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Abstract 

The new energy vehicle plays a crucial role in green transportation, and the energy management strategy of hybrid 
power systems is essential for ensuring energy-efficient driving. This paper presents a state-of-the-art survey 
and review of reinforcement learning-based energy management strategies for hybrid power systems. Additionally, 
it envisions the outlook for autonomous intelligent hybrid electric vehicles, with reinforcement learning as the foun-
dational technology. First of all, to provide a macro view of historical development, the brief history of deep learning, 
reinforcement learning, and deep reinforcement learning is presented in the form of a timeline. Then, the comprehen-
sive survey and review are conducted by collecting papers from mainstream academic databases. Enumerating most 
of the contributions based on three main directions—algorithm innovation, powertrain innovation, and environment 
innovation—provides an objective review of the research status. Finally, to advance the application of reinforcement 
learning in autonomous intelligent hybrid electric vehicles, future research plans positioned as “Alpha HEV” are envi-
sioned, integrating Autopilot and energy-saving control.
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1  Introduction
The future transportation system revolves around two 
major themes: Autopilot and energy-saving driving. 
New energy vehicles in China, including electric vehicles 
(EVs), plug-in hybrid electric vehicles (PHEVs), and fuel 
cell vehicles (FCVs), stand as the core carrier. Positioned 
at the forefront of automotive advancements, new energy 

vehicles pave the way toward clean, green, and sustain-
able transportation [1].

EVs are powered by batteries as primary energy 
sources, with motors converting electrical energy into 
kinetic energy to propel the vehicle. As a result, the 
research focus lies on the advancement of motors, bat-
teries, and electronic control systems [2]. While EVs 
hold immense potential, there are ongoing endeavors 
to address challenges such as enhancing driving range, 
developing fast charging solutions, ensuring safety meas-
ures, and establishing recycling and cascade utilization 
methods. Furthermore, the widespread promotion neces-
sitates the development of infrastructure to support inte-
gration into daily life. FCVs utilize propulsion systems 
equipped with fuel cells and power batteries. Operat-
ing on hydrogen, fuel cell systems generate electricity 
through the electrochemical reaction between hydrogen 
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and oxygen, emitting water as a byproduct. This electro-
electric coupling positions FCVs as an environmentally 
friendly solution for the future [3]. Notably, FCVs pre-
sent advantages for long-distance passenger or freight 
transportation, addressing the limitations of driving 
range in PEVs. Their quick refueling time, coupled with 
their eco-friendly nature and cleanliness, makes them an 
ideal choice for various applications, holding the prom-
ise of transforming transportation. However, FCVs are 
still facing challenges, including infrastructure, cost, and 
durability of fuel cells, hydrogen storage and distribu-
tion, hydrogen production, and recycling issues, result-
ing in the status not being ideal [4]. Although the above 
two types of cars have multiple sources of energy, only 
the electric motor serves as the power source, convert-
ing electrical energy into mechanical energy to propel the 
vehicle forward.

Hybrid electric vehicles (HEVs) represent an innovation 
integrating both gasoline and batteries as energy sources. 
By harnessing the power of internal combustion engines 
(ICEs) and motors, HEVs offer an efficient approach to 
propulsion. Moreover, the advent of rechargeable bat-
teries has led to the development of PHEVs allowing for 
longer electric driving capabilities [5]. One of the mecha-
nisms employed in HEVs to achieve energy savings lies in 
optimizing the operation of the engine within the high-
efficiency range. Simultaneously, the motor mainly serves 
a key role in regenerative braking, converting braking 
energy into usable electricity. Nowadays, Hybrid pow-
ertrains can be mainly classified into three types: series, 
parallel, and hybrid, each offering unique advantages to 
suit diverse conditions [6]. Series HEVs can be likened to 
that of PEVs with a range extender. The ICE connects to 
the generator, converting mechanical energy into elec-
tric energy, and it allows the ICE to work within a high-
efficiency range, and the motor serves as the sole power 
source for propulsion and regenerative braking. Parallel 
HEVs offer more complex and adaptable driving modes 
and can be subdivided into P0-P4 configurations based 
on the different positions of motors. Treating the P2 as 
an example, both the ICE and the motor can function 
independently to propel the HEV. When the demand is 
big, these two power sources can simultaneously deliver 
power through a mechanical structure. Hybrid HEVs 
stand as an excellent achievement of engineering with 
their sophisticated structure. Its primary essence lies 
in the power-split mechanism, engineered with plan-
etary gears, with the Prius standing as a quintessential 
Hybrid HEV. One notable feature involves the integra-
tion of motors and generators, enabling simultaneous 
operations in driving and charging. Due to the intricate 
structure and technological challenges, only a handful of 

manufacturers have successfully achieved the proficiency 
required to develop Hybrid HEVs [7].

The design of the HEV needs a multi-faceted endeavor, 
encompassing configuration screening, parameter 
matching, and energy management [8]. The configura-
tion design shapes the dynamic interplay among each 
power and transmission component, considering factors 
like technical foundations, potential challenges, and user 
requirements. The parameter matching needs an extreme 
balance, as it not only influences the performance of the 
vehicle but also has implications for manufacturing costs 
[9]. Moreover, it is essential to ensure that the dynamic 
can satisfy minimum requirements while considering 
various scenes, including extreme environments. This 
attention to detail guarantees the capability of HEVs to 
perform exceptionally across various conditions. The 
energy management strategy (EMS) plays a core role in 
enhancing energy-saving performance. It efficiently dis-
tributes power flow while adhering to constraints, lead-
ing to optimizations in fuel economy, exhaust emissions, 
battery characteristics, and other objectives [10, 11]. 
Now, three types of EMS have been summarized and 
proposed: rule-based, optimization-based, and learn-
ing-based EMS [12]. Rule-based EMS relies on a series 
of experiences to determine power distribution among 
various power sources. It is computationally efficient and 
often implemented in real controllers. Rule-based EMS 
can be further categorized into deterministic rules and 
fuzzy rules. However, one main limitation is the require-
ment of extensive experimental data, as well as limited 
adaptability to random scenes. Optimization-based 
EMS transforms the EMS into an optimization problem. 
By defining an objective function and considering sys-
tem constraints, these strategies determine the control 
sequence that corresponds to the target within the given 
environment, such as fuel consumption and lifespan. 
Optimization-based EMSs are divided into global and 
instantaneous optimization. Global optimization-based 
EMSs adopt solvers such as dynamic programming (DP) 
[13] and Pontryagin’s minimum principle (PMP) [14], 
and the instantaneous optimization-based EMS use algo-
rithms like equivalent consumption minimum strategy 
(ECMS) [15] and model predictive control (MPC) [16].

The birth of the learning-based EMS benefits from the 
development of artificial intelligence (AI), especially deep 
learning (DL) and reinforcement learning (RL). While 
some reviews have offered insights by categorizing algo-
rithms and contributions belonging to RL-based EMSs 
[12, 17–27]. By contrast, especially for rule-based and 
optimization-based EMSs, many reviews have compre-
hensively revealed the novel research status. Because of 
the abundance of existing literature, this paper actively 
avoids the repetitive content of traditional EMSs, and the 
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latest survey and review focuses on the reinforcement 
learning (RL)-based EMS and aims to present a thorough 
and up-to-date review by enumerating all contributions 
and drawing from research experiences. Given the rela-
tively short development time, the total number of litera-
ture within an acceptable range makes it feasible to list 
and summarize the achievements of all RL-based EMSs.

