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Abstract 

The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings. 
Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness 
and stability of its control algorithm. The Radial Basis Function (RBF) neural network is used widely to compensate 
for modeling errors. In order to solve the problem that the current RBF neural network controllers cannot guarantee 
the asymptotic stability, a neural network robust control algorithm based on computed torque method is proposed 
in this paper, focusing on trajectory tracking. It innovatively incorporates the robust adaptive term while introduc-
ing the RBF neural network term, improving the compensation ability for modeling errors. The stability of the algo-
rithm is proved by Lyapunov method, and the effectiveness of the robust adaptive term is verified by the simulation. 
Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out, and the results 
show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently 
less than 1.5°and 2.5°, respectively. The proposed control algorithm effectively compensates for modeling errors 
and exhibits high robustness.
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1 Introduction
Lower limb exoskeletons, as wearable devices, have been 
widely used in medical [1–4], military [5, 6], industrial 
[7–9] and other fields. In the medical field, exoskele-
tons are primarily designed for patients with movement 
impairments. In such case, the exoskeleton usually works 
in conjunction with the corresponding trolley, which 

provides support and guidance to ensure safety and keep 
balance for the wearers [10, 11]. In military and industrial 
fields, exoskeletons transmit the load borne by the wearer 
(such as backpacks or heavy tools) to the ground  [12, 
13], reducing fatigue and enhancing endurance and load 
capacity. Currently, lower limb exoskeletons are applied 
in different scenarios and the collaboration modes can 
be generally categorized into trolley-assisted mode, inde-
pendent mode, and load-bearing mode.

As a nonlinear coupled system, the modeling error of 
the lower limb exoskeleton primarily originates from two 
sources. On the one hand, the dynamic model param-
eters cannot be accurately obtained, and on the other 
hand, external disturbances, especially at different appli-
cation scenarios, introduce uncertainties. These factors 
result in existing and unknown modeling error [14]. 
Conventional proportional-derivative (PD) control [15], 
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sliding mode control [16], and computed torque control 
[17] methods cannot achieve control objectives when the 
modeling error is large. The complex modeling error of 
the exoskeleton in different application scenarios poses 
new challenges to the robustness and stability of its con-
trol system.

To address this issue, many researchers have proposed 
model compensation methods [18], among most of them 
combining control algorithms with neural networks [19–
21]. Chen et al. [22] proposed a back stepping controller 
with a finite-time extended state observer to estimate and 
compensate lumped uncertainty. Long et al. [23] used an 
extended state observer-based nonlinear terminal slid-
ing mode control to estimate and compensate for inac-
curacy of model parameters and external disturbances in 
exoskeleton. Gao et al. [24] proposed a dual Radial Basis 
Function (RBF) neural network adaptive sliding mode 
controller to track the gait profile, compensate for fric-
tional forces and external perturbations. Song et al. [25] 
proposed an adaptive fuzzy neural sliding mode con-
trol method, which approximates the uncertain term 
in the dynamic model through the RBF neural network 
to achieve precise torque output for the series elastic 
actuator of the exoskeleton. Neural networks have been 
widely used in control due to their strong learning and 
adaptive abilities, especially RBF neural networks, which 
have universal approximation capabilities that improve 
the robustness of control systems [19] and handle peri-
odic disturbances. Trajectory tracking is the basic func-
tion of most lower limb exoskeletons, and this paper 
focuses on the research of modeling error compensa-
tion methods from the perspective of trajectory tracking 
control. Yin et  al. [26] proposed a neural network con-
trol method based on computed torque control, which 
uses RBF neural network to compensate for unknown 
dynamic interference and complete trajectory tracking 
task. However, the performance of the RBF compensa-
tion controller is still determined by the upper bound of 
external disturbances, and large disturbances may affect 
tracking accuracy or even cause system unstable. Ren 
et al. [27] used RBF neural network to estimate exoskel-
eton dynamic parameters and used the gradient descent 
method to sequentially solve the optimal neural network 
parameters. Duong et  al. [28] and Chen et  al. [29] used 
RBF neural network and designed adaptive update laws 
to compensate for model uncertainties. Yang et  al. [30] 
combined sliding mode control method with RBF neural 
network to compensate for exoskeleton modeling errors 
to achieve trajectory tracking. However, they can only 
guarantee that the error converges to a small domain and 
cannot ensure asymptotic stability of the system. In sum-
mary, most current model compensation methods with 
RBF neural network cannot make the error completely 

converge, and cannot meet the robustness requirements 
of lower limb exoskeletons under multiple scenarios. It is 
of great significance to combine RBF neural network with 
conventional control methods and propose an improved 
compensation modeling error algorithm.

