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Abstract 

Battery remaining charging time (RCT) prediction can facilitate charging management and alleviate mileage anxiety 
for electric vehicles (EVs). Also, it is of great significance to improve EV users’ experience. However, the RCT for a lith-
ium-ion battery pack in EVs changes with temperature and other battery parameters. This study proposes an elec-
trothermal model-based method to accurately predict battery RCT. Firstly, a characteristic battery cell is adopted 
to represent the battery pack, thus an equivalent circuit model (ECM) of the characteristic battery cell is established 
to describe the electrical behaviors of a battery pack. Secondly, an equivalent thermal model (ETM) of the battery 
pack is developed by considering the influence of ambient temperature, thermal management, and battery connec-
tors in the battery pack to calculate the temperature which is then fed back to the ECM to realize electrothermal cou-
pling. Finally, the RCT prediction method is proposed based on the electrothermal model and validated in the wide 
temperature range from − 20 ℃ to 45 ℃. The experimental results show that the prediction error of the RCT 
in the whole temperature range is less than 1.5%.
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1 Introduction
The promotion of electric vehicles (EVs) is an important 
way to achieve the dual goals of “carbon peaking” and 
“carbon neutrality”. Compared with fuel vehicles, EVs 
have the problems of short full mileage per charge or 
mileage anxiety, long charging time, and fuzzy prediction 
of remaining charging time (RCT). They have been 
hindering their adoption and popularization [1]. To solve 
these problems, many researchers focus on real-time 
optimization of EV charging in terms of EV charging 
state prediction [2–4] and optimization of EV charging 
strategy [5–7]. However, the accurate prediction of the 

RCT is the main basis for the real-time optimization of 
EV charging. Furthermore, the accurate prediction of 
the RCT also has the following significances [8]: (1) it is 
useful for users to plan and arrange their trips [9], (2) it is 
convenient for users to optimize their EV charging habits 
(e.g., select appropriate charging methods and extend the 
service life of EV batteries) [10], and (3) it is convenient 
for developers to optimize charging strategies [11, 12].

Although the accurate prediction of the RCT has 
important research value and commercial value, the 
research on the RCT is limited. Most of the algorithms to 
predict the RCT are based on a single cell under a narrow 
temperature range, they are difficult to be applied in the 
actual EV applications. Shi et al. [13] proposed a charging 
prediction method for the constant current constant 
voltage (CCCV) charging protocol. In the CC phase, the 
current in the current profile is not always constant. At 
the beginning of charging, the average charging current 
rate is close to the historical charging rate; In the later 
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stage of charging, the average charging current rate 
is close to the current charging rate. Considering the 
confidence interval of historical charging data and real-
time charging data, an online charging time estimation 
method is proposed to eliminate the error between 
demand current and actual current; In the CV stage, the 
radial basis function neural network is used to predict the 
battery resistance and charging current curve. Wu et al. 
[14] studied the charging time of the battery pack related 
to the temperature under the simple CCCV charging 
strategy to control the battery temperature within an 
appropriate range before the start of charging and did 
not pay attention to the temperature change within the 
charging period. In general, existing research on battery 
charging time faces the following problems:

(1) The research mainly focuses on the CCCV charging 
protocol of a battery, which is different from the 
fast-charging protocol in current commercial EVs.

(2) The research ignores the temperature change in 
the charging process, which leads to inaccurate 
charging time prediction for current commercial 
EVs.

(3) The research only targets the small range of battery 
operation temperature, which cannot be used for 
batteries against wide temperature range due to the 
popularization of EVs.

The battery temperature and charging current meas-
ured by a battery management system (BMS) in a com-
mercial EVs during fast charging at − 4 ℃ are shown in 
Figure 1.

As can be seen in the enlarged area (1), the charging 
current suddenly increases and decreases due to the 
increase of battery temperature and SOC during the 
progress of the charging process. The similar situation 
also occurs in the other areas such as (2) and (3). 
Therefore, in the actual use of commercial EVs we need 
to pay attention to a wide range of temperature changes 
of the battery in EVs to achieve an accurate prediction of 
the charging time [15].

