology for the determination 
of material distribution in structures that meet given 
structural performance criteria [5–8]. With regard to 
flow problems, topology optimization has been imple-
mented for Stokes flows [9, 10], creeping fluid flows [11], 
steady Navier-Stokes flows [12], unsteady Navier-Stokes 
flows [13, 14], flows with body forces [15, 16], turbulent 
flows [17, 18], two-phase flows of immiscible fluids [19], 
electroosmotic flows [20, 21] and flows of non-Newto-
nian fluids [22, 23], etc; topology optimization for flow 
problems have been reviewed in Ref.  [24]. With regard 
to interfacial patterns, topology optimization has been 

implemented for stiffness and multi-material structures 
[25–31], layouts of shell structures [32–38], electrode 
patterns of electroosmosis [21], fluid-structure and fluid-
particle interaction [39–41], energy absorption [42], 
cohesion [43], actuation [44] and wettability control [45–
47], etc.; topology optimization approaches implemented 
on 2-manifolds have also been developed with applica-
tions in elasticity, wettability control, heat transfer and 
electromagnetics [48–50]; and the fiber bundle topology 
optimization approach has been developed for wettabil-
ity control at fluid/solid interfaces [47]; recently, topology 
optimization of surface flows has extended the design 
space of fluidic structures onto the 2-manifolds [8].

It is natural for one to ask if it is possible to imple-
ment the topology optimization to match the pattern of 
a surface flow and the 2-manifold on which the pattern is 
defined. If such topology optimization can be achieved, 
the design space and design freedom will be further 
extended for flow problems by including the design 
domain for the pattern of the surface flow into the design 
space, where the design domain is the 2-manifold. There-
fore, this paper presents the fiber bundle topology opti-
mization approach for the surface flow.

For the fiber bundle topology optimization approach, 
the material distribution method pioneered by Ref.  [6] 
is used to determine the pattern of the surface flow. The 
2-manifold used to define the surface flow is described 
implicitly on the base manifold. Then, two sets of design 
variables are required for the pattern of the surface flow 
and the implicit 2-manifold, respectively. For the mate-
rial distribution method, a porous medium model has 
been developed for Stokes flows [10]. This model was 
then extended to implement topology optimization for 
steady and unsteady Navier-Stokes flows [12–14]. In this 
model, the porous medium was filled in the two/three-
dimensional design domains. Correspondingly, an arti-
ficial Darcy friction was introduced into the force terms 

Figure 1 Sketch for the fiber bundle of a surface flow, where � is the base manifold, Ŵ is the implicit 2-manifold used to define the pattern 
of the surface flow, γp : Ŵ �→ [0, 1] is the pattern of the surface flow, u is the fluid velocity of the surface flow, ulv ,Ŵ is the known fluid velocity 
at the boundary of Ŵ , nŴ is the unitary normal vector of Ŵ , τŴ is the unitary tangential vector at ∂Ŵ , nτŴ = nŴ × τŴ is the outward unitary normal 
at ∂Ŵ , x� denotes a point on � , and xŴ denotes a point on Ŵ . This paper focuses on the laminar surface flows with low and moderate Reynolds 
numbers to demonstrate the fiber bundle topology optimization approach, although the sketched surface flows can be turbulent with high 
Reynolds number
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of the Stokes equations and Navier-Stokes equations. 
The impermeability of the porous medium was evolved 
in the topology optimization procedure to derive the flu-
idic structures. Inspired by the porous medium model, 
topology optimization for surface flows has been imple-
mented by filling the porous medium onto fixed 2-man-
ifolds, where an artificial Darcy friction is added to the 
surface Navier-Stokes equations [8]. This paper inherits 
this model with the porous medium to implement the 
fiber bundle topology optimization for surface flows, 
although the level set method based model can improve 
the expressing accuracy of the structural boundaries.

The remained sections of this paper are organized as 
follows. In Section 2, a monolithic description of the fiber 
bundle topology optimization problem for a surface flow 
is presented. In Section 3, numerical implementation for 
the iterative solution of the fiber bundle topology opti-
mization problem is introduced. In Section  4, numeri-
cal tests are provided to demonstrate the developed fiber 
bundle topology optimization approach. In Sections  5 
and “Acknowledgements”, the conclusion and acknowl-
edgment of this paper are provided. In Section 6, details 
are provided for the adjoint analysis of the fiber bundle 
topology optimization problem. All the mathematical 
descriptions are implemented in a Cartesian system.

2  Methodology
In this section, the fiber bundle topology optimization 
problem is described to match the pattern of the surface 
flow and the implicit 2-manifold on which the surface flow 
is defined. The implicit 2-manifold is defined on the base 
manifold. The incompressible surface fluid is considered.

2.1  Physical Model and Material Interpolation
In the fiber bundle topology optimization for the surface 
flow, the porous medium model is utilized. In this model, 
the porous medium is filled onto the implicit 2-manifold. 
Correspondingly, the artificial Darcy friction is added to the 
surface Navier-Stokes equations. The artificial Darcy fric-
tion is derived based on the constitutive law of the porous 
medium. Based on the consistency between the applicable 
condition of the Brinkmann model for the porous medium 
and this method, the artificial Darcy friction is assumed to 
be proportional to the fluid velocity [10, 12]:

where α is the impermeability; Ŵ is the implicit 2-mani-
fold; and xŴ denotes a point on Ŵ . When the porosity 
of the porous medium is zero, it corresponds to a solid 
material with infinite impermeability and zero fluid 
velocity caused by the infinite friction force. When the 
porosity is infinite, it corresponds to the structural void 

(1)bŴ = −αu, ∀xŴ ∈ Ŵ,

for the transport of the fluid with zero impermeability. 
Therefore, the impermeability can be described as

where γp ∈ {0, 1} is a binary distribution defined on 
Ŵ , with 0 and 1 representing the solid and fluid phases, 
respectively; ŴD is the design domain for the pattern of 
the surface flow, ŴF is the fluid domain with the material 
density enforced to be γp = 1 , respectively; ŴD and ŴF 
satisfy ŴD ∪ ŴF = Ŵ and ŴD ∩ ŴF = ∅ . Especially, Ŵ is the 
design domain, when there is no enforced fluid domain, 
i.e., ŴF = ∅ and Ŵ = ŴD.

To avoid the numerical difficulty on solving a binary 
optimization problem, the binary variable γp in the 
design domain is relaxed to vary continuously in [0, 1] . 
The relaxed binary variable is referred to as the material 
density of the impermeability. Based on the description 
of the impermeability in Eq. (2), the material interpola-
tion of the impermeability can be implemented by using 
the convex and q-parameterized scheme [10]:

where αs and αf  are the impermeability of the solid and 
fluid phases, respectively; q is the parameter used to tune 
the convexity of this interpolation. For the fluid phase, 
the impermeability is zero, i.e., αf = 0 . For the solid 
phase, αs should be infinite theoretically; numerically, a 
finite value much larger than the fluid density ρ is cho-
sen for αs , to ensure the stability of the numerical imple-
mentation and approximate the solid phase with enough 
accuracy. Based on numerical tests, q is valued as 1 and 
αs is chosen as 104ρ to satisfy αs ≫ ρ in this paper.

2.2  Design Variables
In the fiber bundle topology optimization for the surface 
flow, two sets of design variables are required to be sequen-
tially defined for the implicit 2-manifold and the pattern of 
the surface flow. Because a result of the fiber bundle topol-
ogy optimization is composed of the pattern of the surface 
flow and the implicit 2-manifold used to define the pat-
tern, it can be regarded to be a structure with two orders 
of hierarchy. The first order is the outer shape of the base 
structure corresponding to the implicit 2-manifold; the sec-
ondary order is the pattern of the surface flow correspond-
ing to the distribution of the material density. Therefore, 
the result of the fiber bundle topology optimization can 
be regarded to be a two-order hierarchical structure com-
posed of the base and secondary structures corresponding 

(2)











α|xŴ∈ŴD =

�

+∞, γp = 0,

0, γp = 1,

α|xŴ∈ŴF = 0, γp = 1,
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(

γp
)

= αf +
(
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)

q
1− γp
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to the implicit 2-manifold and the pattern of the surface 
flow, respectively.

2.2.1  Design Variable for Implicit 2‑Manifold
To describe the implicit 2-manifold, the design variable 
that takes continuous values in [0, 1] is defined on the base 
manifold. This design variable is used to describe the distri-
bution of the normal displacement of the implicit 2-mani-
fold relative to the base manifold. Equivalently, the pattern 
of the surface flow is defined on a variable design domain.

To control the smoothness of the implicit 2-manifold and 
ensure the well-poseness of the solution, a surface-PDE fil-
ter sketched in Figure 2 is imposed on the design variable 
of the implicit 2-manifold [50]:

where dm is the design variable for the implicit 2-mani-
fold; df  is the filtered design variable; rm is the filter 
radius, and it is constant; � is the base manifold used to 
define the implicit 2-manifold; x� denotes a point on � ; 
∇� and div� are the tangential gradient operator and tan-
gential divergence operator defined on � , respectively; 
nτ� = n� × τ� is the outward unitary conormal vector 
normal to ∂� and tangent to � at ∂� , with n� and τ� rep-
resenting the unitary normal vector on � and the unitary 
tangential vector at ∂� , respectively; Ad is a parameter 
used to specify the amplitude of the normal displacement 
of the implicit 2-manifold relative to the base manifold, 
and it is nonnegative ( Ad ≥ 0 ). Because dm is valued in 
[0, 1] , df  is valued in [−Ad/2,Ad/2].