Addressing the high anti-interference ability and 
robustness requirements of lower limb exoskeletons in 
multiple scenarios and targeting the universal approxi-
mation ability of RBF neural networks, this paper pro-
poses a neural network robust control algorithm based 
on computed torque method, focusing on the trajectory 
tracking control. The algorithm introduces RBF neural 
network compensating for uncertain parameter terms in 
computed torque methods. On this basis, it innovatively 
introduces the robust adaptive term to compensate for 
neural network modeling errors, overcoming the limita-
tion of incomplete error convergence in most RBF neural 
network compensation methods. This ensures that the 
exoskeleton maintains high robustness in different usage 
scenarios. Experiments wearing the exoskeleton are con-
ducted under different gait speeds and scenarios, includ-
ing trolly-assisted, independent, and load-bearing modes. 
The results demonstrate that the lower limb exoskeleton 
can track the predetermined trajectories under different 
conditions.

The main contribution of this work can be summarized 
as:

(i) This paper proposes a neural network robust control 
algorithm based on computed torque to compensate for 
system modeling errors and complete trajectory tracking, 
which innovatively incorporates the robust adaptive term 
to guarantee the system asymptotically stable.

(ii) The control algorithm proposed in this paper has 
high robustness and has been validated in experimental 
scenarios under different collaborative modes. To our 
limited knowledge, experimental verification methods in 
multiple scenarios have not yet been adopted.

The rest of this paper is organized as follows. Section 2 
introduces the mechanical structure and electrical system 
of the lower limb exoskeleton, and conducts the dynamic 
modeling. Section 3 proposes the neural network robust 
control algorithm based on computed torque and pro-
vides the stability proof using the Lyapunov method. Sec-
tion 4 completes the comparative simulations, and carries 
out experiments on walking with exoskeleton at different 
gait speeds and under different collaboration modes. The 
results are analyzed and discussed.

2  System Description
2.1  Mechanism Design
The main driving force for human movement comes 
from the freedom of flexion/extension of the lower limb 
joints. The freedom of adduction/abduction is mainly 
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used to maintain balance, and the freedom of internal/
external rotation is mainly used to achieve body rota-
tion and turning during walking. Among them, the hip 
joint plays a crucial role in coordinating the trunk and 
lower limb force generation, while the knee joint bears 
significant pressure and consumes more energy during 
walking [31]. Therefore, the flexion/extension degree 
of freedom for the hip and knee joints are selected as 
active degrees of freedom for the exoskeleton. The 
adduction/abduction of the hip joint, and dorsiflexion/
plantarflexion, internal/external rotation degrees of 
freedom of the ankle joint are chosen as passive degrees 
of freedom. The hip joint adduction/abduction is used 
to maintain the balance between the human and the 
exoskeleton, while the ankle joint internal/external 
rotation adapts to the wearer’s turning movements.

The mechanical structure design of the lower limb 
exoskeleton is carried out, as shown in Figure 1. Force 
sensors are arranged between the binding component 
and the connecting component on the thigh and calf 
rod, as shown in Figure 1(c), to obtain the human-exo-
skeleton interaction forces during walking. Springs are 
symmetrically attached on both sides of the ankle joint 
to provide dorsiflexion torque, as shown in Figure 1(d). 
The waist crossbeam, waist link, thigh rod, and calf rod 
are equipped with an array of through holes that can be 
adjusted in length to accommodate wearers with differ-
ent heights. The mechanical limits are designed at each 
joint of the lower limb exoskeleton to restrict the maxi-
mum range of motion for safety.

2.2  Electrical System
The hardware system is built, as shown in Figure  2(a). 
The main controller (Beckhoff embedded PC control-
ler CX5130) communicates with the PC, drive modules, 
and sensors through the EtherCAT protocol. The hip and 
knee joint of exoskeleton are actuated by the robot joint 
module (RJSIIZ-20 and RJSIIZ-17 respectively), which 
integrate motors, servo drives, absolute encoders, har-
monic reducers, and brakes, etc. The interaction forces 
are measured by four 2D force sensors (SBT673), with 
their analog signals transformed into digital via transmit-
ter (SBT904D). The exoskeleton uses a 48 V rechargeable 
lithium battery as the power source, and is equipped with 
a voltage conversion module that can output 24 V volt-
age. In addition, a stop switch is set up for emergency 
braking to ensure safety for the wearer.

To improve the convenience and aesthetics of the 
exoskeleton, the hardware units are integrated into the 
control cabinet and installed at the exoskeleton waist. 
Corresponding shells are designed to wrap around the 
exoskeleton to protect the robot joint modules. The over-
all exoskeleton system is shown in Figure 2(b).