The main contributions and the remainder of the paper 
are organized as follows. For the macroscopic grasp of 
historical development, Section  2 summarizes a brief 
history, famous scholars, and important achievements 
of DL, RL, and deep reinforcement learning (DRL) in 
the form of a timeline, and this is also the first time that 
the development process is fully displayed in the form of 
figures. Section  3 summarizes all contributions of RL-
based EMSs for hybrid power systems and provides a 
comprehensive review. It collects 266 papers from data-
bases such as Web of Science, IEEE Xplore, and Science-
Direct, focusing on EV, energy management, and RL as 
keywords. The state-of-the-art status is analyzed based 
on innovations in algorithms, powertrains, and environ-
ments for further discussion. Section  4 envisions future 

research aimed at developing an autonomous intelligent 
HEV, with "Alpha HEV" as the ultimate goal. Section  5 
concludes with key opinions and insights.

2 � Brief Development History of DL/RL/DRL
In this section, the timeline in Figure  1 presents a brief 
history of DL, RL, and DRL, including the significant 
achievements of notable scholars and forming a his-
torical perspective that enhances comprehension of the 
evolution.

2.1 � The Development History of DL
DL takes a leading position in the realm of machine 
learning (ML), representing a groundbreaking methodol-
ogy aimed at uncovering intricate patterns and represen-
tations concealed within extensive datasets. Its objective 
is to replicate human-like analytical and learning capa-
bilities, enabling machines to learn and grasp diverse 
forms of data, such as text, images, and sounds [29]. As 
shown in Figure 1, the roots of DL can be traced back to 
the 1940s when W.S. McCulloch and W. Pitts sought to 
simulate a neural reaction within the human brain when 
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Figure 1  The timeline of the brief development history of DL/RL/DRL
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processing information. They developed a simplified 
artificial neuron model known as MCP [30]. It encom-
passed the fundamental functions of basic neurons: lin-
ear weighting, summation, and non-linear activation. 
Expanding upon the foundational model, in 1958, Frank 
Rosenblatt proposed the Perceptron [31], a two-layer 
feedforward network based on the MCP. The Percep-
tron can be employed to classify binary linear problems 
by mapping input matrices to output values and making 
decisions based on thresholds and weights. By adopt-
ing the loss minimization and gradient descent, train-
ing could yield a linear plane for classification. However, 
it was proven that the Perceptron was limited to linear 
problems. In 1982, John J. Hopfield designed the Hopfield 
Network [32], considered the earliest recurrent neural 
network (RNN). It links the output of each neuron to the 
input of other neurons and forms an innovation that has 
been critical for the future. Another breakthrough came 
from backpropagation, which led to the development of 
a multilayer feedforward network known as Back Propa-
gation (BP). Geoffrey Everest Hinton proposed the BP in 
1986 [33]. It involved signal propagation, error backprop-
agation, and weight updates. The BP network addressed 
the limitations of Perceptron, enabling nonlinear clas-
sification and becoming the milestone in DL. Two other 
key contributions were attributed to the Elman network 
[34] and the LeNet network [35]. The Elman network 
proposed by Jeffrey Elman in 1990, functioned as a feed-
forward network with local memory units, local feedback 
connections, and a multilayer structure, and it aims for 
speech recognition. The LeNet network, proposed by 
Yann LeCun in 1998, was the first convolutional neural 
network (CNN). Although effects were limited by data 
and computing power, the LeNet can successfully rec-
ognize handwritten fonts. Long short-term memory 
(LSTM) [36], proposed by Sepp Hochreiter in 1997, 
solved the vanishing gradient and long-term dependen-
cies and became a basic model for processing and fore-
casting events in time series data. The core elements of 
an LSTM cell consist of three gates: the input gate, the 
forget gate, and the output gate. These gates regulate the 
flow of information, allowing it to retain key information 
over long sequences. In 2000, a feedforward neural lan-
guage model (NML) [37] was proposed by Yoshua Bengio 
which employs neural networks to model the probability 
distribution of the natural text. It plays a key role in the 
field of natural language processing (NLP), particularly in 
tasks involving language generation and language under-
standing. Hence, Geoffrey Hinton, Yann Le Cun, and 
Yoshua Bengio are recognized as the "Big Three of Deep 
Learning."

In recent years, many amazing achievements have 
been witnessed, and the generative model ChatGPT, 

developed by OpenAI, is regarded as the most famous 
product. Before that, the generative adversarial network 
(GAN) [38], proposed by Ian Goodfellow in 2014, utilizes 
the two-module framework consisting of one genera-
tor and one discriminator to achieve impressive outputs 
through mutual learning. The training of GAN becomes 
a confrontation process: the generator and the discrimi-
nator will engage in competition with each other to 
improve their capabilities. Simply speaking, the generator 
tries to generate more realistic data, while discriminators 
try to distinguish real data from generated data. Eventu-
ally, the performance of the generator steadily enhances, 
resulting in generated samples that resemble the distri-
bution of real data. Therefore, the GAN performs well in 
many tasks, including image generation, image super-res-
olution, style transfer, etc. In the same year, Kyunghyun 
Cho proposed a gated recurrent unit (GRU) [39], a sim-
plified LSTM with fewer parameters. It solves the chal-
lenges of long-term memory and gradients by employing 
gating units. The model incorporates reset and update 
gates, determining how data combines with previous 
memory and how much memory will be retained. Com-
pared to the LSTM, the GRU is demonstrated that it is 
beneficial in improving training efficiency and is favored. 
Additionally, in 2017, Ashish Vaswani from Google Brain 
published and proposed the Transformer [40], which is a 
network structure with significant influence. The Trans-
former has profoundly influenced NLP by introducing 
the self-attention mechanism, enabling it to capture long-
range dependencies effectively. Its performance across 
diverse NLP tasks, propagation of pre-training and fine-
tuning methods, and expansion into domains beyond 
NLP highlight its wide-reaching influence on DL and its 
practical applications. Compared with RNNs and CNNs, 
the self-attention mechanism enables the model to pro-
cess sequence data by simultaneously considering all 
positions in the input, while the ability of parallel com-
puting makes it feasible to handle lengthy information.

DL comprises three elements in Figure  2: algorithms, 
data, and computing power. As the global academic 
community continues to propose advanced algorithms 
and networks, a notable contribution has been made by 
ImageNet, introduced by Prof. Feifei Li. The ImageNet 
serves as a visualization database for object recognition, 
encompassing over 20000 categories and more than 14 
million annotated images [41]. ImageNet large-scale vis-
ual recognition challenge (ILSVRC) becomes one of the 
most esteemed competitions in computer vision (CV). 
Many outstanding networks, including AlexNet, ZFNet, 
VGG, GoogLeNet, and ResNet, have emerged, with 2010 
acknowledged as the dawn of DL. The champion of ILS-
VRC in 2012 was AlexNet, a collaborative effort by Alex 
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton [42]. The 
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core contributions lie in introducing the CNN composed 
of convolutional layers and fully connected layers, pio-
neering the adoption of ReLU as the activation function, 
devising the Dropout method to mitigate overfitting, 
adopting mini-batch gradient descent with momentum 
for convergence, utilizing data augmentation to combat 
overfitting, and employing the parallel computing of the 
NVIDIA graphics processing unit (GPU) to accelerate 
the training. In 2013, the champion ZFNet [43] mainly 
made modifications to the size, number, and convolu-
tional strides of the kernel, and the next year witnessed 
an influence on the champion GoogLeNet [44]  and the 
runner-up VGG [45]. GoogLeNet proposed the Incep-
tion structure, retaining more features within the input 
data. By eliminating the first two fully connected layers 
of AlexNet and employing average pooling, GoogLeNet 
reduced its parameter count to 5 million, a 12-fold reduc-
tion compared to AlexNet. Then, GoogLeNet designed 
auxiliary classifiers in intermediate layers to solve the 
vanishing gradient. VGG, proposed by a Visual Geom-
etry Group at Oxford University, abandoned the large-
scale kernels such as 11×11 and 5×5, instead using some 
smaller 3×3 kernels to achieve a larger receptive field. 
Moreover, VGG eliminated a local response normaliza-
tion (LRN) used by AlexNet. Generally, a deeper neural 
network enables the extraction of more sophisticated fea-
tures. However, the increase in the number of layers leads 
to flaws such as a vast number of parameters and the risk 
of overfitting. In 2015, the ILSVRC championship ResNet 
[46], proposed by Kaiming He, addressed these chal-
lenges with a key contribution: the residual module. The 
core idea lies in introducing "skip connections," where 
the input is directly added to the output port, preserving 

the original information and facilitating the gradient flow 
during backpropagation. Moreover, it introduced batch 
normalization to combat the vanishing gradient, mitigat-
ing reliance on initialization. At the same time, a unique 
initialization method was proposed specifically for the 
activation function ReLU.