After the filter operation, the implicit 2-manifold can be 
described by the filtered design variable as

where Ŵ is the implicit 2-manifold; xŴ denotes a point on 
Ŵ . From Eq. (5), a differential homeomorphism can be 
determined corresponding to the bijection df : � �→ Ŵ 
with xŴ = df n� + x� for ∀x� ∈ � . Therefore, H(Ŵ) is 

(4)







− div�

�

r2m∇�df

�

+ df = Ad

�

dm −
1

2

�

, ∀x� ∈ �,

nτ� · ∇�df = 0, ∀x� ∈ ∂�,

(5)Ŵ =
{

xŴ : xŴ = df n� + x� , ∀x� ∈ �
}

,

homeomorphous to H(�) . The Jacobian matrix of the 
homeomorphism in Eq. (5) for the implicit 2-manifold 
in the curvilinear coordinate system of the base manifold 
can be transformed into the following formulation:

with 
∣

∣

∣

∂xŴ
∂x�

∣

∣

∣ representing its determinant.
The variational formulation of the surface-PDE filter in 

Eq. (4) is considered in the first order Sobolev space defined 
on � . It can be derived based on the Galerkin method as

where d̃f  is the test function of df  ; H(�) represents the 
first order Sobolev space defined on � ; L2(�) represents 
the second order Lebesque space defined on �.

2.2.2  Design Variable for Pattern of Surface Flow
The pattern of the surface flow is represented by the mate-
rial density defined on the implicit 2-manifold. The mate-
rial density in Eqs. (2) and (3) is obtained by sequentially 
implementing the surface-PDE filter and the threshold 
projection on the design variable for the material density, 
as sketched in Figure 3. This design variable is also valued 
continuously in [0, 1] . Here, the threshold projection is 
used to remove the gray regions and control the minimum 
length scale in the derived pattern.

The surface-PDE filter for the design variable of the pat-
tern is implemented by solving the following surface-PDE 
[50]:

(6)
∂xŴ

∂x�
= ∇�df n

T
� + df ∇�n� + I, ∀x� ∈ �,

(7)

Find df ∈ H(�) for dm ∈ L
2(�), such that

∫

�

r2m∇�df · ∇� d̃f + df d̃f − Ad

(

dm −
1

2

)

d̃f d�

= 0, ∀d̃f ∈ H(�),

(8)
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Figure 2 Sketch for the surface-PDE filter for the design variable of the implicit 2-manifold Ŵ defined on the base manifold �



Page 5 of 29Deng et al. Chinese Journal of Mechanical Engineering           (2024) 37:55  

where γ is the design variable; γf  is the filtered design 
variable; rf  is the filter radius, and it is constant; ∇Ŵ and 
divŴ are the tangential gradient operator and tangential 
divergence operator defined on the implicit 2-manifold 
Ŵ , respectively; nτŴ = nŴ × τŴ is the outward unitary 
conormal vector normal to ∂Ŵ and tangent to Ŵ at ∂Ŵ , 
with nŴ and τŴ representing the unitary normal vector 
on Ŵ and the unitary tangential vector at ∂Ŵ , respectively. 
The threshold projection of the filtered design variable is 
implemented as [51, 52]

where β and ξ are the parameters for the threshold pro-
jection, with values chosen based on numerical experi-
ments [52].

The variational formulation of the surface-PDE filter is 
considered in the first order Sobolev space defined on Ŵ . It 
can be derived based on the Galerkin method as

where γ̃f  is the test function of γf  ; H(Ŵ) represents the 
first order Sobolev space defined on Ŵ ; L2(Ŵ) represents 
the second order Lebesque space defined on Ŵ.

2.2.3  Coupling of Design Variables
The design variable introduced in Section 2.2.2 for the pat-
tern of the surface flow is defined on the implicit 2-mani-
fold introduced in Section 2.2.1. Their coupling relation can 
be derived by transforming the tangential gradient operator 
∇Ŵ , the tangential divergence operator divŴ and the unitary 
normal nŴ into the forms defined on the base manifold �.

The transformation of the tangential gradient operator 
∇Ŵ is implemented based on the following relation:

(9)γp =
tanh (βξ)+ tanh

(

β
(

γf − ξ
))

tanh (βξ)+ tanh (β(1− ξ))
,

(10)

Find γf ∈ H(Ŵ) for γ ∈ L
2(Ŵ), such that

∫

Ŵ

r2f ∇Ŵγf · ∇Ŵγ̃f + γf γ̃f − γ γ̃f dŴ = 0, ∀γ̃f ∈ H(Ŵ),

where PŴ is the normal projector on the tangential 
space of Ŵ ; and ∇xŴ is are the gradient operator in the 3D 
Euclidean spaces imbedded with Ŵ in the extended Carte-
sian system of xŴ . The unitary normal vector nŴ is trans-
formed as

where �·�2 is the 2-norm of a vector. In Eq. (12), the 
transformed unitary normal vector is distinguished from 
the original form by using the filtered design variable df  
as the superscript, and this identification method is used 
in the following for the other transformed operators and 
variables. The normal projector PŴ is sequentially trans-
formed as

where I is the two-dimensional unitary tensor; and the 
superscript T represents the transposition operation of a 
vector or tensor. The tangential gradient operator ∇Ŵ can 
then be transformed as

Based on the transformed tangential gradient operator, 
the tangential divergence operator divŴ can be trans-
formed as

(11)

∇Ŵ = PŴ∇xŴ =

(

∂xŴ

∂x�

)−1

∇� −

{

nŴ ·

[

(
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]}
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(12)n
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∥

∥

2
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T
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,

(14)

∇
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Figure 3 Sketch for the surface-PDE filter and projection operation for the design variable of the pattern of the surface flow
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where tr(·) is the trace operator used to extract the trace 
of a tensor.

Because the tangential gradient operator ∇Ŵ depends on 
df  , its first-order variational to df  can be derived as

Similarly, the first-order variational of divŴ to df  can be 
derived as

Because df  is differential homeomorphism, it can induce 
the Riemannian metric. Then, the differential on the base 
manifold and implicit 2-manifold satisfies

(15)

div

(

df
)

Ŵ g = tr

(

∇

(

df
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Ŵ g

)

= tr
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df
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]}

n
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df
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)

,

∀g ∈ (H(�))3,

(16)
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where dl∂Ŵ and dl∂� are the differential of the boundary 
curves of Ŵ and � , respectively.

Based on the transformed tangential gradient operator 
in Eq. (14) and the homeomorphism between H(Ŵ) and 
H(�) described in Eq. (5), the coupling relation between 
the two sets of design variables can be derived by insti-
tuting Eq. (14) into Eq. (10):

(18)
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where the tangential gradient operator ∇Ŵ on Ŵ is 
replaced to be its transformed form ∇

(

df
)

Ŵ  in Eq. (14).

2.3  Surface Navier‑Stokes Equations Defined on Implicit 
2‑Manifold

The governing equations for the motion of a Newtonian 
surface fluid can be formulated intrinsically on a 2-mani-
fold of codimension one in an Euclidian space. Based on 
the conservation laws of momentum and mass, the sur-
face Navier-Stokes equations can be derived to describe 
the incompressible surface flows [53–55]:

where u is the fluid velocity; p is the fluid pressure; ρ is 
the fluid density; η is the dynamic viscosity; u · nŴ = 0 
is the tangential constraint of the fluid velocity. The tan-
gential constraint is imposed, because the fluid spatially 
flows on the 2-manifold Ŵ and the fluid velocity is a vec-
tor in the tangential space of Ŵ.

To solve the surface Navier-Stokes equations, the fluid 
velocity and pressure are required to be specified at some 
boundaries, interfaces or points of the 2-manifold Ŵ:

(19)

Find γf ∈ H(�) for γ ∈ L
2(�), such that

∫

�

(

r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γ̃f + γf γ̃f − γ γ̃f

)

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d� = 0, ∀γ̃f ∈ H(�),

(20)

ρ(u · ∇Ŵ)u − PŴ divŴ

�

η

�

∇Ŵu + ∇Ŵu
T
��

+ ∇Ŵp = −αu

−divŴu = 0

u · nŴ = 0















∀xŴ ∈ Ŵ,

where ulv,Ŵ is a known distribution of the fluid velocity 
depending on the specified fluid velocity ulv,� at lv,� rep-
resenting a boundary or interface curve of � ; lv,Ŵ satis-
fies lv,Ŵ ⊂ ∂Ŵ when lv,Ŵ is a boundary curve of Ŵ , and it 
satisfies lv,Ŵ ⊂ Ŵ when lv,Ŵ is an interface curve of Ŵ ; ls,Ŵ 
is the boundary curve with open boundary condition, 
and it satisfies ls,Ŵ ⊂ ∂Ŵ ; p0,Ŵ is the known fluid pressure 
depending on the specified fluid pressure p0,� at P� rep-
resenting a finite point set on � ; PŴ is a finite point set 
on Ŵ . In Eq. (21), when the known fluid velocity is 0 , the 
inlet or interfacial boundary condition degenerates into 
the no-slip boundary condition:

where ulv,Ŵ is equal to 0 on lv0,Ŵ ⊂ lv,Ŵ , and lv0,Ŵ is the no-
slip part of the boundary curve.