2.3  Lower Limb Exoskeleton Dynamic Model
The exoskeleton can be regarded as a multi-link series 
mechanism. Since active actuators are used at the hip and 
knee joints, only the thigh and calf links need to be con-
sidered when performing dynamic modeling. As a cou-
pled system, the exoskeleton is inevitably affected by the 
forces of the wearer and the external environment during 

Figure 1 Structure of the applied exoskeleton: (a) Overview of the exoskeleton prototype, (b) Detailed display of the exoskeleton, (c) Force sensor 
arrangement, (d) The ankle joint of the exoskeleton
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walking. For exoskeleton that track the predetermined 
trajectory, these unknown disturbance forces will affect 
the dynamic performance of the robot and must be taken 
into account in the dynamic modeling.

The exoskeleton is often considered as a two-link mech-
anism during the swing phase of walking with the waist 
as the fixed frame, and as a three-link mechanism dur-
ing the stance phase with the ankle joint connected to the 
ground through a hinge in the sagittal plane [32]. How-
ever, the dynamic model of the three-link mechanism 
is more complex than that of the two-link mechanism, 
which increases the complexity of the control algorithm 
accordingly. In this paper, when considering the exoskel-
eton in the stance phase, the ground reaction forces act-
ing on the ankle joint are treated as a disturbance, and 
the robot is still regarded as a two-linkage mechanism 
in the sagittal plane, as shown in Figure 3, which simpli-
fies the dynamic model but also increases the robustness 
requirements for the control algorithm. With Lagrangian 
equation, the dynamic model of the exoskeleton can be 
uniformly expressed as

where q̈, q̇, q ∈ R
2 is the angle, angular velocity, and 

angular acceleration vectors at the hip and knee joints. 
M is the inertia matrix, C is the Coriolis and centrifugal 
force matrix, G is the gravity matrix. The parameters of 
the nominal model of the robot are shown in Eq. (2). And 
τa = [τa1, τa2]

T is the torque of the motor at the hip and 
knee joints, respectively. F is the external disturbance, 
which broadly include environmental forces and the 

(1)M(q)q̈ + C
(

q, q̇
)

q̇ + G(q) = τa + F ,

Figure 2 Overview of the exoskeleton system: (a) Hardware system, (b) Front and back view of exoskeleton system

Figure 3 Two-link mechanism model
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human-exoskeleton interaction torque on the exoskel-
eton, etc., with an unknown upper bound.

where m1, L1, l1 represents the mass, length, and length 
from the center of mass to the hip joint of the exoskel-
eton thigh rod, respectively. And m2, L2, l2 represents the 
mass, length, and length from the center of mass to the 
knee joint of the exoskeleton calf rod, respectively. The 
parameter values are summarized in Table 1.

3  Neural Network Robust Controller Design
Tracking the predefined trajectory is the basic function 
of the lower limb exoskeletons. This paper focuses on the 
modeling error compensation method from the perspec-
tive of trajectory tracking control.

In this section, a control algorithm is proposed based on 
the computed torque method. It combines RBF neural net-
works and innovatively introduces a robust adaptive term 
to compensate for the uncertainties of the model and com-
plete trajectory tracking tasks. The stability proof is per-
formed using the Lyapunov method.

3.1  Computed Torque Controller Design
The computed torque method is a control scheme that 
introduces compensation in the internal control loop to 
linearize nonlinear systems. According to the computed 
torque method, combined with Eq. (1), the control law 
for the motor torque of the exoskeleton can generally be 
designed as:

where qd is the desired joint angle vector, and q is the 
actual joint angle vector of the exoskeleton. kd , kp ∈ R

2×2 
are the positive diagonal gain matrices.

Combining Eq. (1) and Eq. (3), we obtain

(2)

M =

[

m1l
2
1 +m2L

2
1 + 2m2L1l2 cos q2 +m2l

2
2 −m2

(

L1l2 cos q2 + l22
)

−m2

(

L1l2 cos q2 + l22
)

m2l
2
2

]

,

C =

[

−2m2L1l2q̇2 sin q2 m2L1l2q̇2 sin q2
m2L1l2q̇1 sin q2 0

]

,

G =

[

(m1l1 +m2L1)g sin q1 +m2l2g sin (q1 − q2)
−m2l2g sin (q1 − q2)

]

,

(3)
τ= M(q)

[

q̈d + kd(q̇d − q̇)+ kp(qd − q)
]

+C
(

q, q̇
)

q̇ + G(q)− F ,

where ë = q̈d − q̈, ė = q̇d − q̇,e = qd − q represents 
the angular acceleration error, angular velocity error and 
angular error vector for each joint of the exoskeleton, 
respectively. From Eq. (4), it can be seen that this control 
law can ideally make the exoskeleton track a predeter-
mined trajectory.