For computing power, AI computing has followed 
several trends. Firstly, the widespread adoption of spe-
cialized hardware accelerators such as GPUs and Ten-
sor Processing Units (TPUs) has significantly improved 
the computational efficiency of tasks. Secondly, the 
heterogeneous computing platforms integrating differ-
ent processors have enabled more efficient computa-
tion. Additionally, major cloud computing providers 
offer specialized cloud services, such as Amazon and 
Google, which provide flexible computing resources and 
high-performance hardware infrastructure. Of course, 
GPU is currently the most commonly used and popu-
lar. The GPU has contributed to the rise in computing 
power. Under the background of developing DL, GPUs 
serve as indispensable tools akin to shovels in a gold 
rush. NVIDIA defined GPUs in 1999, and under the 
leader Jensen Huang, the specialized processors were 
defined for computationally intensive tasks. Compared 
to central processing units (CPUs), GPUs offer advan-
tages in parallel computing and performance, and they 
have revolutionized the gaming market, redefined com-
puter graphics, and transformed parallel computing. 
Consequently, GPUs are widely adopted, specifically in 
game engines and rendering, allowing for rapid calcula-
tions of elements such as geometry, light, and shadows, 
facilitating the creation of more realistic visual effects. 
In the realm of DL, there are a large number of matrix 
computations and tensor operations involved. The par-
allel computing of GPUs can significantly accelerate the 
training process and make it possible to deal with large-
scale datasets and models. Nowadays, the latest NVIDIA 
DGX equipped GH200, A100 or H100 provides solu-
tions for large-scale AI infrastructure, and the first DGX 
was donated to Open AI, the artificial intelligence team 
that developed ChatGPT. NVIDIA DGX SuperPOD has 
become a one-stop AI platform that can cope with chal-
lenging AI and high-performance workloads. In this era, 
computing power has become the engine to promote the 
development of AI.

2.2 � The Development History of RL
The basic process of RL in Figure  3 contains two basic 
modules: the Agent and the Environment, along with 
three variables: state, action, and reward. A basic process 
of learning can be described as when the Agent, guided 
by the current strategy, outputs an action based on the 
state of the Environment, the Environment executes 

Deep Learning

Data

Algorithm Computing power

Figure 2  Three elements of deep learning [28]
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the action, transitions to the next state, and generates a 
related reward. Relying on an instant reward, the Agent 
determines the loss and the gradient to update the cur-
rent strategy. Through the iterative trial and error to 
carry out the above process, the Agent struggles for the 
optimal action corresponding to each state. When the 
convergence of the mean reward to its maximum, it 
means the acquisition of the optimal policy within the 
current environment [47]. After decades of development, 
the system of RL can be classified into three types based 
on the scope of application: DP, Monte Carlo (MC), and 
Temporal Difference (TD).

The DP-based RL belongs to the model-based and 
offline learning category, and it can in some cases be used 
to solve problems in discrete state and action spaces, 
where the agent tries to learn the policy to make optimal 
decisions in a given environment. The DP proposed by 
Richard Bellman [48] in 1954 aims to decompose com-
plex large-scale problems into subproblems and combine 
subsolutions to construct the final optimal solution for 
the original problem. MC-based RL [49], falling under 
the model-free and offline learning category, was pro-
posed by Stanislaw Ulam in 1949. The MC relies on data 
description, with a large of samples forming an accurate 
reflection. MC-based Reinforce [50], proposed by Ron-
ald J. Williams in 1987, introduced the gradient descent 
to update policies. Faced with a large number of model-
free tasks from the real world, it is difficult to solve them 
using DP, and the MC-based method heavily relying on 
sampling necessitates the completion of each episode 
before learning, making it challenging to satisfy the effi-
ciency in applications. Richard Sutton proposed the TD 
algorithm in 1988 [51], a model-free and online learning-
based category. Based on the indicator of on-policy and 
off-policy, TD-based RL contains SARSA (on-policy) 
[52] and Q-Learning (off-policy) [53], and a core differ-
ence lies in how to calculate the target prediction when 
updating the value function. SARSA was proposed by 
Gavin Adrian Rummery in 1994, and officially renamed 
by Sutton in 1996. Q-Learning originated from the work 
of Watkins, who proposed the TD-based Q-Learning 
algorithm and the multi-step TD in 1989 and analyzed 
the convergence in 1992 [54]. Q-learning has become 

the core algorithm in RL and serves as a foundational 
achievement for the development of RL. Furthermore, 
the experience replay, employed in various algorithms, 
was proposed by Lin in 1992 [55]. Subsequently, research 
shifted towards function approximation. Leemon Baird 
[56] and John Tsitsiklis [57] delved into related studies 
in 1995 and 1996, respectively. Richard Sutton published 
the book "Reinforcement Learning: An Introduction" in 
1998, which was regarded as the bible of RL, and then 
he analyzed the policy gradient integrated with func-
tion approximation in 1999 [58]. Additionally, Inverse RL 
(IRL) was introduced by Andrew Ng and Stuart Russell 
in 2000 [59] and is usually utilized to define the reward 
function, with an apprenticeship architecture published 
in 2004 [60]. In 2006, the Monte Carlo Search Tree 
(MCST) was proposed by Rémi Coulom [61], influencing 
the creation of AlphaGo.

The above are classic examples of traditional RL, laying 
a theoretical and algorithmic foundation for the develop-
ment and application of DRL algorithms.

2.3 � The Development History of DRL
For RL, early-stage limitations in data and computing 
power hindered the progress, and RL has to deal with sta-
bility and reliability problems. In the meantime, the trial-
and-error of RL agents led to models getting stuck or 
failing to converge to optimal solutions, and the uncer-
tainty and unreliability made RL challenging for applica-
tions. On the other hand, the table-based RL had severe 
limitations, such as the "Curse of Dimensionality" and 
"Discretization Error".