The variational formulation of the surface Navier-
Stokes equations is considered in the functional spaces 
without containing the tangential constraint of the fluid 
velocity. The tangential constraint of the fluid veloc-
ity is imposed by using the Lagrangian multiplier [56, 
57]. Based on the Galerkin method, the variational for-
mulation of the surface Navier-Stokes equations can be 
derived as

(21)











u = ulv,Ŵ , ∀xŴ ∈ lv,Ŵ ,
�

Inlet or interfacial boundary condition
�

TŴ · nτŴ = 0, ∀xŴ ∈ ls,Ŵ ,
�

Open boundary condition
�

p = p0,Ŵ , ∀xŴ ∈ PŴ , (Point condition)

(22)u = 0, ∀xŴ ∈ lv0,Ŵ ,

(23)Find











u ∈ (H(Ŵ))3 with u = ulv,Ŵ , ∀xŴ ∈ lv,Ŵ ,

p ∈ H(Ŵ) with p = p0,Ŵ , ∀xŴ ∈ PŴ ,

� ∈ L
2(Ŵ) with � = 0, ∀xŴ ∈ lv,Ŵ ,

such that

�

Ŵ

ρ(u · ∇Ŵ)u · ũ +
η

2

�

∇Ŵu + ∇Ŵu
T
�

:

�

∇Ŵũ + ∇Ŵũ
T
�

− p divŴũ − p̃ divŴu

+ αu · ũ + �ũ · nŴ + �̃u · nŴ dŴ = 0,

∀ũ ∈ (H(Ŵ))3, ∀p̃ ∈ H(Ŵ), ∀�̃ ∈ L
2(Ŵ),
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where � is the Lagrange multiplier used to impose the 
tangential constraint of the fluid velocity; ũ , p̃ and �̃ are 
the test functions of u , p and � , respectively. The Lagran-
gian multiplier in Eq. (23) is used to impose the tangential 
constraint of the fluid velocity and acts as a distributed 
force in the normal direction of Ŵ . Such distributed force 
cancels out the centrifugal, Coriolis and Euler forces 
exerted on the fluid particles in the normal direction of Ŵ 
to satisfy the tangential constraint.

Because lv,Ŵ is homeomorphous to lv,� , PŴ is homeo-
morphous to P� and lv,� and P� are fixed, ulv,Ŵ and p0,Ŵ 
are homeomorphous to ulv,� and p0,� , respectively. Then, 
based on the coupling relations in Section 2.2.3, the vari-
ational formulation in Eq. (23) can be transformed into the 
form defined on the base manifold �:

(24)

Find











u ∈ (H(�))3 with u = ulv,� , ∀x� ∈ lv,� ,

p ∈ H(�) with p = p0,� , ∀x� ∈ P� ,

� ∈ L
2(�) with � = 0, ∀x� ∈ lv,� ,

such that

�

�

�

ρ

�

u · ∇

�

df
�

Ŵ

�

u · ũ +
η

2

�

∇

�

df
�

Ŵ u +∇

�

df
�

Ŵ uT
�

:

�

∇

�

df
�

Ŵ ũ + ∇

�

df
�

Ŵ ũT
�

− p div

�

df
�

Ŵ ũ − p̃ div

�

df
�

Ŵ u + αu · ũ + �ũ ·
n� − ∇�df

�

�n� − ∇�df
�

�

2

+ �̃u ·
n� − ∇�df

�

�n� −∇�df
�

�

2

��

�

�

�

∂xŴ

∂x�

�

�

�

�

�

�

�

�

∂xŴ

∂x�
n

�

df
�

Ŵ

�

�

�

�

−1

2

d� = 0,

∀ũ ∈ (H(�))3, ∀p̃ ∈ H(�), ∀�̃ ∈ L
2(�).

2.4  Design Objective in General Form
The design objective of the fiber bundle topology optimiza-
tion problem for the surface flow is considered in the fol-
lowing general form:

where A and B are the integrands of the design objec-
tive. Based on the coupling relations in Section 2.2.3, the 
design objective in Eq. (25) can be transformed into the 
form defined on the base manifold �:

(25)J =

∫

Ŵ

A
(

u,∇Ŵu, p; γp
)

dŴ +

∫

∂Ŵ

B(u, p) dl∂Ŵ ,

Figure 4 Sketch for relation among the unitary tangential vector τŴ at ∂Ŵ , the unitary normal vector n� on � and the tangential gradient ∇�df

Figure 5 Diagram for the fiber bundle composed of the base manifold, the implicit 2-manifold and the pattern of the surface flow
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In Eq. (26), the unitary tangential vector τŴ at ∂Ŵ satisfies 
the relation sketched in Figure 4:

where // is the operator used to denote the parallel rela-
tion between two vectors. Then, Eq. (26) can be trans-
formed into

(26)

J =

∫

�

A

(

u,∇

(

df
)

Ŵ u, p; γp

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d�

+

∫

∂�

B(u, p)�τŴ�2

∥

∥

∥

∥

∥

(

∂xŴ

∂x�

)−1

τŴ

∥

∥

∥

∥

∥

−1

2

dl∂� .

(27)τŴ//
[(

n� ×∇�df
)

×
(

n� −∇�df
)]

,

(28)

J =

∫

�

A

(

u,∇

(

df
)

Ŵ u, p; γp

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d�

+

∫

∂�

B(u, p)
∥

∥

(

n� ×∇�df
)

×
(

n� −∇�df
)∥

∥

2

∥

∥

∥

∥

∥

(

∂xŴ

∂x�

)−1
[(

n� ×∇�df
)

×
(

n� −∇�df
)]

∥

∥

∥

∥

∥

−1

2

dl∂� .

Based on the transformed design objective, the adjoint 
analysis of the fiber bundle topology optimization prob-
lem can then be implemented on the functional spaces 
defined on the base manifold.

2.5  Fiber Bundle Topology Optimization Problem
The fiber bundle of the surface flow is composed of 
the base manifold together with the implicit 2-mani-
fold and the pattern, where � is the base manifold and 
Ŵ × [0, 1] is the fiber, respectively. It can be expressed 
as 

(

� × (Ŵ × [0, 1]),�, proj1,Ŵ × [0, 1]
)

 with the dia-
gram shown in Figure  5, where proj1 is the natural 
projection proj1 : � × (Ŵ × [0, 1]) �→ � satisfying 
proj1

(

x� ,
(

xŴ , γp
))

= proj1
(

x� ,
(

df (x�), γp
))

= x� 
for ∀x� ∈ � , ϕ1 is the homeomor-
phous map ϕ1 : � �→ Ŵ × [0, 1] satisfy-
ing ϕ1(x�) =

(

xŴ , γp
)

=
(

df (x�), γp
)

 for 
∀x� ∈ � , and ϕ2 is the homeomorphous map 
ϕ2 : Ŵ × [0, 1] �→ � × (Ŵ × [0, 1]) satisfying 
ϕ2
(

xŴ , γp
)

=
(

x� ,
(

xŴ , γp
))

=
(

x� ,
(

df (x�), γp
))

 for 
∀
(

xŴ , γp
)

∈ Ŵ × [0, 1].
Based on the above introduction, the fiber bundle 

topology optimization problem of the surface flow can be 
constructed as

(29)

Find

�

γ : Ŵ �→ [0, 1],

dm : � �→ [0, 1],
for

�

� × (Ŵ × [0, 1]),�, proj1,Ŵ × [0, 1]
�

to minimize
J

J0
with J =

�

Ŵ

A
�

u,∇Ŵu, p; γp
�

dŴ +

�

∂Ŵ

B(u, p)dl∂Ŵ ,

constrained by




















































































































































ρ(u · ∇Ŵ)u − PŴdivŴ

�

η

�

∇Ŵu + ∇Ŵu
T
��

+∇Ŵp = −αu

−divŴu = 0

u · nŴ = 0















∀xŴ ∈ Ŵ,







−divŴ

�

r2f ∇Ŵγf

�

+ γf = γ , ∀xŴ ∈ Ŵ,

nτŴ · ∇Ŵγf = 0, ∀xŴ ∈ ∂Ŵ,






−div�

�

r2m∇�df

�

+ df = Ad

�

dm −
1

2

�

, ∀x� ∈ �,

nτ� · ∇�df = 0, ∀x� ∈ ∂�,

Ŵ =
�

xŴ : xŴ = df n� + x� , ∀x� ∈ �
�

,

γp =
tanh (βξ)+ tanh

�

β
�

γf − ξ
��

tanh (βξ)+ tanh (β(1− ξ))
,

s ≤ s0, with s =
1

|Ŵ|

�

Ŵ

γpdŴ, |Ŵ| =

�

Ŵ

1dŴ, (Area constraint)

|v − v0| ≤ 10−3, with v =
1

|�|

�

�

df d�, |�| =

�

�

1d�, (Volume constraint)
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where J0 is the value of the design objective correspond-
ing to the initial distribution of the design variables; to 
regularize this optimization problem, area and volume 
constraints are imposed on the pattern of the surface flow 
and implicit 2-manifold, respectively; s is the area fraction 
of the pattern of the surface flow; v is volume fraction of 
spacial domain enclosed by the implicit 2-manifold and 
the base manifold; s0 ∈ (0, 1) and v0 ∈ [0, 1) are the speci-
fied area and volume fractions, respectively.