However, the computed torque method is an algorithm 
that relies heavily on the accuracy of the dynamic model. 
In reality, it is not possible to obtain accurate dynamic 
model parameters of the exoskeleton, but only an esti-
mate of the inertia matrix M̂(q) , the Coriolis matrix 
Ĉ(q, q̇) and the gravity matrix Ĝ(q) . The dynamic model-
ling error can be expressed as:

In addition, in the trajectory tracking case, the exo-
skeleton considers human-robot interaction torque and 
the ground reaction forces as disturbances during the 
walking. However, there is a certain deviation between 
the observation values and the true values of interac-
tion force sensors or foot pressure sensors. Furthermore, 
unknown external disturbances cannot be directly meas-
ured. Thus, the disturbance F experienced by the exoskel-
eton is constantly changing, oscillating, and unknown 
during the gait cycle.

The modeling errors to be compensated for refers to 
the combination of the aforementioned uncertainties. 
Here, D is used to comprehensively represent the gener-
alized modeling error caused by the inaccurate dynamic 
parameters, external forces, and the wearer’s forces in Eq. 
(6):

Then Eq. (3) should be rewritten as

(4)ë + kdė + kpe = 0,

(5)�M =

(

M − M̂
)

q̈+
(

C − Ĉ
)

q̇ + (G − Ĝ).

(6)D = �M − F .

(7)
τ= M̂(q)

[

q̈d + kd(q̇d − q̇)+ kp(qd − q)
]

+Ĉ
(

q, q̇
)

q̇ + Ĝ(q)+D.

Table 1 The parameter values of the nominal model

m1 (kg) 3.2 m2 (kg) 2.5

L1 (m) 0.43 L2 (m) 0.35

l1 (m) 0.31 l2 (m) 0.20
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Combining Eq. (1) and Eq. (7), we obtain

where D̂ is an estimate of the modeling error. From Eq. 
(8), it can be seen that the stability of the system depends 
on the ability to estimate D.

3.2  RBF Neural Network Robust Controller Design
The RBF neural network is a three-layer feedforward net-
work that can be widely used for function approximation 
and pattern classification. Compared to other types of arti-
ficial neural networks, the RBF neural network has charac-
teristics of a simple structure, fast learning speed, excellent 
approximation and generalization capability. In this paper, 
the RBF neural network’s universal approximation capabil-
ity is utilized to approximate and compensate for the mod-
eling error in Eq. (8), as shown in Eq. (9). The hidden layer 
adopts seven nodes.

where Wi ∈ R
7 is the weight matrix of the RBF neural 

network and ϕ(X i) is the Gaussian basis function matrix. 
In this paper, i=1 corresponds to the hip joint variable 
and i=2 corresponds to the knee joint variable of the exo-
skeleton. In Eq. (9)

where cj ∈ R
2 is the center vector of the Gaussian basis 

function, and σi is the width of the Gaussian basis 
function.

Denote the optimal RBF neural network weights as W ∗
i  , 

then the theoretical deviation between the optimal RBF 
neural network and the modeling error to be approximated 
can be expressed as

It has been proven that δ ∈ R
2 is bounded [33, 34], and 

δ0 = sup �δ�,where sup �·� denotes the upper bound of the 
variable.

Due to the existence of modeling errors in neural net-
works, most existing model compensation algorithms 
cannot converge error completely. To further improve the 
robustness of the control algorithm, it is necessary to com-
pensate for the modelling error of the neural network and 
add the robust adaptive term to its control law. The motor 
torque control law can be designed as

(8)ë + kdė + kpe = M̂
−1

(D − D̂),

(9)[M̂
−1

D]i= W iϕ(X i), i = 1,2,

(10)

X i =

[

ei
ėi

]

,

ϕij = exp(
∥

∥X i − cj
∥

∥

2
/σ 2

i ), j = 1, 2, ..., 7,

ϕ(X i) = [ϕi1 ϕi2 ...ϕi7]
T,

(11)δi=(W i −W ∗
i )ϕ(X i).

where H i = Ŵ iϕ(X i) , and H ∈ R
2. Ŵ i ∈ R

7 is the esti-
mate of the RBF neural network weights, and h ∈ R

2 rep-
resents the added robust term. These two parameters are 
to be solved for, and their exact representation and deri-
vation process will be discussed later. By combining Eq. 
(1), Eq. (8), Eq. (9), Eq. (11) and Eq. (12), we obtain