In this study, we propose a prediction method for 
the remaining charging time (RCT) based on an 
electrothermal model  [16,  17]. It can effectively predict 
the RCT of EVs against a wide temperature range. The 
main contributions of this paper can be summarized as 
follows.

First, an equivalent circuit model (ECM) is developed 
for the characteristic battery cell selected from a battery 
pack, which takes the temperature and SOC into account. 
It is used to describe the electrical characteristics of 
a battery pack. Second, an equivalent thermal circuit 
model of the battery pack is established to describe the 

temperature change of the battery pack. Third, establish 
an electrothermal model, and a prediction model for RCT 
is established based on the electrothermal model. Fourth, 
the model is validated against the wide temperature 
range of − 20 ℃ to 45 ℃ and the relative error of the RCT 
is less than 1.5%.

The remainder of this paper is organized as follows. 
Section  2 describes the development of the electrical 
model and equivalent thermal model. Section  3 
establishes an electrothermal model and presents an 
RCT prediction method based on the model. Section  4 
experimentally validates the proposed method at various 
temperatures. Conclusions are given in Section 5.

2  Electrical Model and Equivalent Thermal Model
2.1  Electrical Model
Due to the inconsistency of each battery cell of a battery 
pack, the “Buckets effect” (no matter how high a bucket is, 
the height at which it holds water depends on the lowest 
wooden board among them) often occurs in the use of the 
battery pack. A characteristic battery cell appropriately 
selected from a battery pack can be used to represent 
the battery pack [18]. For a battery pack, we monitor 
the voltage of each battery cell in the pack and use the 
battery cell with the highest voltage in the pack to protect 
the battery pack from overcharging during the charging 
process. Thus, we select the battery cell with the highest 
voltage as the characteristic battery cell and assume that 
all the other cells have the same characteristics as the 
characteristic battery cell. In such a way, an ECM for 
the characteristic battery cell is established to describe 
the characteristics of a battery pack. The ECM has the 
advantages of a few parameters, low calculation burden, 
and easy acquisition of battery characteristics. It is 
often used to describe the characteristics/behavior of 

Figure 1 Temperature of the battery and the demand current 
at −4 ℃
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the characteristic cell in commercial EVs. Therefore, 
the Thevenin model related to temperature and SOC is 
established to describe the characteristics of battery cell 
[19] as shown in Figure  2. According to Kirchhoff’s law 
and the relationship between the capacitor voltage and 
its current, the state space equation of the circuit model 
can be expressed as:

Thevenin model consists of three parts: voltage source 
UOCV, ohmic internal resistance Ri and RC network. 
In addition, UD denotes the polarization voltage of the 
battery during the dynamic process and Ut denote the 
terminal voltage. RC network describes the dynamic 
characteristics of a battery through a polarization 
internal resistance RD and a polarization capacitor CD.

Discretizing the polarization voltage in Eq. (1) leads to

(1)







U̇D =
iL

CD(T , SOC)
−

UD

RD(T , SOC)CD(T , SOC)
,

Ut = UOCV(T , SOC)−UD − iLRi(T , SOC).

(2)
UD(k + 1) =UD(k)× e

−
1

RD(k)CD(k) + iL,k

× RD(k)× (1− e
−

1
RD(k)CD(k) ),

where RD(k), CD(k) and Ri(k) are the model parameter 
at the kth time and their value is obtained through 
interpolation under different operating conditions.