The coupling relations among the variables, functions, 
tangential divergence operator and tangential gradient 
operator in the fiber bundle topology optimization prob-
lem are illustrated by the following arrow chart:

dm
Eq. (4)−−−−→ df

Eq. (29)−−−−−→ v






�

Eq. (14)

{divΓ,∇Γ,nΓ}
Eq. (20)−−−−−→ {u, p, λ} Eq. (29)−−−−−→ J







�

Eq. (8)
�







Eq. (20)

γ
Eq. (8)−−−−→ γf

Eq. (9)−−−−→ γp
Eq. (29)−−−−−→ s

where the design variables dm and γ , marked in blue, 
are the inputs; the design objective J, the area fraction s 
and the volume fraction v, marked in red, are the outputs.

2.6  Adjoint Analysis
The fiber bundle topology optimization problem in Eq. 
(29) can be solved by using a gradient information-based 
iterative procedure, where the adjoint sensitivities are 
used to determine the relevant gradient information. The 
adjoint analysis is implemented for the design objective 
and the area and volume constraints to derive the adjoint 
sensitivities. The details for the adjoint analysis have been 
provided in the Appendix.

Based on the continuous adjoint analysis method [58], 
the adjoint sensitivity of the design objective J is derived 
as

where γfa and dfa are the adjoint variables of the filtered 
design variables γf  and df  , respectively; δ is the first-order 
variational operator. The adjoint variables can be derived 
from the adjoint equations in the variational formula-
tions. The variational formulation for the adjoint equa-
tions of the surface Naiver-Stokes equations is derived as

(30)
δJ =

∫

�

−γfaγ̃

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

− Addfad̃m d�, ∀

(

γ̃ , d̃m

)

∈

(

L
2(�)

)2

,

(31)

Find











ua ∈ (H(�))3 with ua = 0, ∀x ∈ lv,� ,

pa ∈ H(�) with pa = 0, ∀x ∈ P� ,

�a ∈ L
2(�) with �a = 0, ∀x ∈ lv,� ,

such that

�

�

�

∂A

∂u
· ũa +

∂A

∂∇

�

df
�

Ŵ u

: ∇

�

df
�

Ŵ ũa +
∂A

∂p
p̃a + ρ

�

ũa · ∇

�

df
�

Ŵ

�

u · ua + ρ

�

u · ∇

�

df
�

Ŵ

�

ũa · ua

+
η

2

�

∇

�

df
�

Ŵ ũa + ∇

�

df
�

Ŵ ũTa

�

:

�

∇

�

df
�

Ŵ ua + ∇

�

df
�

Ŵ uTa

�

− p̃a div

�

df
�

Ŵ ua − pa div

�

df
�

Ŵ ũa

+ αũa · ua +
�

�̃aua + �aũa

�

·
∇�df + n�

�

�∇�df + n�
�

�

2

��

�

�

�

∂xŴ

∂x�

�

�

�

�

�

�

�

�

∂xŴ

∂x�
n

�

df
�

Ŵ

�

�

�

�

−1

2

d�

+

�

∂�

�

∂B

∂u
· ũa +

∂B

∂p
p̃a

�

�

�

�

n� ×∇�df
�

×
�

n� − ∇�df
��

�

2

�

�

�

�

�

�

∂xŴ

∂x�

�−1
��

n� ×∇�df
�

×
�

n� − ∇�df
��

�

�

�

�

�

−1

2

dl∂� = 0,

∀ũa ∈ (H(�))3, p̃a ∈ H(�), �̃a ∈ L
2(�),

where ua , pa and �a are the adjoint variables of u , p and � , 
respectively; ũa , p̃a and �̃a are the test functions of ua , pa 
and �a , respectively. The variational formulations for the 
adjoint equations of the surface-PDE filters for γ and dm 
are derived as
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and

(32)

Find γfa ∈ H(�), such that
∫

�

(

∂A

∂γp

∂γp

∂γf
γ̃fa +

∂α

∂γp

∂γp

∂γf
u · uaγ̃fa + r2f ∇

(

df
)

Ŵ γfa · ∇

(

df
)

Ŵ γ̃fa + γfaγ̃fa

)

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d� = 0, ∀γ̃fa ∈ H(�),

(33)

Find dfa ∈ H(�), such that
∫

�

[

∂A

∂∇

(

df
)

Ŵ u

: ∇

(

df ,d̃fa

)

Ŵ u + ρ

(

u · ∇

(

df ,d̃fa

)

Ŵ

)

u · ua +
η

2

(

∇

(

df ,d̃fa

)

Ŵ u + ∇

(

df ,d̃fa

)

Ŵ uT

)

:

(

∇

(

df
)

Ŵ ua + ∇

(

df
)

Ŵ uTa

)

+
η

2

(

∇

(

df
)

Ŵ u + ∇

(

df
)

Ŵ uT
)

:

(

∇

(

df ,d̃fa

)

Ŵ ua +∇

(

df ,d̃fa

)

Ŵ uTa

)

− p div

(

df ,d̃fa

)

Ŵ ua − pa div

(

df ,d̃fa

)

Ŵ u + (�ua + �au)

·

(

∇� d̃fa
∥

∥∇�df + n�
∥

∥

2

−
∇�df + n�

(

∇�df + n�
)2

(

∇�df + n�
)

· ∇� d̃fa
∥

∥∇�df + n�
∥

∥

2

)

+ r2f

(

∇

(

df ,d̃fa

)

Ŵ γf · ∇

(

df
)

Ŵ γfa + ∇

(

df
)

Ŵ γf · ∇

(

df ,d̃fa

)

Ŵ γfa

)]∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

+

[

A+ ρ

(

u · ∇

(

df
)

Ŵ

)

u · ua +
η

2

(

∇

(

df
)

Ŵ u + ∇

(

df
)

Ŵ uT
)

:

(

∇

(

df
)

Ŵ ua + ∇

(

df
)

Ŵ uTa

)

− p div

(

df
)

Ŵ ua − pa div

(

df
)

Ŵ u + αu · ua + (�ua + �au) ·
∇�df + n�

∥

∥∇�df + n�
∥

∥

2

+

(

r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γfa + γf γfa − γ γfa

)](∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂df
d̃fa

+

∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂∇�df
· ∇� d̃fa

)

+ r2m∇�dfa · ∇� d̃fa + dfad̃fa d�

+

∫

∂�

B

∂
∥

∥

(

n� ×∇�df
)

×
(

n� −∇�df
)∥

∥

2

∥

∥

∥

∥

(

∂xŴ
∂x�

)−1[(
n� ×∇�df

)

×
(

n� − ∇�df
)]

∥

∥

∥

∥

−1

2

∂df
d̃fa

+ B

∂
∥

∥

(

n� ×∇�df
)

×
(

n� − ∇�df
)∥

∥

2

∥

∥

∥

∥

(

∂xŴ
∂x�

)−1[(
n� ×∇�df

)

×
(

n� − ∇�df
)]

∥

∥

∥

∥

−1

2

∂∇�df

· ∇� d̃fa dl∂� = 0, ∀d̃fa ∈ H(�)
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where γ̃fa and d̃fa are the test functions of γfa and dfa , 
respectively.

For the area constraint, the adjoint sensitivity of the 
area s is derived as

In Eq. (34), the adjoint sensitivity δ(s|Ŵ|) can be derived 
based on the adjoint analysis of s|Ŵ| =

∫

Ŵ
γp dŴ:

In Eq. (35), the adjoint variables γfa and dfa are derived by 
solving the variational formulations for the adjoint equa-
tions of the surface-PDE filters for γ and dm , respectively:

(34)δs = δ
s|Ŵ|

|Ŵ|
=

1

|Ŵ|
δ(s|Ŵ|)−

s

|Ŵ|
δ|Ŵ|.

(35)

δ(s|Ŵ|) =

∫

�

−γfaγ̃

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

− Addfad̃m d�, ∀

(

γ̃ , d̃m

)

∈

(

L
2(�)

)2

.