Eq. (13) can be written in the form of a state space 
equation as

where

There exists matrix P ∈ R
2×2 satisfying the Lyapunov 

equation PAi + AT
i P = −Q · Q is a positive definite 

matrix.
The introduced robustness term h is defined as 

follows:

where ζ ∈ R
2 is the upper bound on the absolute value of 

the deviation between the modeling error to be approxi-
mated and the actual estimated value of the RBF neural 
network. ζ̂ is the estimate of this deviation. The meaning 
of sgn(·) is shown in Eq. (17):

The RBF neural network weight adaptive law is 
designed as follows:

Combining Eq. (16), and Eq. (18), the motor torque 
control law can be obtained in Eq. (12).

(12)
τ= M̂(q)

[

q̈d + kd(q̇d − q̇)+ kp(qd − q)
]

+Ĉ
(

q, q̇
)

q̇ + Ĝ(q)+ M̂(q)H + h,

(13)
ëi + kdiėi + kpiei = (W ∗

i − Ŵ i)ϕ(X i)+ δi − [M̂
−1

h]i.

(14)
Ẋ i = AiX i + B[(W ∗

i − Ŵ i)ϕ(X i)+ δi − (M̂
−1

h)i],

(15)Ai =

[

0 1
−kpi −kdi

]

, B =

[

0
1

]

.

(16)























ζ i = sup
�

�

�
(W i − Ŵ i)ϕ(X i)

�

�

�
,

˙̂
ζ i =

�

�

�
XT
i PB

�

�

�
,

�

M̂
−1

h
�

i
= ζ̂ isgn(X

T
i PB),

(17)sgn(�) =







1 for � > 0,
0 for � = 0,
−1 for � < 0.

(18)˙̂
W i = [ϕ(X i)X

T
i PB]

T.
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3.3  Stability Analysis
The control algorithm can ensure the system ultimately 
asymptotically stable. The stability proof is given below.

Define the first Lyapunov function as

The first derivative of Lyapunov function shown in Eq. 
(19) is obtained as follows:

Further, combining Eq. (14), we obtain:

Define the second Lyapunov function as

Combining Eq. (18) and Eq. (21), we obtain:

Define the third Lyapunov function as

Combining Eq. (23) and Eq. (24), we obtain:

(19)V1 =
1

2
XT
i PX i.

(20)V̇1 =
1

2
(XT

i PẊ i + ẊT
i PX i).

(21)V̇1 = −
1

2
XT

i QX i + XT

i PB[(W
∗
i − Ŵ i)ϕ(X i)+ δi − (M̂−1h)i].

(22)V2 =
1

2
(W ∗

i − Ŵ i)(W
∗
i − Ŵ i)

T.

(23)

V̇1+ V̇2 = −
1

2
XT
i QX i + XT

i PB[(W
∗
i − Ŵ i)ϕ(X i)

+δi − (M̂−1h)i] − (W ∗
i − Ŵ i)

˙̂
W

= −
1

2
XT
i QX i+XT

i PB[δi − (M̂−1h)i].

(24)V3 =
1

2
(ζi − ζ̂i)

T(ζi − ζ̂i).

In Eq. (25), ζ is an upper bound on the absolute value of 
the deviation from the true value when using the actual 
estimated RBF neural network parameters, and δ is the 
deviation from the true value when using the optimal 
RBF neural network parameters, for which the relation 
|δi| ≤ ζi exists. Therefore, Eq. (26) can be obtained:

The Lyapunov criterion proves that the algorithm pro-
posed in this section can ensure the asymptotic stability 
of the control system, and the error can converge com-
pletely. The control diagram is shown in Figure 4.

4  Experiment and Discussion
4.1  Simulation and Results
To preliminarily evaluate the proposed control method, 
especially the effectiveness of the robust adaptive term, 
this section conducted the simulation using the Simulink 
in Matlab. Firstly, the dynamics parameters of the lower 
limb exoskeleton were calculated through SolidWorks 
software, which serves as the nominal parameters in the 
simulation. The actual estimated dynamic parameters 
were chosen as M̂ =0.3M, Ĉ =0.3C , Ĝ =0.3G , and the 
external disturbance D was set as a constant. The desired 
trajectory was obtained by fitting human gait data from 
CGA [35], and the gait cycle was set as 3.0 s.