The model parameters are modeled as a function of 
temperature and SOC. CD, RD and Ri are expressed as a 
polynomial related to battery temperature and SOC, and 
their specific relationships are obtained by HPPC experi-
ments at different temperatures and SOC. Before testing, 
charge the tested unit to full charge, adjust the tem-
perature to the specified temperature, load mixed pulse 
excitation in sequence, and then discharge for testing at 
different SOC at the same temperature. Using genetic 
algorithm for parameter identification, and the fitness 
function is the difference between the predicted termi-
nal voltage and the actual terminal voltage. The predicted 
terminal voltage is obtained from the second equation of 
Eq. (1), where UOCV is one of the identification param-
eters, and UD is obtained from the calculation in Eq. (2). 
The calculation process of UD involves the introduction 
of other identification parameters. Details of the  param-
eters can be found in the Additional file  1.  The image 
obtained is shown in Figure 3.

During the charging process, the ampere-hour 
integration method is used to calculate battery SOC:

where SOC(k) is the SOC at the kth moment; η is the 
coulombic efficiency; Cmax is the maximum available 
capacity.

2.2  Equivalent Thermal Model
There is the temperature inconsistency in a battery pack. 
To control the temperatures of all the battery cell in the 
pack within the safe range during charging process, we 
develop an equivalent thermal model (ETM) to reflect 
thermal behaviors of the battery pack at two extreme 
cases. First, when the battery pack is charged at high 

(3)SOC(k + 1) = SOC(k)+
η × iL,k ×�t

Cmax

,

Figure 2 1-RC model related to temperature and SOC

Figure 3 Identification results of (a) Ri and (b) RD
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temperature (e.g., above 40 ℃) with high charge rate, bat-
tery temperature will rise rapidly and battery aging will 
accelerate. In this case, the high temperature battery cell 
in the pack will determine charging current. Second, 
when the battery pack is charged at low temperature (e.g., 
below 0 ℃) with high charge rate, severe lithium plat-
ing will occur in a battery cell. In this case, the low tem-
perature battery cell in the pack will determine charging 
current. Based on the ECM, we obtain two groups of 
parameters of the ETM at both high temperature and low 
temperature to jointly control charging current [20, 21].

The battery pack shows different heat exchange con-
ditions when the active thermal management system is 
involved or not. Due to the change of the heat transfer 
path, the heat exchange method and objects are changed 
[22, 23]. Therefore, the thermal model is divided into three 
cases: battery heating only, battery charging only and bat-
tery heating and charging, which is shown in Figure 4.

In Figure 4, Q1 and Qc are the liquid heating heat source 
and the battery charging excitation heat source, respec-
tively; Tc, Ts and Tair are the battery temperature, the bat-
tery surface temperature and the ambient temperature; 

Rair and Rc are the thermal resistance of air and the inter-
nal thermal resistance of a battery; Cair and Cc are the 
heat capacity of air and the heat capacity of a battery.

The state equations of the three models are:

Taking battery heating and charging as an example, 
the offline process of the formula is as follows:

The state space Eq. (6) is transformed into the general 
expression as:

Discreting Eq. (7) gives

where t is the sampling time length. Its Taylor expansion 
is

(4)
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Figure 4 Equivalent thermal model: (a) Heating system only, (b) 
Charging only, (c) Heating system and charging
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An offline database is established for parameter iden-
tification by using a genetic algorithm [24].

The heat source Q1 is calculated by

where W is the liquid heating mass flow; C is the specific 
heat capacity of a heating liquid; Tinlet and Toutlet are the 
inlet water temperature and outlet water temperature 
[25].

Using the Bernardi heat generation model, we obtain 
the battery heat generation Qc as

Eq. (11) consists of two parts: ohmic heat generation 
and electrochemical reaction heat. The first term in the 
equation is ohmic heat generation; The second item is 

(10)Q1 = WC(Tinlet − Toutlet),

(11)Qc = (UOCV −Ut)iL + iLT
dUOCV

dT
.

the heat of electrochemical reaction. dUOCV

dT
 is the entropy 

heat coefficient, used to calculate the heat of electro-
chemical reaction, whose values vary significantly under 
different SOC conditions. Calculate the entropy thermal 
coefficient of the battery by changing the battery temper-
ature to obtain voltage at a fixed SOC. And its relation-
ship with the SOC is shown in Figure 5 [26].