Table 1 Pseudocode used to solve the fiber bundle topology 
optimization problem for the surface flow

Note: In the iterative solution loop, ni is the loop-index; nmax is the maximal 
value of ni ; Jni−m and Jni−(m+1)  are the values of J in the (ni −m) th and 
(ni − (m+ 1)) th iterations; and mod is the operator used to take the remainder

Σ

xΓ 

xΣ
Nodes for a Taylor-Hood element

Nodes for a linear element

Γ

Nodes for a quadratic element

Figure 6 Sketch for the meshes of the Taylor-Hood, linear and quadratic elements of the quadrangular-element based discretization of the base 
manifold � and the mapping meshes on the implicit 2-manifold Ŵ
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and

The adjoint sensitivity δ|Ŵ| in Eq. (34) can be derived 
based on the adjoint analysis of |Ŵ| =

∫

Ŵ
1 dŴ:

In Eq. (38), the adjoint variables γfa and dfa are derived by 
solving the variational formulations for the adjoint equa-
tions of the surface-PDE filters for γ and dm , respectively:

(36)

Find γfa ∈ H(�), such that
∫

�

(

∂γp

∂γf
γ̃fa + r2f ∇

(

df
)

Ŵ γfa · ∇

(

df
)

Ŵ γ̃fa + γ̃faγfa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d� = 0,

∀γ̃fa ∈ H(�),

(37)

Find dfa ∈ H(�), such that

∫

�

r2f

(

∇

(

df ,d̃fa

)

Ŵ γf · ∇

(

df
)

Ŵ γfa +∇

(

df
)

Ŵ γf · ∇

(

df ,d̃fa

)

Ŵ γfa

)

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

+

(

γp + r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γfa + γf γfa − γ γfa

)(∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂df
d̃fa

+

∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂∇�df
· ∇� d̃fa

)

+ r2m∇�dfa · ∇� d̃fa + dfad̃fa d� = 0,

∀d̃fa ∈ H(�).

(38)
δ|Ŵ| =

∫

�

−γfaγ̃

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

− Addfad̃m d�, ∀

(

γ̃ , d̃m

)

∈

(

L
2(�)

)2

.

and

(39)

Find γfa ∈ H(�), such that
∫

�

(

r2f ∇

(

df
)

Ŵ γfa · ∇

(

df
)

Ŵ γ̃fa + γfaγ̃fa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ
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∥

∥

∥

−1

2

d� = 0, ∀γ̃fa ∈ H(�)
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Figure 7 Sketch for the base manifold for the fiber bundle topology optimization of the bending channel, where �D is the design domain and �F 
is the channel domains



Page 14 of 29Deng et al. Chinese Journal of Mechanical Engineering           (2024) 37:55 

(d1) (d2) (d3)

0.0

(a1) (a2) (a3) (b1) (b2) (b3)

(c1) (c2) (c3)

0.2

0.0

-0.2

0.5

0.0

-0.5

0.6

0.0

-0.6

0.8

0.0

-0.8

-1.0

1.0

0.0

(e1) (e2) (e3)(e1) (e2) (e3)

(g1) (g2) (g3)(g1) (g2) (g3)

-1.0

0.0

1.0

(f1) (f2) (f3)(f1) (f2) (f3)

(h1) (h2) (h3)(h1) (h2) (h3)

1.0

0.0

-0.8

(d1) (d2) (d3)

0.0

(a1) (a2) (a3) (b1) (b2) (b3)

(c1) (c2) (c3)

0.2

0.0

-0.2

0.5

0.0

-0.5

0.6

0.0

-0.6

0.8

0.0

-0.8

-1.0

1.0

0.0

(e1) (e2) (e3)

(g1) (g2) (g3)

-1.0

0.0

1.0

(f1) (f2) (f3)

(h1) (h2) (h3)

1.0

0.0

-0.8

Figure 8 Fiber bundle topology optimization of the bending channel with different values of the magnitude parameter Ad , 
including the distribution of the filtered design variables, the pattern of the bending flow projected on the base manifold and the fiber 
bundle composed of the base manifold together with the implicit 2-manifold and pattern of the surface flow, where the red arrows represent 
the distribution of the fluid velocity: (a1)–(a3) Results for Ad = 0 , (b1)–(b3) Results for Ad = 1 , (c1)–(c3) Results for Ad = 2 , (d1)–(d3) Results 
for Ad = 3 , (e1)–(e3) Results for Ad = 4 , (f1)–(f3) Results for Ad = 5 , (g1)–(g3) Results for Ad = 6 , (h1)–(h3) Results for Ad = 7

Table 2 Converged values of the design objective for the fiber bundles derived by sequentially setting the amplitude parameter Ad to 
be the elements of {0, 1, 2, 3, 4, 5, 6, 7}

Figure 8(a) Figure 8(b) Figure 8(c) Figure 8(d)

(Ad = 0) (Ad = 1) (Ad = 2) (Ad = 3)

3.6022× 101 1.6361× 101 9.6811× 100 5.7958× 100

Figure 8(e) Figure 8(f) Figure 8(g) Figure 8(h)

(Ad = 4) (Ad = 5) (Ad = 6) (Ad = 7)

4.7057× 100 4.0221× 100 3.6217× 100 3.3652× 100
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For the volume constraint, the adjoint sensitivity of the 
volume v is derived as

(40)

Find dfa ∈ H(�), such that
∫

�

r2f

(

∇

(

df ,d̃fa

)

Ŵ γf · ∇

(

df
)

Ŵ γfa + ∇

(

df
)

Ŵ γf · ∇

(

df ,d̃fa

)

Ŵ γfa

)

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

+

(

1+ r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γfa + γf γfa − γ γfa

)(∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂df
d̃fa

+

∂

∣

∣

∣

∂xŴ
∂x�

∣

∣

∣

∥

∥

∥

∥

∂xŴ
∂x�

n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

∂∇�df
· ∇� d̃fa

)

+ r2m∇�dfa · ∇� d̃fa + dfad̃fa d� = 0, ∀d̃fa ∈ H(�).

(41)δv =

∫

�

−Addfad̃m d�, ∀d̃m ∈ L
2(�).

In Eq. (41), the adjoint variable dfa is derived by solving 
the variational formulation for the adjoint equation of the 
surface-PDE filter for dm:

(42)

Find dfa ∈ H(�), such that
∫

�

1

|�|
d̃fa + r2m∇�dfa · ∇� d̃fa + dfad̃fa d� = 0, ∀d̃fa ∈ H(�).
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Figure 9 Convergent histories for the result of the bending channel in Figure 8(c) including the snapshots for the evolution of the fiber bundles
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Figure 10 Fiber bundle topology optimization of the bending channel with different values of the velocity magnitude U0 at the inlet, 
including the distribution of the filtered design variable df  , the pattern of the bending channel γp projected on � and the fiber bundle composed 
of the pattern and 2-manifolds, where the red arrows represent the distribution of the fluid velocity: (a1)–(a3) Results for U0 = 1× 100 , (b1)–(b3) 
Results for U0 = 2× 102 , (c1)–(c3) Results for U0 = 5× 102 , (d1)–(d3) Results for U0 = 8× 102
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After the derivation of the adjoint sensitivities in Eqs. 
(30), (34) and (41), the design variables γ and dm can be 
evolved iteratively to determine the fiber bundle of the 
surface flow.

3  Numerical Implementation
The fiber bundle topology optimization problem in Eq. 
(29) is solved by using an iterative procedure described 
as the pseudocode in Table  1, where a loop is included 
for the iterative solution. The surface finite element 
method is utilized to solve the variational formulations of 
the relevant PDEs and adjoint equations. On the details 
for the surface finite element solution, one can refer to 
Ref.  [59]. Especially, when the surface finite element 
method is used to solve the surface flow problems on 
the implicit 2-manifold filled with the porous medium, 
the Lagrange multiplier method is used to enforce the 
tangential constraints of the fluid velocity [56, 57]. To 
avoid the numerical singularity caused by the null value 
of the denominator, the 2-norm of a vector function 
is approximated in the numerical implementation as 
�f�2 →

(

f2 + ǫ0
)1/2 , where f  is the vector function and ǫ0 

is the value of floating point precision.
To ensure the well-posedness of the numerical solu-

tion of the variational formulations of the surface 

Navier-Stokes equations and their adjoint equations (Eqs. 
(23) and (31)), the Taylor-Hood elements satisfying the 
inf-sup condition are used [60]. The linear elements are 
used to interpolate the design variable of the pattern of 
the surface flow and solve the variational formulation 
of the surface-PDE filter for this design variable and 
the corresponding adjoint equation. The quadratic ele-
ments are used to interpolate the design variable for the 
implicit 2-manifold and solve the variational formulation 
of the surface-PDE filter for this design variable and the 
corresponding adjoint equation. The meshes of the Tay-
lor-Hood, linear and quadratic elements of the quadran-
gular-element based discretization of the base manifold 
have been sketched in Figure  6, including the mapping 
meshes on the implicit 2-manifold.

In the iterative procedure, the projection parameter 
β with the initial value of 1 is doubled after every 30 
iterations; the loop is stopped when the maximal itera-
tion number is reached, or if the averaged variation of 
the design objective in continuous 5 iterations and the 
residuals of the area and volume constraints are simulta-
neously satisfied. The design variable is updated by using 
the method of moving asymptotes [61].

4  Results and Discussion
In this section, the fiber bundle topology optimization 
is carried out for the surface flows defined on several dif-
ferent base manifolds, including the flat surfaces for the 
bending channel and the four-terminal device, the curved 
surfaces deformed from a square to a sphere and the ones 
deformed from a cylinder to a Möbius.