(25)

V̇1+ V̇2+ V̇3

= −
1

2
XT
i QX i+XT

i PB[δi − (M̂−1h)i] +

∣

∣

∣
XT
i PB

∣

∣

∣
(ζ̂ i − ζ i)

= −
1

2
XT
i QX i+XT

i PB[δi − ζ̂ isgn(X
T
i PB)] +

∣

∣

∣
XT
i PB

∣

∣

∣
(ζ̂ i − ζ i)

= −
1

2
XT
i QX i+XT

i PBδi −

∣

∣

∣
XT
i PB

∣

∣

∣
ζ i

≤ −
1

2
XT
i QX i+

∣

∣

∣
XT
i PB

∣

∣

∣
(|δi| − ζ i).

(26)V̇ = V̇1 + V̇2 + V̇3 ≤ 0.

Figure 4 The control diagram
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The conventional computed torque control law (CT), 
the neural network control law without the robust-
ness adaptive term (CT+RBF), and the neural network 
robust control law with the robustness adaptive term 
(CT+RBF+ Robust term) were employed in the simu-
lation, respectively. The control parameters are sum-
marized in Table 2. With the same gains chosen, these 
control laws aimed to achieve trajectory tracking of the 
hip and knee joints of the lower limb exoskeleton in the 
presence of modeling errors. Among them, the neural 
network control law only used RBF neural network to 
compensate for the modeling errors, and this setting 
was to further evaluate the role of the robust adaptive 
term proposed in this paper. The simulation results 
with different control laws are shown in Figure 5. 

The simulation results show that with the computed 
torque control law (CT), the neural network control 
law without the robustness adaptive term (CT+RBF), 
and the neural network robust control law with the 
robustness adaptive term (CT+RBF+ Robust term), the 
root mean square values of hip joint tracking errors are 
3.62°, 0.59°, and 0.23° respectively. And the root mean 
square values of knee joint tracking errors are 14.73°, 
1.23°, and 0.57° respectively. By comparing the simula-
tion results, it is found that with the same gains chosen, 
the conventional computed torque law cannot achieve 
tracking the desired trajectories due to the presence 
of modeling errors. On the other hand, the other two 
laws are capable of tracking the desired trajectories, 
indicating that the RBF neural network plays a role in 
compensating for modeling errors. Comparatively, the 
neural network robust control law proposed in this 
paper demonstrates the best performance, with lower 
amplitude and mean values of tracking errors in hip 
and knee joint motions. This implies that the intro-
duced robust term further compensates for the mod-
eling errors. The output torques of the two algorithms 
are similar.

The simulation results show that the tracking error 
of the system can be controlled within a certain range 
by using the proposed control method to compensate 
for the uncertainty of the model. The robust adaptive 

term, in particular, compensates for modeling errors and 
improve control performance.

4.2  Experimental Validation
Experiments on walking with the exoskeleton under dif-
ferent walking gait speeds and collaboration modes were 
conducted to evaluate the proposed control method. 
In the experiments with different collaboration modes 
including trolley-assisted mode, independent mode, and 
load-bearing mode, the dynamics of the exoskeleton and 
the external disturbances under different scenarios are 
different, which further verifies the high robustness of 
the control algorithm in this paper.

4.2.1  Experimental Protocol
Based on the experimental platform, experiments under 
different walking gait speeds and collaboration modes 
were conducted to evaluate the control algorithm’s 
robustness and anti-disturbance capability, verifying its 
ability to maintain good trajectory tracking performance 
under different external disturbances. The participant is 
a healthy male with a height of 180 cm and a weight of 
75 kg.

The participant provided written informed consent, 
and the study procedures were conducted in accord-
ance with the Declaration of Helsinki. This research was 
approved by the Beihang University Biological and Medi-
cal Ethics Committee (protocol code BM20220209). Dur-
ing the experiment, the participant’s lower limbs were 
driven by the robot. The predetermined gait trajectory 
was obtained by fitting the human CGA gait data.

In the experiment of human-robot walking at differ-
ent speeds, the gait cycles were set to 3 s, 3.5 s, and 4 s, 
respectively. In the experiments under different scenar-
ios, the exoskeleton was in different collaboration mode 
including trolley-assisted mode, independent mode, and 
load-bearing mode, with the gait cycle set to 3.0  s. Dif-
ferent experimental conditions are shown in Figure  6. 
Among them, when in the trolley-assisted mode, the trol-
ley balances the weight of the exoskeleton and provides 
auxiliary support and protection for the wearer. When 
in the exoskeleton-independent mode, the weight of the 

Table 2 The control parameters in the simulation

Parameter Description Value

kp Proportional gain matrix diag{900, 900}

kd Derivative gain matrix diag{200, 200}

c Center vector of the Gaussian basis function
[

−1.5 −1 −0.5 0 0.5 1.0 1.5

−1.5 −1 −0.5 0 0.5 1.0 1.5

]