The thermal model is also subjected to parameter 
identification through a genetic algorithm. In this 
case, the fitness function is the difference between the 
predicted battery temperature and the actual battery 
temperature. The predicted battery temperature is 
obtained from Eq. (8), where, during the process of 
predicting the battery temperature, all the thermal model 
identification parameters are introduced.

3  Electrothermal Model and Remaining Charging 
Time Prediction Method

By coupling the above-established ECM and ETM, we 
develop an electrothermal model [27]. Figure 6 shows the 
implementation of the electrothermal model. Step one, 
the battery initial charging current I0, SOC0 and tem-
perature Tcell input to the ECM of the battery pack model 
based on the characteristic cell. Step two, the outputs 
of the ECM including battery terminal voltage Ut, OCV 
UOCV and current I input into the ETM. Step three, the 
ETM calculates the maximum/minimum battery tem-
perature Tcell at the next moment according to the results 
of the electrical model input. The heat of the equivalent 
thermal circuit model comes from two parts: the heat 
generation from the cell Qc and the heat from the thermal 
management Qt. Calculate the heat generation Qc based 
on the input Ut, UOCV and I. Calculate thermal manage-
ment heat Qt based on Tcell and thermal management 
strategy. Calculate the temperature of battery Tcell at the 
next moment based on the input ambient temperature 

Figure 5 Obtaining entropy heat coefficient through experimental 
testing

Figure 6 Implementation of electrothermal model
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Tair, Qc and Qt. And returns the thermal model calcula-
tion results to the electrical model to realize the coupling 
of the electrical model and thermal model [28].

Based on the electrothermal model, the trajectory of 
battery charging is simulated for the RCT prediction 
[29, 30], where the prediction step is taken as 10 s. The 
process for RCT prediction is shown in Figure 7.

(a) Input temperature and SOC: Input initial 
temperature of battery Tcell and SOC into the model 
according to the information output by the battery 
module BMS.

(b) Whether it is an abnormal working condition: For 
the current less than 5A (because the charging 
equipment is under startup or startup failure 
condition), it is considered that an abnormal 
working condition occurs, and according to signals 
such as the SOC status sent out by BMS, following 
the ideal charging map and thermal management 
strategy (without considering the charging station 
charging rate), repeat steps c to g to calculate the 
ideal charging time.

(c) Calculation of temperature and charging stage: 
Commercial vehicles have two charging meth-
ods: high magnification multi-stage constant cur-
rent (charging strategy varies with temperature 
and SOC) and low magnification constant current. 
Calculate the current charging stage according to 
the input temperature, SOC and selection of users 
charging station type (considering the charging sta-
tion charging rate).

(d) Electrical model calculation: Calculate the electrical 
model parameters of the current stage.

(e) Thermal model calculation: When charging is not 
completed, calculate the battery temperature at end 
of the current step and feed it back to the electric 
model.

(f ) Full charge judgment: Judge whether charging is 
completed.

(g) Time accumulation: The time is accumulated until 
the charging is completed.

Figure 7 Process of RCT prediction
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4  Validation
We verify the accuracy of the RCT prediction from 
three aspects (battery terminal voltage, temperature and 
charging time) with the temperature range from −20 ℃ 
to 45 ℃. The specification of the battery cell is shown in 
Table 1.

4.1  Battery Terminal Voltage
The experiments were carried out at −  17 ℃, 4 ℃, 8 ℃ 
and 45 ℃. The predicted and measured battery terminal 
voltage agree with each other very well, as shown in Fig-
ure 8; in this case, Figure 8(a) and (b) represent low-rate 

constant current charging experiments, while Figure 8(c) 
and (d) represent high-rate multi-stage constant current 
charging experiments. Therefore, in Figure  8(c) and (d), 
the voltage prediction errors exhibit larger fluctuations. 
However, most errors are within 20 mV. The initial volt-
age error is large because we set the initial value of the 
polarization voltage as 0 V, and the polarization voltage 
gradually converges and the error decreases in the recur-
sion process.