The design objective is set to be the combination of 
the power of the viscous dissipation and pressure drop 
between the inlet and outlet:

Table 3 Values of the design objective in Eq. (43) for the fiber 
bundles in Figure 10

Note: The optimized entries have been noted in bold

Figure 10(a) Figure 10(b) Figure 10(c) Figure 10(d)

U0 = 1× 100 9.6811× 10
0 9.8902× 100 9.7068× 100 1.2096× 101

U0 = 2× 102 3.6185× 105 3.4643× 10
5 3.6381× 105 4.2392× 105

U0 = 5× 102 2.9563× 106 2.8859× 106 2.4548× 10
6 2.7867× 106

U0 = 8× 102 9.5576× 106 9.3152× 106 7.6127× 106 7.2915× 10
6
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Figure 11 Sketch for the base manifold for the fiber bundle topology optimization of the four-terminal device, where �D is the design domain 
and �F is the channel domains
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where ω is the weight of the viscous dissipation and it is 
valued to be 9/10 and the weight of the pressure drop is 
hence 1/10. The density and dynamic viscosity of the fluid 
are assigned to be unitary. The surface flows are driven by 
the boundary velocity at the inlets, in the forms of para-
bolic distribution as the functions of arc length and with 
the magnitude set to be U0 with U0 = sup

∀x∈lv,Ŵ

∥

∥ulv,Ŵ
∥

∥

2
 . 

The outlets are set to be open boundaries. The remained 
boundaries are in the type of no slip.

4.1  Bending Channel
For the bending channel, the fiber bundle topology opti-
mization is implemented on the flat surface � composed of 
the design domain �D and the fluid domain �F as shown 
in Figure 7. For different values of the magnitude param-
eter Ad , the optimized fiber bundles and their components 
are derived as shown in Figure 8(a–h) including the distri-
bution of the velocity vectors, where the area and volume 
fractions are set to be s0 = 0.3 and v0 = 0 , respectively. 
Especially, the fiber bundle topology optimization prob-
lem degenerates into the topology optimization prob-
lem for the bending flow on the flat surface as shown in 

(43)

J = ω

∫

Ŵ

η

2

(

∇Ŵu + ∇Ŵu
T
)

:

(

∇Ŵu +∇Ŵu
T
)

+ αu2 dŴ

+ (1− ω)

(

∫

lv,Ŵ\lv0,Ŵ

p dl∂Ŵ −

∫

ls,Ŵ

p dl∂Ŵ

)

,

Figure  8(a), when the magnitude parameter Ad is set to 
be 0. By setting the volume fraction to be 0, the implicit 
2-manifold Ŵ is derived with the same absolute values of 
the positive part and negative part of the enclosed volumes 
at the two sides of � , respectively. This can be confirmed 
from the distribution of the filtered design variable df  
shown in Figure 8(a1, b1, c1, d1, e1, f1, g1 and h1).

The objective values for the optimized results derived 
in Figure 8 have been listed in Table 2. From Table 2, it 
can be concluded that higher value of Ad is helpful to 
decrease the viscous dissipation and pressure drop of 
the bending flow, because the design space of the fiber 
bundle topology optimization problem in Eq. (29) can be 
enlarged by increasing the value of the magnitude param-
eter in Eq. (4).

The convergent histories of the objective values and 
area and volume constraints have been plotted in Figure 9 
for the results in Figure 8(c) with the magnitude param-
eter Ad = 2 , including the snapshots for the evolution 
of the fiber bundles. From the convergent histories, the 
robust convergence of the numerical solution of the fiber 
bundle topology optimization problem can be confirmed 
for the bending flow. In the convergent histories, there 
are jumps of the objective values and area constraints, 
and those phenomena are caused by updating the projec-
tion parameter β in Eq. (9). Meanwhile, the convergent 
histories of the volume constraints are smooth, without 
jumping phenomenon. This is because that no projection 

Table 4 Fiber bundle topology optimization of the four-terminal device for different values of the velocity magnitude U0 at the inlets, 
where the red arrows represent the distribution of the fluid velocity

U0 = 5.50× 10
2

U0 = 5.75× 10
2

U0 = 6.25× 10
2

Ad = 0

Ad = 2
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operation is imposed to regularize the design variable of 
the implicit 2-manifolds.

By choosing the magnitude parameter to be Ad = 2 , 
the fiber bundle topology optimization problem is further 
investigated for different values of the velocity magnitude 
at the inlet of the bending flow. The optimized results 
are derived as shown in Figure 10 by setting U0 to be the 

elements of 
{

1× 100, 2× 102, 5× 102, 8× 102
}

 , sequen-
tially. Because larger value of U0 corresponds to stronger 
Reynolds effect of the surface flow, increasing the veloc-
ity magnitude at the inlet can strengthen the convection 
of the surface flow. Therefore, different fiber bundles are 
derived as shown in Figure 10.
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Figure 12 Fiber bundle topology optimization for the surface flows on the base manifolds deformed from a square to a sphere with keeping 
the conservation of area, where the base manifolds are sketched in (a1), (b1) and (c1), the distribution of the filtered design variables for the implicit 
2-manifolds are shown in (a2), (b2) and (c2), the projected patterns on the base manifolds are shown in (a3), (b3) and (c3), and the fiber bundles 
are derived as shown in (a4), (b4) and (c4) with the red arrows representing the distribution of the fluid velocity
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Figure 13 Distribution of the fluid pressure for the surface flows on the fiber bundles derived as shown in Figure 12(a4), (b4) and (c4)
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Figure 14 Fiber bundle topology optimization for the surface flows on the base manifolds deformed from a cylinder to a Möbius with keeping 
the conservation of area, where the base manifolds are sketched in (a1), (b1), (c1), (d1) and (e1), the distribution of the filtered design variables 
for the implicit 2-manifolds are shown in (a2), (b2), (c2), (d2) and (e2), the projected patterns on the base manifolds are shown in (a3), (b3), 
(c3), (d3) and (e3), and the fiber bundles are derived as shown in (a4), (b4), (c4), (d4) and (e4) with the red arrows representing the distribution 
of the fluid velocity
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Figure 15 Distribution of the fluid pressure for the surface flows on the fiber bundles derived as shown in Figure 14(a4), (b4), (c4), (d4) and (e4)
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To confirm the optimality of the derived fiber bundles 
of the bending flow, the results in Figure  10 are cross 
compared by computing the objective values as listed 
in Table  3. From the lowest value (marked in bold) of 
the design objective in every row of Table  3, the opti-
mized performance of the derived fiber bundles can be 
confirmed.

4.2  Four‑Terminal Device
For the fiber bundle topology optimization problem with 
the flat surface as its base manifold, the four-terminal 
device is further investigated by setting the magnitude 
parameter Ad to be 0 and 2, respectively. The computa-
tional domain is set as the flat surface shown in Figure 11 
composed of the design domain �D and the channel 
domains �F . By setting the area and volume fractions to 
be s0 = 0.4 and v0 = 0 , the optimized results are derived 
as listed in Table 4 for different velocity magnitude at the 
inlets.

In Table  4, the four-terminal device has the topology 
of double bending channels, when the surface flow has 
relatively weak Reynolds effect; the topology changes 
into double straight channels, as the Reynolds effect is 
strengthened. From the comparison of the results cor-
responding to Ad = 0 and Ad = 2 , it can be concluded 
that the increase of the magnitude parameter can speed 
up the change of the optimized topology of the four-ter-
minal device, when the Reynolds effect is strengthened. 
This is because that the increase of the magnitude param-
eter enlarges the design space of the four-terminal device, 
i.e., the characteristic size and area of the channels are 
increased and the averaged velocity is decreased at the 
inlets, then the gradient of the velocity decreases, and 
hence the viscous dissipation and pressure drop decrease.

4.3  Flows on Deformed Surfaces
For continuously deformed base manifolds with keep-
ing the conservation of area, the fiber bundle topology 
optimization is implemented for the surface flows. By 
deforming a square to a sphere as shown in Figure 12(a1–
c1), the optimized fiber bundles are derived as shown in 
Figure 12(a2–a4), (b2–b4) and (c2–c4) including the dis-
tribution of the velocity vectors, where the area and vol-
ume fractions and the magnitude parameter are set to be 
s0 = 0.4 , v0 = 0 and Ad = 2 , respectively.

In Figure 12, the fiber bundle for the surface flow on the 
square is composed of the base manifold together with 
the pattern of the flat diffuser and the implicit 2-mani-
fold coinciding with the base manifold. The flat diffuser 
is consistent with the previously reported results derived 
by using topology optimization [10]. When the square 
deforms into the shape of a semi-sphere, the pattern of 

the surface flow spits into two branches; and the implicit 
2-manifold shrinks to straighten the channels correspond-
ing to the pattern of the surface flow. When the semi-
sphere further deforms into a sphere, the two branches 
merges to remove one part of the no-slip boundary, and 
the surface flow evolves into the enclosed mode with two 
vortexes. The underlying mechanism for the evolution of 
the fiber bundles along with the deformation of base mani-
folds is that the fluid is prone to moving in the short path 
and widening the channel, and detachment of the no-slip 
boundary can help to decrease the viscous dissipation and 
pressure drop. Additionally, the viscous dissipation and 
pressure drop of the surface flows with the patterns in the 
optimized fiber bundles decreases, along with the base 
manifold deforming from a square to a sphere. This can be 
conformed from the pressure distribution in Figure 13.