σ Width of the Gaussian basis function [0.8, 0.8]

Q Positive definite matrix in the Lyapunov equation diag{3600, 1600}
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Figure 5 Simulation results: (a) Trajectory of the hip joint, (b) Trajectory of the knee joint, (c) Tracking error of the hip joint, (d) Tracking error 
of the knee joint, (e) Motor torque of the hip joint, (f) Motor torque of the knee joint
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exoskeleton is transmitted to the ground during the sup-
porting phase, and the wearer maintains balance on their 
own. When in the exoskeleton-load bearing mode, the 
exoskeleton is equipped with a tool support arm, which 
can be used to assist the wearer in supporting and oper-
ating tools. The weight of the support arm is 3.0 kg and 
the maximum extension length is about 1.0 m.

4.2.2  Experimental Results
In the experiments with different walking gait speeds, the 
tracking errors between the desired and actual trajectory 
of the exoskeleton, joint torque, and interaction force are 
shown in Figure 7. The human-robot interaction force is 
considered a disturbance in the control algorithm and 
can also indicate the coordination between the wearer 
and the exoskeleton during walking.

When the gait cycle is 4.0  s, 3.5  s, and 3.0  s, respec-
tively, the corresponding maximum hip joint tracking 
error is about 1.5°, which is lower than 3.7% of the joint 
motion amplitude, and the root mean square (RMS) val-
ues are 0.55°, 0.63°, and 0.74°. The maximum knee joint 
tracking error is about 2.2°, 2.1°, and 2.5°, respectively, 
which is lower than 4.5% of the joint motion amplitude, 
and the RMS values are 1.2°, 1.3°, and 1.5°. The RMS val-
ues of the hip joint motor output torque are 17.6  N·m, 
22.9 N·m, and 27.7 N·m, respectively, and the RMS val-
ues of the knee joint motor output torque are 19.1 N·m, 
14.1 N·m, and 17.4 N·m, respectively. The RMS values of 
the human-exoskeleton interaction force at the thigh are 
5.7  N, 7.4  N, and 8.3  N, respectively, and the RMS val-
ues of the human-exoskeleton interaction force at the calf 
are 6.7 N, 7.1 N, and 6.2 N, respectively. Overall, under 

different walking gait speeds, the lower limb exoskeleton 
can follow to the predetermined trajectory. In addition, 
the weight W of RBF neural networks were recorded as 
shown in Figure 8. The results show that the weight fluc-
tuate and converge around a certain value at different 
walking gait speeds.

In the experiments with different collaboration modes, 
the tracking errors between the desired and actual tra-
jectory of the exoskeleton, joint torque, and interaction 
force are shown in Figure 9.

Under different conditions of trolley-assisted, inde-
pendent, and load-bearing collaboration modes, the 
maximum hip joint tracking errors are 1.2°, 1.5°, and 1.5° 
respectively, which are below 3.7% of the joint motion 
amplitude. The RMS values are 0.53°, 0.69°, and 0.79° 
respectively. The maximum knee joint tracking errors are 
2°, 2.3°, and 2.5° respectively, which are below 4.5% of the 
joint motion amplitude. The RMS values are 1.2°, 1.5°, 
and 1.5° respectively. The RMS values of hip joint motor 
output torque are 18  N·m, 25  N·m, and 30  N·m, and 
the RMS values of knee joint motor output torque are 
16 N·m, 18 N·m, and 22 N·m. The RMS values of human-
robot interaction force at the thigh are 2.1 N, 6.3 N, and 
6.1  N, and the RMS values of human-robot interaction 
force at the calf are 7.1 N, 4.7 N, and 4.7 N. In addition, 
the weight W of RBF neural networks were recorded as 
shown in Figure 10. The results show that the weight fluc-
tuate and converge around a certain value with different 
collaboration modes.

The experimental results are summarized in Tables  3 
and 4.