In recent years, there have been significant advance-
ments, driven by the efforts of teams like DeepMind and 
OpenAI. DeepMind, founded by Demis Hassabis in 2010 
and later acquired by Google in 2014, has played a cru-
cial role in RL. It proposed various DRL algorithms suit-
able for different tasks. In 2013, Volodymyr Mnih from 
DeepMind proposed the first DRL algorithm called Deep 
Q-Network (DQN) [62]. The improved version with tar-
get networks was officially in 2015 [63], demonstrating 
superior control in Atari 2600. In the improved DQN, the 
main improvement is to first use the neural network to 
parametrically fit the original value table, and then sup-
press the instability in the training through the target net-
work, and also use experience replay to effectively break 
the correlation problem between each training sam-
ple. Next, more algorithms were successively proposed, 
such as deep deterministic policy gradient (DDPG) by 
Timothy P. Lillicrap [64], prioritized experience replay 
(PRE) by Tom Schauul [65], trust region policy optimi-
zation (TRPO) by John Schulman [66], and deep recur-
rent q-network (DRQN) by Matthew Hausknecht [67]. 
In 2016, DeepMind made a breakthrough in the game 
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Figure 3  The basic process of reinforcement learning
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of Go named Alpha Go [68]. By integrating DL, RL, and 
MCST, Alpha Go defeated Fan Hui, Lee Sedol, and Ke Jie. 
More improved versions of AlphaGo Zero [69] and Alp-
haZero [70] obtained greater achievement in mastering 
board games. Other classic DRL algorithms or improve-
ment measures have also been proposed, including Dou-
ble DQN (DDQN) by Hasselt [71], dueling network by 
Wang [72], asynchronous advantage actor-critic (A3C) 
by Mnih [73], proximal policy optimization (PPO) by 
Schulman [74], soft actor-critic (SAC) by Haarnoja [75], 
twin delayed deep deterministic policy gradient (TD3) by 
Fujimoto [76], noise network by Fortunato [77], and rain-
bow by Hessel [78].

DRL has also been applied to other fields. In 2019, Oriol 
Vinyals proposed the AlphaStar achieved grandmaster-
level performance in StarCraft II [79]. AlphaStar is a 
remarkable achievement that has captivated the world of 
Esports. This groundbreaking AI has mastered the con-
trol strategies of all races in the game. In 2020, MuZero 
[80] proposed by Julian Schrittwieser grasps consider-
able effects in Atari and board games such as Go, Chess, 
and Shogi. Recent advancements include AlphaFold pro-
posed by John Jumper [81] in 2021, for predicting protein 
structures, as well as the application in the Gran Turismo 
(GT) Sport defeating top players on the PlayStation by 
Sony, named GT Sophy [82], and successfully controlling 
superheated plasma in nuclear fusion reactors under the 
collaboration of DeepMind and Swiss Federal Institute 
of Technology in Lausanne [83]. In 2023, scholars from 
Tsinghua University, Cao Zhong and Feng Shuo, made 
contributions to autopolit [84] and safety testing [85] 
relying on DRL algorithms.

3 � The Survey and Review of RL‑Based EMSs
3.1 � The State‑of‑the‑Art Survey of Research Status
As of July 21, 2023, a state-of-the-art survey was com-
pleted in major academic databases such as Web of Sci-
ence, IEEE Xplore, and ScienceDirect, and a total of 266 
papers have been searched about the keywords: electric 
vehicle, energy management, and RL. According to all 
current literature, the comprehensive survey about RL-
based EMSs contains the universities and institutions, 
and contributions published in conference and journal 
papers. Through sorting and analysis, all contributions 
can be classified into algorithm innovation, powertrain 
innovation, and environmental innovation. Due to the 
length of the paper and the large amount of data, the 
most detailed content in the form of tables is uploaded 
at https://​github.​com/​Kayse​nC/​Reinf​orcem​ent-​Learn​ing-​
based-​Energy-​Manag​ement-​for-​Hybrid-​Power-​Syste​ms.

The detailed tables mainly include the following 
contents:

(1)	 Statistics on the earliest time and the number of 
results for RL-based EMSs for universities and 
institutions.

(2)	 Statistics on authors, powertrains, algorithms, and 
contributions of conference papers.

(3)	 Statistics on authors, powertrains, algorithms, and 
contributions of journal papers (algorithm innova-
tion, powertrain innovation, and environmental 
innovation).

Moreover, the VISIO file containing the time-
line depicted in Figure  1 has been uploaded, and we 
encourage scholars to contribute enhancements and 
rectifications.

Within the collection, there are 71 conference papers 
[19, 86–155] and 195 research papers [12, 17, 18, 20–27, 
156–339]. Figure 4 reveals the representation of the pub-
lication number over the years, highlighting the develop-
ment of RL-based EMSs for hybrid power systems. An 
obvious aspect is that the origin application of RL can 
be traced back to as early as 2012, and it commenced 
its significant development in 2018. Figure 5 reveals the 
top 15 journals with the number of papers, and the pio-
neering work of introducing RL into EMSs was com-
pleted by scholars from National Chiayi University, who 
focused on the hybrid electric bicycle [158]. Since then, 
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this revolutionary field has expanded to other universities 
such as the University of Southern California, the Univer-
sity of Michigan, the University of California, the Beijing 
Institute of Technology, and Chongqing University, with 
their team developing a unique set of technical routes.

It is key to note that the achievements of RL in other 
fields like Egames and Autopilot, have yielded numerous 
notable results published in prestigious journals such as 

Nature and Science. Therefore, there is potential for RL-
based EMSs of hybrid power systems, with contributions 
extending beyond optimization, adaptability, and gener-
alization. More scholars are investigating the RL-based 
EMS for FCVs, HEVs, EVs equipped with supercapaci-
tors or hybrid battery systems, (HEBs), hybrid electric 
tracked vehicles (HETVs), etc., and Q-learning is con-
sidered the most popular. Subsequently, Qi et  al. [169] 

Table 1  Representative research achievements of algorithm innovation

Reference No. Powertrain Algorithm Contribution

[174] HETV Fast Q learning Hardware-in-loop; KL divergence to trigger the update; cloud computation;

[176] Power split HE 
bus

DDPG Integrating the terrain information; hybrid action space (engine and powertrain mode); dueling 
network; DP-based pre-training process;

[182] PHE bus Q learning The optimal reference SOC trajectories as the expert experience; multiply driving cycle training 
method for the generalization performance; the RL-based agent is used to determine the co-state 
of the PMP-based EMS;

[187] Power split HEV DDPG Transfer learning among four types of powertrains (Prius, power-split bus, series HEV, and series-
parallel bus);

[194] Multi-mode HEV DQN The co-state of the PMP-based EMS is determined by the DRL agent;

[198] Parallel HEV A3C
DPPO

A3C-based and DPPO-based energy and emission management strategy; improving the learning 
efficiency in the multi-thread training process;

[204] Parallel HEV TD3 Heuristic rule-based local controller for eliminating irrational torque allocation; and environmen-
tal disturbances; hybrid experience replay consisting of offline computed optimal experience 
and online learned experience

[207] Multi-mode 
HEV

A3C PPO Online updating framework; generating probable cycles using historical data;

[208] HETV Double DQN Modified prioritized experience replay; adaptive optimization AMSgrad;

[209] Parallel HEV DDPG Deployment inefficiency, safety constraint, and simulation-to-real gap; hardware-in-the-loop; 
an offline cloud-based DRL framework;

[210] Parallel HEV DDPG The equivalent factor of ECMS-based EMS is determined by the DRL; a safe exploration relying 
on modifying by including the heuristic domain knowledge within the ECMS-based for the DRL 
agent; hardware-in-the-loop;

[213] PHEV Q learning KL divergence rate to update the TPM of the demand power;

[216] Power split HEV DQN Generalization ability; coding and decoding multiple states; KL-divergence is used to guide 
the training; an auxiliary agent and a correlation agent;

[217] Power split HEV DQN Hierarchical RL; transfer the optimal BSFC as the sub-goal, and avoid the ‘blind’ exploration by guid-
ing to the direction of the sub-goal in the lower level;

[219] HETV SAC The Munchausen SAC-based EMS to bootstrap and improve optimization; prioritized experience 
replay; DP-based early assisted training sample;

[220] Parallel HEV DDPG
DQN

The multi-objective control aiming at the engine and gearbox; combined with the learning-based 
EMS and rule-based engine start-stop strategy; RL is not suitable for learning intermittent strategies;

[221] Power split HE 
bus

DDPG The softmax deep double deterministic policy gradients algorithm; an action masking technique 
for preventing invalid actions; transfer learning; double Q-learning network, Boltzmann softmax, 
and dual-actor;