4.2  Battery Temperature
The predicted and measured battery temperature 
agree each other very well too as shown in Figure  9 
with most of the temperature prediction errors within 
2 ℃. Because the accuracy of temperature sensor in the 
experiments was 1 ℃, the temperatures were shown in 
sawtooth shapes. Although the charging prediction pro-
cess involves the accumulation of errors, thanks to the 
good consistency of the commercial battery system and 
the presence of battery system thermal management, 
there is no significant accumulation of errors in battery 

Table 1 Specification of the battery cell

Items Parameters

Materials Lithium-Cobalt battery

Nominal capacity (A·h) 117

Voltage (V) 2.5–4.4

Temperature (℃) −20~45

Figure 8 Voltage error profile of the ECM (a) −17 ℃, (b) 4 ℃, (c) 8 ℃, (d) 45 ℃
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temperature prediction. Additionally, in this commercial 
electric vehicle model, the charging control temperature 
changes the charging rate every 5 ℃. Therefore, a temper-
ature error of 2 ℃ fully satisfies the temperature accuracy 
requirements during the charging process of this vehicle.

4.3  Battery RCT 
Under different temperatures and SOC, battery pack 
charging was carried out at different charging rates. The 
predicted and measured RCTs are shown in Table  2, 
where Tair is the ambient temperature; SOC is the initial 

Figure 9 Temperature errors of the ETM at (a) −17 ℃, (b) 4 ℃, (c) 8 ℃, (d) 45 ℃

Table 2 Results of RCT predication

No. Tair (℃) SOC Time (min) Timereal (min) �Error (min) δError (%)

1 7 50 48.5 49.1 0.6 1.22

2 -14.5 20.7 81.8 82.7 0.9 1.09

3 23.5 70 35.3 35 0.3 0.86

4 35.5 20 62.5 62.2 0.3 0.48

5 42.5 80 139 141 2 1.42

6 -19.5 80.4 78 78.4 0.4 0.51

7 5 40 219.1 219.8 0.7 0.32

8 26.5 7.1 339.9 340.7 0.8 0.23

9 -15.5 40.1 223 222.8 0.2 0.09

10 35.5 20 290.2 290.1 0.1 0.03
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SOC when the charging starts; Time and Timereal are the 
predicted time and the actual time; ΔError and δError are 
the absolute error and relative error.

The results show that the electrothermal model 
developed in this study can accurately predict the RCT 
of the battery pack at different initial SOCs against wide 
temperature range because this model incorporates 
an ETM into an ECM to reflect thermal behaviors of 
the battery pack in real EV applications. Moreover, 
it can realize the charging time prediction of various 
commercial EVS charging strategies (i.e., multi-stage 
constant current fast charging such as Figure  8(c),  (d), 
Figure  9(c),  (d) and Table  2 No. 1–4; constant current 
low rate charging such as Figure 8(a), (b), Figure 9(a), (b) 
and Table 2 No. 5–10), and solve the current problem of 
charging time prediction against wide temperature range 
for battery packs with thermal management.

5  Conclusions
In this paper, a electrothermal model of a lithium-ion 
battery pack is established by coupling the ECM of the 
characteristic battery cell with the ETM of the battery 
pack, which is then used to develop a prediction model 
for the RCT during the charging process. The developed 
prediction model was tested in the ambient temperature 
range from −  20 ℃ to 45 ℃. The results show that the 
relative error of the RCT is less than 1.5%, the terminal 
voltage error is less than 20 mV and the temperature 
error is less than 2  ℃. These demonstrate that the 
prediction model can provide an accurate RCT against a 
wide temperature range which can meet the conditions 
of real EV applications. In the future, the influence of 
battery aging and battery pack inconsistency on the 
accuracy of the prediction model will be considered, and 
the online identification of the ETM parameters will be 
realized.
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