Figure 6 The experiments under different scenarios and collaboration modes: (a) Trolley-assisted, (b) Independent, (c) Load-bearing
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Figure 7 Experimental results with different walking gait cycles: (a) Trajectory of the hip joint and knee joint, (b) Tracking error of the hip joint 
and knee joint, (c) Motor torque of the hip joint and knee joint, (d) Interaction force at the thigh and the calf
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4.3  Discussion
In the simulation, the conventional computed torque 
control law, the neural network control law without and 
with the robustness adaptive term were employed to 
track the hip and knee joint motions of the lower limb 

exoskeleton in the presence of modeling errors, respec-
tively. The results indicate that the neural network 
robust control law proposed in this paper demonstrates 
the best performance, which means that the algorithm 

Figure 8 The weight W of RBF neural networks with different walking gait cycles
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Figure 9 Experimental results with different collaboration modes: (a) Trajectory of the hip joint and knee joint, (b) Tracking error of the hip joint 
and knee joint, (c) Motor torque of the hip joint and knee joint, (d) Interaction force at the thigh and the calf
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in this paper improves the compensation of the mod-
eling errors compared to the traditional algorithm.

In the experiments with different walking gait speeds, 
the tracking errors of hip joint and knee joint remain 
within 3.7%, 4.3% of the joint movement amplitude 
respectively at different speeds. As for the output torque 

of the motor, the RMS value of the hip joint motor torque 
slightly increases with the increase of gait frequency, 
since the shorter gait cycle requires the lower limb exo-
skeleton to respond faster.

However, the peak value of knee joint motor torque 
exceeds the other two gait cycles when the gait cycle is 

Figure 10 The weight W of RBF neural network with different collaboration modes
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4.0 s. It is preliminarily believed that the 4.0 s gait cycle 
appears to be slow for the healthy male, and there may 
be a phenomenon where the intention of human calf 
movement is faster than that of the robot, leading to an 
increase in peak torque.

The tracking errors of hip joint and knee joint remain 
within 3.7%, 4.5% of the joint motion amplitude respec-
tively, under trolley-assisted, independent, and load-
bearing collaboration modes. For the motor output 
torque, the RMS values of hip and knee joint motor 
torque increase in the corresponding order. Since the 
assisted trolley can support part of the exoskeleton 
weight and load during the walking, these three differ-
ent modes can be considered that external disturbances 
are increasing in sequence, resulting in an increase in 
motor torque. However, under the trolley-assisted mode, 
the amplitude of the knee joint motor torque is approxi-
mately or even greater than the motor torque under the 
other two modes sometimes, and similar result has also 
occurred in the human-exoskeleton interaction force at 
the calf. It is preliminarily believed that this is caused by 
the incongruity between the wearer and the trolly. Dur-
ing the walking, the wearer’s waist center of gravity may 
fluctuate up and down, and the trolly restricts this degree 
of freedom (although the trolly in this paper considered 
this factor and incorporated a spring mechanism in the 

waist, the spring with high stiffness still imposed restric-
tions on the wearer), which leads to discoordination 
between the wearer and the trolley-assisted exoskeleton, 
resulting in an increase in peak torque at the knee joint 
and human-robot interaction force at the calf.

Overall, under different usage scenarios, especially 
when adding a load (tool support arm), the lower limb 
exoskeleton can still track the desired trajectory. The 
control algorithm in this paper can effectively compen-
sate for complex modeling errors and has high anti-inter-
ference capability and robustness.

5  Conclusions
Aiming to improve the model compensation capabil-
ity and focusing on trajectory tracking control, a robust 
control algorithm based on computed torque and RBF 
neural networks is proposed. By introducing RBF neu-
ral network terms and robust terms, uncertain modeling 
errors are compensated, and the trajectory tracking abil-
ity of lower limb exoskeleton is improved. The experi-
mental results show that in the experiments with 
different gait speeds and different application scenarios, 
the joint tracking error is always within 4.5% of the joint 
motion amplitude. The control algorithm can compen-
sate for modeling errors, and has good tracking accuracy, 

Table 3 Summary of results with different walking gait cycles

Condition Different walking gait cycles

Gait cycle 4.0 s Gait cycle 3.5 s Gait cycle 
3.0 s

Tracking error (RMS) (°) Hip 0.55 0.63 0.74

Knee 1.2 1.3 1.5

Torque (RMS) (N·m) Hip 17.6 22.9 27.7

Knee 19.1 14.1 17.4

Interaction force (RMS) (N) Thigh 5.7 7.4 8.3

Calf 6.7 7.1 6.2

Table 4 Summary of results with different collaboration modes

Condition Different collaboration modes

Trolley-assisted Independent Load-bearing

Tracking error (RMS) (°) Hip 0.53 0.69 0.79

Knee 1.2 1.5 1.5

Torque (RMS) (N·m) Hip 18 25 30

Knee 16 18 22

Interaction force (RMS) (N) Thigh 2.1 6.3 6.1

Calf 7.1 4.7 4.7
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anti-interference ability and robustness. Currently, only 
the position tracking control has been analyzed and vali-
dated in this paper, which can be extended to other con-
trol methods in the future research.
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