[223] Power split HEV Dueling DDPG Transfer learning; the adaptive parameter space noise to balance exploration and exploitation 
which is better than the action space noise; a novel real-time four-phase approach: modeling, pre-
training, transferring, fine-tuning;

[229] Serial HEV SARSA TPM of the power demand; the forgetting factor, KL divergence rate threshold value, and TPM 
updating interval to determine the update of the strategy;

[234] Parallel HEV TD3 DRL-based supplementary learning controller for a rule-based EMS; ape-X distributed architecture 
for improving the converging speed; the gap between simulation and real application; The actor 
in the vehicle and the learning in the cloud;

[246] Serial HEV Nash QL Multi-agent reinforcement learning combines game theory and reinforcement learning; engine-
generator set, battery, and supercapacitor; fuel economy, SOC and health of batteries and SOC 
of supercapacitor; the Nash equilibrium of multiple objectives;

[247] Serial HEV Dyna Online-learning adaptive EMS; the real precious experience is used to train the policy and establish 
an interactive model; realizing the rapid and low-cost online learning.
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introduced the use of DRL and defined the third cate-
gory of learning-based EMSs. Liu [164–167, 177] made 
numerous contributions and proposed RL-based EMSs 
that minimize fuel consumption across various condi-
tions with the help of mathematical theories like tran-
sition probability matrix (TPM) and Kullback-Leibler 
(KL) divergence. He et al. [165] also proposed a predic-
tive EMS, combining speed prediction and RL, and the 
proposed strategy was validated by hardware-in-the-loop 
(HIL). Qi et  al. [95] employed the DQN to learn EMS 
based on historical mileage information, while Li et  al. 
[162] used an actor-critic (AC) architecture for continu-
ous state and action spaces. In the next few years, clas-
sic algorithms and improved approaches like Q-Learning 
and experience replay have usually been adopted, as have 
popular algorithms like DQN, Double DQN, Dueling 
DQN, DDPG, and priority experience replay [161]. More 
recently, some improved algorithms such as SAC, PPO, 
TD3, A3C, and transfer learning (TL) have been tenta-
tively applied. Additionally, AMSGrad, Fast Q-Learning, 
NAG-Adam, and Munchausen SAC have been tried and 
utilized to improve efficiency. Meanwhile, multi-agent 
reinforcement learning (MARL) gained more attention. 
For some typical scenarios like car following and traffic 
flow, MARL, like multi-agent deep deterministic policy 
gradient (MADDPG), facilitated cruising driving and 
energy management. Scholars also tried to combine RL 
agents with rule-based or optimization-based EMSs. 
Relying on the stability of PMP/ECMS, researchers begin 
to employ RL to adjust adaptive parameters such as the 
co-state or equivalent factor (EF), as well as LSTM and 
learning vector quantization (LVQ) networks are uti-
lized to improve accuracy and efficiency within the MPC 
algorithm.

According to statistics on the current status, the year 
2018 marked the end of the initial stage and the begin-
ning of the development stage of learning-based EMSs. 
The following content summarizes and reviews all of the 
contributions after 2018, focusing on journal papers.

3.2 � The Comprehensive Review of Research Status
Between 2019 and July 2023, a total of 166 journal papers 
were published, focusing on contributions catego-
rized into algorithm, powertrain, and environment, and 
Tables 1, 2, and 3 present representative papers for each 
of these categories.

3.2.1 � Algorithm Innovation
Algorithm innovation often plays a pivotal role through-
out, indicating that when improving efficiency and 
addressing inherent flaws.

First of all, emerging researchers made contributions 
by employing various RL algorithms. Subsequently, 

individuals delved beyond Q-Learning, exploring alter-
native algorithms like SARSA, Dyna-H, and DDPG. 
Furthermore, challenges posed by the "curse of dimen-
sionality" and "discretization error" prompted scholars to 
pivot towards DRL algorithms. The quest for algorithmic 
innovation represents a significant advancement in the 
field, fostering a dynamic and vibrant research environ-
ment. For instance, Fast Q-Learning in Ref. [174], DDPG 
in Ref. [176], Dyna-H in Ref. [177], Dueling structure in 
Ref. [178], distributed DRL with A3C and DPPO in Ref. 
[198], TD3 in Ref. [196], SAC in Ref. [211], and Nash 
Q-Learning of MARL in Ref. [246]. Techniques like PER 
have gained more attention, and the adoption of TL has 
commenced. These contributions aim to enhance the 
training efficiency, solve flaws like overestimation, and 
achieve more efficient nonlinear fitting of value func-
tions. For the current research, Guo et al. [183], Lee et al. 
[185], Lian et  al. [187], Wang et  al. [221], and Xu et  al. 
[223] designed TL-based EMSs, and Lian et al. [187] ana-
lyzed the transfer process in detail for four hybrid power 
systems. Scholars have used the latest algorithms more 
frequently, meaning the advantages such as TD3 and 
MARL are grasped. Furthermore, when the reward func-
tion contains multiple items, Lv et al. [214] used IRL to 
determine the suitable weight of each item.

Moreover, one branch is dedicated to enhancing effi-
ciency through self-designed methods. For example, 
Li et al. [176] improved the exploration by storing opti-
mal results based on DP-based EMSs in the experience 
pool. Many researchers have utilized heuristic experi-
ence to guide the RL agent in the action space, like the 
brake-specific fuel consumption (BSFC) curve [186] 
and battery characteristics, or focused on updating the 
TPM by discriminative mechanisms, like KL divergence 
[174, 213, 216, 229], and induced matrix norm (IMN) 
[201] for modeling the environment and triggering the 
update. Some results have been achieved by combining 
rule-based and learning-based policies, capitalizing on 
strengths, and compensating for limitations. Tang et  al. 
[220] merged learning-based EMSs with the rule-based 
engine start-stop, controlling the working period of the 
engine and enabling it to work efficiently when required. 
Xu et al. [199] adopted the ECMS-based EMS and heu-
ristic control to pre-initialize the Q-table as the warm 
start, and Wu et al. [244] utilized a rule-based mode con-
trol to eliminate unreasonable exploration. The above are 
all auxiliary improvements to the RL agent in the control 
process.

Then, RL is regarded as a controller for key parameters 
in traditional EMSs. It involves selecting the co-state for 
PMP-based EMSs and the EF for ECMS-based EMSs to 
promote adaptability in stochastic environments. Guo 
et al. [182], Lee et al. [193], and Hu et al. [209, 210] made 
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main contributions similar to the above idea. Various 
problems in the simulation have been pointed out. Hu 
et al. [209] identified several main challenges like deploy-
ment inefficiency, safety constraints, and the gap between 
virtual simulation and the real world, and they are 

incorporating data from both real and simulated environ-
ments to guide RL agents.