Further, the fiber bundle topology optimization is imple-
mented on the base manifolds derived by deforming a 
cylinder firstly to a strip and then to a Möbius as shown 
in Figure 14(a1–e1) with the sizes marked on the strip, to 
minimize the viscous dissipation and pressure drop for the 
surface flows. The area and volume fractions and magni-
tude parameter are set without change. The patterns of 
the surface flows and the implicit 2-manifolds of the opti-
mized fiber bundles are derived as shown in Figure 14(a2–
a4), (b2–b4), (c2–c4), (d2–d4) and (e2–e4), including the 
distribution of the velocity vectors represented by the red 
arrows. Especially, the derived implicit 2-manifold on the 
Möbius is broken by setting the inlet simultaneously to be 
the outlet with the same known velocity distribution. The 
destination of such setting is to make the derived implicit 
2-manifold be orientable and remove the singularity of the 
normal direction on the non-orientable Möbius.

In Figure  14, the derived pattern and implicit 2-mani-
fold defined on a cylinder is composed of a circle channel 
and a curved surface with asymmetry. Then, the cylinder is 
opened and sequentially evolved into the shapes of semi-
cylinder, strip, semi-Möbius until being enclosed again 
into the shape of Möbius, where the conservation of area is 
kept. The derived patterns and implicit 2-manifolds defined 
on the base manifolds corresponding to the sequential evo-
lution of the opened cylinder are all composed of chan-
nel-shaped patterns and curved surfaces with asymmetry. 
The asymmetry assists the derived implicit 2-manifolds 
to satisfy the volume constraint with the volume fraction 
of 0, and it is caused by the asymmetrical property of the 
convection of the surface flows. The asymmetry is advan-
tageous to shorten the path of the surface flows, then to 
decrease the viscous dissipation and pressure drop.

The pressure distribution in the derived fiber bundles 
has been provided in Figure  15, which shows that the 
deformation of the base manifold from the cylinder to 
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the Möbius is advantageous to decrease the viscous dissi-
pation and pressure drop. This is because that the defor-
mation can shorten the path of surface flows with the 
optimized patterns on the derived implicit 2-manifolds. 
Additionally, the case of Möbius has similar pressure 
drop to that of cylinder. Therefore, the orientability of 
2-manifolds can provide similar effectivity on the design 
domain for fiber bundle topology optimization to mini-
mize the viscous dissipation and pressure drop of a sur-
face flow.

5  Conclusions
A fiber bundle topology optimization approach for the 
surface flow has been developed to match the implicit 
2-manifold and the pattern defined on it, where the sur-
face flow is described by the surface Navier-Stokes equa-
tions defined on the implicit 2-manifold. The material 
distribution method is used to implement the topology 
evolution of the pattern, where an artificial Darcy friction 
force of the porous model is added to the surface Navier-
Stokes equations. The implicit 2-manifold is evolved 
based on the homeomorphous map between it and the 
base manifold. Continuous adjoint analysis method has 
been used to analyze the fiber bundle topology optimi-
zation problem. Compared with the traditional topol-
ogy optimization approaches, the presented fiber bundle 
topology optimization approach can provide more design 
freedom and larger design space.

Numerical tests have been presented to demonstrate 
this approach, including the fiber bundle topology opti-
mization of bending channel, four-terminal device and 
fluid channels on continuously deformed base mani-
folds. The bending channel has been optimized to pre-
sent the effect of the magnitude parameter used to 
determine the design space of the implicit 2-manifold, 
and the results show that the increase of the magnitude 
parameter can enlarge the design space of the fiber bun-
dle for the surface flow. The Reynolds effect has been 
demonstrated by the fiber bundle topology optimiza-
tion of the bending channel and four-terminal device, 
by setting different velocity magnitude at the inlets. In 
the results of the bending channel, the valley and slope-
shaped implicit 2-manifolds are derived to shorten the 
fluid path. In the results of the four-terminal device, 
the magnitude parameter of the implicit 2-manifold 
can speed up the topology change from double bending 

channels to double straight channels as the Reynolds 
effect is strengthened, compared with the results of 
topology optimization for the surface flow on the flat 
surface corresponding to the degenerated case with the 
null value of the magnitude parameter. The fiber bundle 
topology optimization has also been implemented on 
the base manifolds derived by deforming a square into 
a sphere and deforming a cylinder into a Möbius, where 
the area conservation is kept during the deformation. 
The derived results show that the non-orientable base 
manifolds have similar performance to the orientable 
ones on shortening the fluid path and minimizing the 
viscous dissipation and pressure drop.

The presented fiber bundle topology optimization 
approach includes the design domain into the design 
space of fluidic structures. This approach achieves 
the topology optimization for fluid flows on the vari-
able design domain. It provides a topology optimization 
method for the conformal design of fluidic channels, 
where the channel topology and the outer shapes of 
structural walls can be optimized simultaneously to 
achieve the matching optimization. Especially, the fiber 
bundle topology optimization problem will degenerate 
into the topology optimization problem for the fluid flow 
on a flat surface, if the null value is chosen for the magni-
tude parameter of the surface-PDE filter and the flat sur-
face is set as the base manifold. Therefore, the presented 
fiber bundle topology optimization is the generalization 
of topology optimization for two-dimensional flow prob-
lems. This paper focuses on the laminar surface flows. In 
the future, it can be promoted for the turbulent surface 
flows.

Appendix
This section provides the details for the adjoint analysis 
of the fiber bundle topology optimization problem in Eq. 
(29).

Adjoint Analysis for Design Objective
Based on the transformed design objective in Eq. (28), 
the variational formulations of the surface-PDE filters 
in Eqs. (7) and (10) and the surface Navier-Stokes equa-
tions in Eq. (24), the augmented Lagrangian of the design 
objective in Eq. (29) can be derived as
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with

Based on the transformed operators in Eqs. (14) and (15) 
and their first order variationals in Eqs. (16) and (17), 
together with the first order variational of the 2-norm of 
a vector function

(44)
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ua ∈ (H(�))3 with ua = 0, ∀x ∈ lv,� ,

pa ∈ H(�) with pa = 0, ∀x ∈ P� ,

�a ∈ L
2(�) with �a = 0, ∀x ∈ lv,� ,

with f  representing the vector function, the first order 
variational of the augmented Lagrangian in Eq. (44) can 
be derived as

(46)
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with the satisfication of the constraints in Eq. (45) and

According to the Karush-Kuhn-Tucker conditions of the 
PDE constrained optimization problem [58], the first 
order variational of the augmented Lagrangian to the 
variables u , p and � can be set to be zero as

the first order variational of the augmented Lagrangian to 
the variable γf  can be set to be zero as

(48)
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and the first order variational of the augmented Lagran-
gian to the variable df  can be set to be zero as
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The constraints in Eqs. (45) and (48) are imposed to Eq. 
(49). Further, the adjoint sensitivity of J is derived from

Without losing the arbitrariness of δu , δp , δ� , δγf  , δdf  , 
δγ and δdm , one can set δu = ũa with ∀ũa ∈ (H(�))3 , 
δp = p̃a with ∀p̃a ∈ H(�) , δ� = �̃a with ∀�̃a ∈ L2(�) , 

(51)

�

�

�

∂A

∂∇

�

df
�

Ŵ u

: ∇

�

df ,δdf
�

Ŵ u + ρ

�

u · ∇

�

df ,δdf
�

Ŵ

�

u · ua +
η

2

�

∇

�

df ,δdf
�

Ŵ u +∇

�

df ,δdf
�

Ŵ uT
�

:

�

∇

�

df
�

Ŵ ua +∇

�

df
�

Ŵ uTa

�

+
η

2

�

∇

�

df
�

Ŵ u + ∇

�

df
�

Ŵ uT
�

:

�

∇

�

df ,δdf
�

Ŵ ua + ∇

�

df ,δdf
�

Ŵ uTa

�

− p div

�

df ,δdf
�

Ŵ ua − pa div

�

df ,δdf
�

Ŵ u + (�ua + �au) ·

�

∇�δdf
�

�∇�df + n�
�

�

2

−
∇�df + n�

�

∇�df + n�
�2

�

∇�df + n�
�

· ∇�δdf
�

�∇�df + n�
�

�

2

�

+ r2f

�

∇

�

df ,δdf
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + ∇

�

df
�

Ŵ γf · ∇

�

df ,δdf
�

Ŵ γfa

�

+

�

∇

�

df ,δdf
�

Ŵ dτŴ · ∇

�

df
�

Ŵ dτŴa + ∇

�

df
�

Ŵ dτŴ · ∇

�

df ,δdf
�

Ŵ dτŴa

�

−

�

∇

�

df ,δdf
�

Ŵ f · ∇

�

df
�

Ŵ fa

+∇

�

df
�

Ŵ f · ∇

�

df ,δdf
�

Ŵ fa

���

�

�

�

∂xŴ

∂x�

�

�

�

�

�

�

�

�

∂xŴ

∂x�
n

�

df
�

Ŵ

�

�

�

�

−1

2

+

�

A+ ρ

�

u · ∇

�

df
�

Ŵ

�

u · ua

+
η

2

�

∇

�

df
�

Ŵ u +∇

�

df
�

Ŵ uT
�

:

�

∇

�

df
�

Ŵ ua + ∇

�

df
�

Ŵ uTa

�

− p div

�

df
�

Ŵ ua − padiv

�

df
�

Ŵ u

+ αu · ua + (�ua + �au) ·
∇�df + n�

�

�∇�df + n�
�

�

2

+

�

r2f ∇

�

df
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + γf γfa − γ γfa

�

+

�

∇

�

df
�

Ŵ dτŴ · ∇

�

df
�

Ŵ dτŴa + dτŴdτŴa − fdτŴa − ∇

�

df
�

Ŵ f · ∇

�

df
�

Ŵ fa − fa

�

�











∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂df
δdf +

∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂∇�df
· ∇�δdf











+ r2m∇�δdf · ∇�dfa + δdf dfa d�

+

�

∂�

B

∂
�

�

�

n� ×∇�df
�

×
�

n� − ∇�df
��

�

2

�

�

�

�

�

∂xŴ
∂x�

�−1��
n� × ∇�df

�

×
�

n� −∇�df
��

�

�

�

�

−1

2

∂df

δdf + B

∂
�

�

�

n� ×∇�df
�

×
�

n� − ∇�df
��

�

2

�

�

�

�

�

∂xŴ
∂x�

�−1��
n� ×∇�df

�

×
�

n� −∇�df
��

�

�

�

�

−1

2

∂∇�df

· ∇�δdf dl∂� = 0.