In addition, the specific parameters and settings 
that affect the training process are analyzed. Xu et  al. 
[223] discuss the impact of introducing noise in action 
and parameter spaces. Other scholars explore novel 

Table 2  Representative research achievements of powertrain innovation

Reference No. Powertrain Algorithm Contribution

[250] FCV Q learning Fuel cell, battery, and supercapacitor; shrink state-action space based on an adaptive fuzzy filter; speedy 
Q-Learning; ECMS-based multi-objective optimization considering lifespan and fuel efficiency of fuel cell; 
RL-based splitting strategy for battery and fuel cell;

[252] EV DQN Hybrid battery systems (high-energy and a high-power battery pack); energy loss minimization and elec-
trical and thermal safety enhancement;

[253] HE bus SAC Thermal safety and degradation of onboard lithium-ion battery; the over-temperature penalty and multi-
stress-driven degradation cost of battery are introduced;

[256] PHEV DQN The dual-mode engine with homogeneous charge compression ignition (HCCI) and spark ignition (SI); DP 
obtains optimal combustion mode and SOC reference trajectories at the cloud. DRL-based EMS and com-
bustion mode with prioritized experience replay at the powertrain; makes full use of HCCI combustion 
mode and avoids frequent switching of combustion modes;

[270] EV SAC Battery and supercapacitor; slower convergence rate, brittle training stability, and dissatisfactory optimiza-
tion; parallel computing; DP-based expert knowledge is embedded;

[280] HETV DDPG The lateral dynamics; and steering resistance on the energy distribution are considered; the multidimen-
sional matrix framework; the pyramid-like network; hardware-in-the-loop;

[281] Electric
hydraulic 
HEV

TD3 A self-adaptive electric-hydraulic ratio under different driving cycles; a DRL-based EMS with a rule-based 
mode switching strategy;

Table 3  Representative research achievements of environmental innovation

Reference No. Powertrain Algorithm Contribution

[296] Serial HEV DDPG History of cumulative trip information to obtain the space-domain-indexed SOC trajectory; offline train-
ing and online application;

[302] Power split 
PHEV

Actor-Critic Route planning and power management; the minimum energy consumption route;

[304] HE bus
Power split 
HEV

DDPG SUMO-based Multi-states of Traffic Information (the state of the surrounding vehicles and signal lights); 
transfer learning; the prior knowledge trained by HEB is transferred to Prius;

[307] Power split 
HEV

DDPG Connected traffic environment (distance headway, fuel consumption, and terrain); DDPG-based reference 
speed planning in the car following scenarios; A-ECMS-based EMS;

[311] Parallel HEV DQN Five roads are collected (dry asphalt, wet asphalt, snow, dry cobblestone, and wet cobblestone); the time-
varying driving environment (driving images, slope, speed, and the number of passengers.); the stereo-
scopic control network for the high-dimensional task (engine, transmission, motor);

[317] FCV SAC Fuel cell, battery, and supercapacitor; the attention-based LSTM-based velocity and load power predictor 
by standard and real driving cycles;

[320] Power split 
HEV

DDPG The K-means and principal component analysis-based specific driving cycle is constructed by naturalistic 
data; expert-assisted EMS with brake-specific fuel consumption curve; battery aging model;

[323] Parallel HEV DDPG
DQN

Processor-in-the-loop; lane-level high-definition map-driven integrated control; Map modeling 
by Google Earth and Google map; the velocity and steering of the vehicle layer and EMS of the power-
train;

[326] Power split 
HEV

DDPG Connected HEVs; MPC-based speed control for maintaining a safe distance and ensuring riding comfort; 
prioritized experience replay; the expert knowledge-based EMS;

[331] Serial HEV MADDPG Ecological driving in the car following scenario in SUMO; Heterogeneous Multi-Agent DRL; MADDPG-
based adaptive cruise control and EMS; prioritized experience replay;

[332] Power split 
HEV

DDPG Collaborative optimization of energy management strategy and adaptive cruise control; the noise 
on the action space (Ornstein-Uhlenbeck action noise and soft-max action noise).
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optimizers like AMSgrad [181] or delve into hyperpa-
rameters [190] such as discretization, and experience 
pool. Wang et al. [243] provide a comparison of 13 RL-
based EMSs, analyzing various aspects like reward func-
tions, computational efficiency, and convergence.

Finally, the safety of RL has received significant atten-
tion. During the training, RL agents learn the optimal 
strategy by trial and error while balancing the explora-
tion-exploitation. Empirical evidence suggests that RL 
overlooks the dynamic of powertrains when generat-
ing actions, resulting in abrupt changes in actions. To 
address this problem, measures such as the penalty term 
for unreasonable actions [196], designing the coach 
mechanism to ensure training safety [202], and the rule-
based controller to eliminate unreasonable distribution 
have been employed to constrain control actions [244]. 
Zhou et al. [204] and Hu et al. [210, 231] are taking a heu-
ristic rule to eliminate irrational allocation and ensure 
safe exploration. Wang et al. [221] adopt the action mask-
ing technology to prevent unreasonable actions. There-
fore, it is crucial to give enough attention to the safety of 
RL to ensure their practical deployment, as achievements 
realized at the simulation level may not effectively trans-
late into real-world environments.

3.2.2 � Powertrain Innovation
Powertrain innovation means promoting the diversifi-
cation of powertrains and the realization of modeling 
schemes. This goes beyond the traditional focus on fuel 
economy and SOC, and the target aims at achieving 
multi-objective optimization, such as efficiency, tempera-
ture, and lifespan.

Firstly, as current research progresses, literature reflects 
significant diversity in terms of hybrid power systems, 
such as EVs with hybrid battery systems (high power bat-
tery and high energy battery) or supercapacitors, FCVs 
with fuel cells and batteries, and the three-energy system 
with fuel cells, batteries, and supercapacitors. Therefore, 
power distribution can also appear in EVs and FCVs, 
which means that EMSs are not only suitable for gaso-
line-electric hybrid systems. As to some special-purpose 
vehicles, some also regard them as targets, such as the 
rail transit adopted by Yang et al. [255], hybrid construc-
tion vehicles (HCVs) targeted by Zhang et al. [272], and 
electric-hydraulic HEVs targeted by Zhang et  al [293, 
294]. Deng et al. [258] proposed the RL-based EMS that 
minimizes hydrogen consumption and fuel cell aging 
costs for the unique fuel cell railway vehicle. In addition, 
for many researchers from the Beijing Institute of Tech-
nology, HETVs from special vehicles and series/parallel 
HEVs from public transportation are studied, and the dif-
ficulty of control is also significantly increased [280].

Another item lies in focusing on temperature and 
lifespan. Many efforts have been dedicated to alleviating 
degradation and extending life through the utilization 
of various models. When the capacity decays to 80% of 
the initial capacity, the battery is treated as scrapped. Li 
et al. [252] built equivalent circuit models, electro-ther-
mal models, and aging models for hybrid battery systems 
equipped with high-energy and high-power batteries. 
Zhang et  al. [292] focused on the lithium-plating sup-
pressed effect and designed the hybrid particle swarm 
optimization to complete the parameter identification. 
Haskara et al. [262] and Deng et al. [279] took tempera-
ture as the main goal and realized the temperature man-
agement of the cabin by adding heating ventilation air 
conditioning. Wu et  al. [253] introduced the over-tem-
perature and multi-stress-driven degradation costs.

Next, some scholars merged their expertise from 
unique domains and introduced specialized models, 
which made the modeling method closer to actual com-
ponents and reflected many effects. Zhang et  al. [256, 
271] performed research on the dedicated dual-mode 
combustion engine with the spark ignition (SI) and 
homogeneous charge compression ignition (HCCI) 
modes. Wang et al. [267] took a waste heat recovery sys-
tem based on the organic Rankine cycle. Hong et al. [281] 
and Zhang et  al. [294] completed a training process of 
power distribution and mode switching strategy by using 
the RL for electro-hydraulic hybrid power systems.

Finally, some scholars make partial contributions based 
on improving the dynamic model, which is also the 
essential direction that is currently lacking in the EMS. 
Han et  al. [280] added the lateral dynamics of the vehi-
cle and introduced the steering resistance into the design 
of the EMS, resulting in the vehicle model getting rid of 
the status of just focusing on the longitudinal dynamics 
in the past. In this regard, there is still a lot of work to 
be done. For a real car, an ideal strategy, the high-fidelity 
dynamics model, an experienced driver, and a smooth 
driving environment are all factors to focus on.

3.2.3 � Environmental Innovation
Environmental innovation represents the advancement 
of EMSs, involving the integration of technologies from 
more fields to enhance eco-driving. The development of 
autopilot and communication paves the way for energy-
saving control for intelligent connected HEVs (ICHEVs) 
[340].

First, SOC planning and velocity prediction are pri-
marily revolved. By using historical data or so-called 
connected information such as vehicle-to-vehicle (V2V) 
or vehicle-to-infrastructure (V2I), to gain insights into 
the environment, the future short-term SOC and veloc-
ity trajectories could be planned. For SOC planning, 



Page 12 of 25Tang et al. Chinese Journal of Mechanical Engineering           (2024) 37:43 

there are local SOC trajectories designed by Guo et  al. 
[295] and the space-domain-indexed SOC trajectory 
obtained by Li et al. [296] through a history of cumula-
tive trip information. Similarly, Zhang et  al. [301] are 
trying to employ GPS to complete the global planning of 
the SOC. Another item is the short-term prediction of 
speed, which not only allows RL to grasp future informa-
tion but also researchers to integrate RL with the MPC 
framework. For speed prediction, Chen et al. [299], Yang 
et al. [322], and Wang et al. [334] adopted the multi-step 
Markov chain as predictors, and Liu et al. [329] and Kim 
et  al. [317] utilized LSTM as the predictive tool. Stud-
ies have also demonstrated the advantages of the LSTM 
in velocity prediction, ensuring both accuracy and 
efficiency.

Additionally, the hierarchical structure under con-
nected environments starts to be focused on, and more 
factors like driving conditions and driving styles reflect-
ing randomness and personalized influences, are usu-
ally taken into account. Zhang et  al. [302] researched 
eco-driving with route planning in the environment and 
energy management in the system. Li et al. [307] assumed 
that DDPG is used in the connected traffic environ-
ment to realize the reference speed planning in the car-
following scene, and the A-ECMS is utilized for energy 
management. Peng et al. [331, 332] and Zhang et al. [338] 
both aimed at eco-driving and combined adaptive cruise 
control (ACC) with EMSs based on RL to achieve co-
optimization in terms of velocity and power distribution. 

Moreover, in the car-following scenario, maintaining a 
safe following distance and maintaining driving comfort 
has also become one of the main goals.

Another area is the construction of featured driving 
cycles. While most EMSs use standard driving cycles, 
the features in real-world scenarios, influenced by many 
factors such as traffic signals, traffic flow, pavement prop-
erties, and weather, are overlooked. Therefore, research 
has begun constructing featured driving cycles based on 
real data, using techniques such as principal component 
analysis (PCA) and K-means, which provide a realistic 
and intuitive reflection of velocity. He et  al. [304] con-
structed the traffic environment containing information 
on surrounding vehicles and signal lights in the SUMO. 
Chang et  al. [310], Tang et  al. [320], and Huang et  al. 
[327] adopted PCA and clustering algorithms to form the 
featured driving cycle. For the ramp scenario, Lin et  al. 
[318] proposed a DDPG-based merging controller. Yan 
et al. [321] proposed DRL-based launch control to select 
the appropriate start time for reducing frequent starting 
and stopping through the traffic intersection. Moreover, 
Chen et al. [324] employed a traffic-in-the-loop simulator 
under various urban scenarios.

Next, more AI and ML technologies have been inte-
grated. For instance, object detection algorithms, you 
only look once (YOLO), are utilized to identify traffic 
signals and estimate traffic flow according to the num-
ber of surrounding cars by Wang et  al. [309], and Tang 
et  al. [319] employ the YOLO to detect the leading car 
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Figure 6  The main direction of the contributions of journal papers
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and measure the following distance in the car-following 
scene. In addition, considering the impact of different 
road surfaces on driving safety, Chen et al. [311] trained 
the VGG16 neural network to identify and estimate the 
optimal slip rate for safe braking. Chen et  al. [323] also 
built a lane-level map through the route and geographic 
data from Google Maps and Google Earth and adopted 
multiple DRL agents to achieve integrated control of the 
ICHEV. Moreover, driving condition recognition is often 
mentioned, and learning vector quantization (LVQ)-
based recognition is employed by Chang et al. [310], Fang 
et  al. [312], and Liu et  al. [328], while Yang et  al. [322] 
employees probabilistic neural networks for pattern 
recognition.

Finally, MARL algorithms and cloud and edge comput-
ing platforms have emerged as the burgeoning direction. 
Wang et  al. [335] used independent SAC belonging to 
the MARL to research eco-driving and EMSs. Peng et al. 
[331] proposed a similar idea and used MARL to achieve 
the ACC and EMS tasks for eco-driving. Furthermore, 
Both Hu et al. [306] and Li et al. [308] proposed a training 
concept of cloud platforms and edge computing, which 
will be an inevitable method in the future. For a gener-
alized strategy, large-scale computing devices on cloud 
platforms can satisfy the requirements for speed and 
computing power, and for personalized strategies, edge 
devices assigned to individuals, such as NVIDIA Jetson, 
are ideal training machines.

3.3 � Discussion on RL‑Based EMSs
Figure  6 summarizes the majority of the research con-
tributions, forming the most intuitive expression, 
which is beneficial for researchers to quickly grasp the 
mainstream.

However, the enhancement of research popularity 
and the increase in the number of literature could only 
represent the positive aspect of the development of RL-
based EMSs, but there are also some difficulties worth 
discussing. Next, the discussion on RL-based EMSs for 
hybrid power systems will also be carried out from three 
aspects: algorithm, data, and computing power.

(1)	 Algorithm: In terms of algorithm improvements, 
TD3, SAC, and MARL are currently the most 
popular modules. They are committed to refining 
the training process of RL by enhancing various 
improvements to networks, amplifying both explo-
ration and exploitation, and expanding the scale of 
training modes. Meanwhile, targeting online sce-
narios, the on-policy-based PPO that does not rely 
on experience pools has also achieved significant 
accomplishments. In fact, if we liken RL agents to 
students, researchers act as teachers responsible 

for educating neural networks. Currently, most 
literature focuses on gradually improving train-
ing schemes in offline simulation and overcom-
ing inherent flaws. This is like saying that teach-
ers should designate different plans for different 
teaching contents in daily classes, and they should 
match the abilities and personalities of different stu-
dents to achieve better guidance. Therefore, for the 
development of RL-based EMSs, several challenges 
should be encountered:

a)	 Selecting the appropriate algorithm for different 
tasks.

b)	 Adjusting neural network structures, state spaces, 
action spaces, reward functions, and hyperpa-
rameters.

c)	 Verifying the generalization, safety, and robust-
ness of trained agents in offline scenarios.

d)	 Bridging the gap between simulation environ-
ments and the real world during offline training.

e)	 Addressing the limitation of depending solely on 
offline simulation for modeling and training, the 
research aims to accomplish the ongoing updat-
ing of RL-based EMSs in the complex real-world 
while ensuring control safety.

Vehicle Dynamic Model

14 degrees of freedom 
vehicle dynamic

vx, vy, vz: velocity along x, y, and z axes;
ax, ay, az: acceleration along x, y, and z axed;
Roll, Pitch, Yaw: Angular velocity about x, y, and z axes;
Loadf, Loadr: front and rear tire load;
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f )	 The most debated topic in the AI community 
revolves around the necessity for trained models 
to comply with human morals and law. Other-
wise, it may result in the emergence of "Termina-
tors" rooted in silicon-based life forms as agents 
evolve.

	 Nowadays, progress is focused on addressing 
stages such as generalization and safety, online 
learning, and handling gaps. If RL is going to be 
deployed on real HEVs, there is still much work 
to be finished.