(52)

δJ =

∫

�

−γfaδγ

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

− Addfaδdm d�.

δγf = γ̃fa with ∀γ̃fa ∈ H(�) , δdf = d̃fa with ∀d̃fa ∈ H(�) , 
δγ = γ̃ with ∀γ̃ ∈ L2(�) and δdm = d̃m with 
∀d̃m ∈ L2(�) , to derive the adjoint system composed of 
Eqs. (30), (31), (32) and (33).

Adjoint Analysis for Area Constraint
Based on the variational formulations of the surface-PDE 
filters in Eqs. (7) and (10), the augmented Lagrangian of 
the pattern area s|Ŵ| can be derived as
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(53)
̂s|Ŵ| =

∫

�

(

γp + r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γfa + γf γfa − γ γfa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

+ r2m∇�df · ∇�dfa + df dfa − Ad

(

dm −
1

2

)

dfa d�.

Based on the transformed operators in Eq. (14) and its 
first order variational in Eq. (16), the first order vari-
ational of ̂s|Ŵ| can be derived as

According to the Karush-Kuhn-Tucker conditions of the 
PDE constrained optimization problem [58], the first 
order variational of the augmented Lagrangian to the 
variable γf  can be set to be zero as

and the first order variational of the augmented Lagran-
gian to the variable df  can be set to be zero as

(54)

δ�s|Ŵ| =

�

�

�

∂γp

∂γf
δγf + r2f

�

∇

�

df
�

Ŵ δγf · ∇

�

df
�

Ŵ γfa + ∇

�

df ,δdf
�

Ŵ γf · ∇

�

df
�

Ŵ γfa +∇

�

df
�

Ŵ γf · ∇

�

df ,δdf
�

Ŵ γfa

�

+ δγf γfa − δγ γfa

��

�

�

�

∂xŴ

∂x�

�

�

�

�

�

�

�

�

∂xŴ

∂x�
n

�

df
�

Ŵ

�

�

�

�

−1

2

+

�

γp + r2f ∇

�

df
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + γf γfa − γ γfa

�











∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂df
δdf +

∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂∇�df
· ∇�δdf











+ r2m∇�δdf · ∇�dfa + δdf dfa − Adδdmdfa d�.

(55)
∫

�

(

∂γp

∂γf
δγf + r2f ∇

(

df
)

Ŵ δγf · ∇

(

df
)

Ŵ γfa + δγf γfa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

d� = 0;

(56)

�

�

r2f

�

∇

�

df ,δdf
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + ∇

�

df
�

Ŵ γf · ∇

�

df ,δdf
�

Ŵ γfa

��

�

�

�

∂xŴ

∂x�

�

�

�

�

�

�

�

�

∂xŴ

∂x�
n

�

df
�

Ŵ

�

�

�

�

−1

2

+

�

γp + r2f ∇

�

df
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + γf γfa − γ γfa

�











∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂df
δdf +

∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂∇�df
· ∇�δdf











+ r2m∇�δdf · ∇�dfa + δdf dfa d� = 0.
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Further, the adjoint sensitivity of s|Ŵ| is derived from

Based on the variational formulations of the surface-PDE 
filters in Eqs. (7) and (10), the augmented Lagrangian of 
the area of the implicit 2-manifold can be derived as

Based on the transformed operators in Eq. (14) and its 
first order variational in Eq. (16), the first order vari-
ational of ̂|Ŵ| can be derived as

(57)

δ̂s|Ŵ| =

∫

�

−δγ γfa

∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

− Adδdmdfa d�.

(58)
̂|Ŵ| =

∫

�

(

1+ r2f ∇

(

df
)

Ŵ γf · ∇

(

df
)

Ŵ γfa + γf γfa − γ γfa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ

∂x�
n

(

df
)

Ŵ

∥

∥

∥

∥

−1

2

+ r2m∇�df · ∇�dfa + df dfa − Ad

(

dm −
1

2

)

dfa d�.

(59)

δ�|Ŵ| =

�

�

�

r2f
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∇
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df
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Ŵ δγf · ∇

�

df
�

Ŵ γfa + ∇

�

df ,δdf
�
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�

df
�
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�

df
�

Ŵ γf · ∇

�

df ,δdf
�

Ŵ γfa

�

+ δγf γfa − δγ γfa

��

�

�

�
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�

�

�

�

�

�

�

�

∂xŴ
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n

�

df
�

Ŵ

�

�

�

�

−1

2

+

�

1+ r2f ∇

�

df
�

Ŵ γf · ∇

�

df
�

Ŵ γfa + γf γfa − γ γfa

�











∂

�

�

�

∂xŴ
∂x�

�

�

�

�

�

�

�

∂xŴ
∂x�

n

�
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�
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2
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∂

�

�

�

∂xŴ
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�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂∇�df
· ∇�δdf











+ r2m∇�δdf · ∇�dfa + δdf dfa − Adδdmdfa d�.

According to the Karush-Kuhn-Tucker conditions of the 
PDE constrained optimization problem [58], the first 
order variational of the augmented Lagrangian to the 
variable γf  can be set to be zero as

and the first order variational of the augmented Lagran-
gian to the variable df  can be set to be zero as

(60)

∫

�

(

r2f ∇

(

df
)

Ŵ δγf · ∇

(

df
)

Ŵ γfa + δγf γfa

)∣

∣

∣

∣

∂xŴ

∂x�

∣

∣

∣

∣

∥

∥

∥

∥

∂xŴ
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n

(
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Ŵ

∥

∥

∥

∥

−1

2

d� = 0;

(61)
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�
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�
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�
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2

+
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�
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�
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�

Ŵ γfa + γf γfa − γ γfa
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�
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Ŵ
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�
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2

∂df
δdf +

∂

�

�

�

∂xŴ
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�

�

�

�

�

�

�

∂xŴ
∂x�

n

�

df
�

Ŵ

�

�

�

�

−1

2

∂∇�df
· ∇�δdf











+ r2m∇�δdf · ∇�dfa + δdf dfa d� = 0.
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Further, the adjoint sensitivity of |Ŵ| is derived from

Without losing the arbitrariness of δγf  , δdf  , δγ and δdm , 
one can set δγf = γ̃fa with ∀γ̃fa ∈ H(�) , δdf = d̃fa with 
∀d̃fa ∈ H(�) , δγ = γ̃ with ∀γ̃ ∈ L2(�) and δdm = d̃m 
with ∀d̃m ∈ L2(�) , to derive the adjoint systems composed 
of Eqs. (35), (36), (37) and Eqs. (38), (39), (40), respectively. 
Then, the adjoint sensitivity of the area fraction s can be 
derived from Eq. (34).

Adjoint Analysis for Volume Constraint
Based on the variational formulations of the surface-
PDE filter in Eq. (7), the augmented Lagrangian of the 
volume fraction v can be derived as

The first order variational of v̂ can be derived as

According to the Karush-Kuhn-Tucker conditions of the 
PDE constrained optimization problem [58], the first 
order variational of the augmented Lagrangian to the 
variable df  can be set to be zero as

Further, the adjoint sensitivity of v is derived from

Without losing the arbitrariness of δdf  and δdm , one 
can set δdf = d̃fa with ∀γ̃fa ∈ H(�) , and δdm = d̃m with 
∀d̃m ∈ L2(�) , to derive the adjoint system composed of 
Eqs. (41) and (42).
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(62)

δ̂|Ŵ| =

∫

�

−δγ γfa

∣

∣

∣

∣
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∂x�

∣

∣

∣

∣

∥

∥

∥

∥
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∂x�
n

(
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∥

∥

∥

∥

−1

2

− Adδdmdfa d�.
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v̂ =

∫

�

1

|�|
df + r2m∇�df · ∇�dfa + df dfa − Ad

(

dm −
1

2

)

dfa d�.
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δv̂ =

∫

�

1

|�|
δdf + r2m∇�δdf · ∇�dfa + δdf dfa − Adδdmdfa d�.
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∫

�

1
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