(2)	 Data: As mentioned earlier, RL is one of the subsets 
of ML, distinct from DL in that it does not heav-
ily manipulate labeling. It relies solely on a defined 
reward to assess the quality of outputs relative to 
inputs. Therefore, both DL and RL as sample-driven 
forms strive to fit complex and abstract relation-
ships between all inputs and outputs. Regarding 
RL-based EMSs, the most controversial aspects lie 
in the degree of modeling of HEVs in offline train-
ing environments and the effectiveness of simu-
lating driving conditions. Similar to autonomous 
driving, the environment in which hybrid power 
systems operate is complex, dynamic, and subject 
to various influencing factors such as temperature, 
aging, wear and tear, and potential accidents. Thus, 
if RL agents are to be trained for HEVs or autono-
mous driving, the dynamic nature of the environ-
ment and the "long tail" scenarios that cannot be 
exhaustively traversed pose significant challenges 
in training data collection. Currently, researchers 
from the University of Zurich have for the first time 
applied DRL to real unmanned aerial vehicles [341] 
and achieved championship-level effect in drone 

races against humans. They utilized residual models 
of dynamics to compensate for the samples in the 
simulation environment. However, it is noted that 
trained DRL agents fail when faced with different 
lighting or collisions leading to drone crashes, indi-
cating a lack of robustness comparable to human 
drivers.

(3)	 Computing power: Although MathWorks has 
released a toolkit for RL, Python-based frameworks 
like TensorFlow and PyTorch remain the primary 
modeling environments for DRL agents. By oper-
ating in the form of tensor on GPUs, training effi-
ciency can be significantly enhanced. In practice, 
for RL-based EMSs, the demand for GPU comput-
ing power is not particularly evident, as the main 
architecture typically consists of fully connected 
networks, and the input state is represented as ten-
sor-form data. Instead, the reliance is more on Sim-
ulink-based powertrains and rendered 3D scenes 
of driving environments like CARLA and NVIDIA 
Driven sim. However, achieving end-to-end energy-
saving autonomous driving with vehicle visualiza-
tion will be a challenge for RL. Drawing from devel-
opments in robotics, training multiple agents in a 
3D training environment will require substantial 
computing power. The NVIDIA Omniverse plat-
form and the NVIDIA Isaac Sim provide tools for 
robot simulation and data generation, offering real-
istic and physically accurate virtual environments 
for developing, testing, and managing robots. Addi-
tionally, creating physically accurate large-scale 
simulations will enable the development of real-
world digital twins, necessitating extensive support, 
such as NVIDIA OVX to accelerate AI-enabled 
workloads.

Finally, as stated in the tenets of the two AI teams, 
Deep Mind, and OpenAI: "Solve intelligence. Use it to 
make the world a better place" and DRL is the essential 
key that opens the door to the future era of AI.

4 � The Future of Autonomous Intelligent HEVs
The advancement of autonomous driving and RL algo-
rithms presents an enticing opportunity for developing 
autonomous intelligent HEVs, which may be named the 
"Alpha HEV", and we have forecasted the dependable 
technical strategy to attain complete control through RL.

Firstly, it completely gets rid of the backward simula-
tion, the crude method of calculating the demand power 
and the dynamic, and easy models of engines and batter-
ies. Not only to strengthen the modeling of each compo-
nent, such as the engine, motor, battery, gearbox, clutch, 
shaft, brake, etc. but also to improve the vehicle model as 
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a whole. Incorporating a forward simulation that includes 
a driver, the vehicle body should also be equipped with 
more degrees of freedom, and essential parts such as 
suspensions, tires, and body must be included. These 
enhancements enable the vehicle to respond realistically 
to external environments and internal systems, resulting 

in accurate and reliable simulations. Furthermore, the 
modeling method of road surfaces becomes necessary. 
Beginning with basic features like slope, curvature, and 
road signs, more advanced factors should be involved 
like road materials, road aging, and dynamic variations 
influenced by weather. These elements not only impact 

Rear View 
Camera

Rearward Looking Side 
Cameras

Forward Looking Side 
Cameras

Wide Forward 
Camera

Main Forward 
Camera

Narrow Forward 
Camera

3D Environment + Time Cloud/ Edge HardwareRL Agent (Alpha HEV)

End-to-end Integrated Tasks for RL agents

Vehicle and Powertrain Control

PlanningDecision-makingPerception

RL

Figure 9  The RL-based autonomous intelligent HEV



Page 16 of 25Tang et al. Chinese Journal of Mechanical Engineering           (2024) 37:43 

energy-efficient driving but also play a key role in safety, 
comfort, and other aspects, as depicted in Figure 7.

Then, achieving intelligent control through RL 
requires a fusion of multi-modal information. Com-
mands in Figure 8 for the car encompass a wide range 
of functionalities, including acceleration, braking, 
steering, and managing the engine and gearbox within 
a powertrain. The intricate control facilitates efficient 
driving and the integration of various components for 
better performance. Drawing inspiration from an anal-
ogy of DQN in the Atari 2600, HEVs can also benefit 
from visual perception and high-definition maps from 
autopilot systems. This involves adding vehicle vision 
to RL agents, allowing them to navigate the path for-
ward. Relying on vehicle vision and HD maps is reliable 
for perceiving surrounding vehicles and obtaining path 
information, and the ultimate goal is to achieve inte-
grated control by using mult-agents, effectively allow-
ing RL to fully take over all the controlled components.

Finally, there are more strict requirements for per-
ception, decision-making, planning [342], software 
calibration, and hardware computing power. Taking 
inspiration from the Full Self-Driving (FSD) of Tesla, 
a three-dimensional perception space is constructed 
from real-time images captured by eight cameras, 
allowing for a comprehensive understanding of the 
surroundings in Figure 9, and this perception space is 
extended into the temporal dimension to ensure accu-
rate perception of temporarily obscured objects. Then, 
a path is determined and planned, and the vehicle is 
controlled to track the route while the powertrain is 
managed at the same time. As an even more ambitious 
idea, a large DRL agent that acts as both a driver and 
an engineer is trained to handle all tasks solely from 
real-time images, and the perception and decision-
making about autonomous driving will become cog-
nition about the driving environment and passenger 
needs. While this notion presents significant chal-
lenges, it holds the potential to revolutionize autono-
mous driving. In conclusion, the deployment of RL 
agents in the "Alpha HEV" hinges on end-to-end auto-
pilot functionality, resilient perception systems, and 
sophisticated decision-making algorithms, requiring 
collaboration among industry leaders to achieve safe 
and energy-saving autopilot.

5 � Conclusions
This paper provides a state-of-the-art survey and review 
of the status in the field of RL-based EMSs for hybrid 
power systems. Firstly, it begins by tracing the develop-
ment history of DL, RL, and DRL and highlighting many 
milestones and famous scholars. As the painter, we very 
much welcome and thank all subsequent scholars for 

their corrections and more comprehensive additions to 
this timeline in Figure 1. Then, the focus shifts to shifts 
to RL-based EMSs, where a total of 266 papers have been 
collected as of July 21, 2023. The detailed tables summa-
rizing all of the content have been uploaded at https://​
github.​com/​Kayse​nC/​Reinf​orcem​ent-​Learn​ing-​based-​
Energy-​Manag​ement-​for-​Hybrid-​Power-​Syste​ms based 
on scholars, years, target powertrains, algorithms, and 
contributions. Moreover, statistical information is pre-
sented to illustrate the annual growth of research papers, 
providing valuable insights into the evolving interest in 
the field. Then, a comprehensive review of the current 
status is completed, with a novel emphasis on algorithm 
innovation, powertrain innovation, and environmental 
innovation. At the same time, difficulties that may arise 
in the subsequent development stages of RL-based EMSs 
are discussed from the aspects of algorithms, data, and 
computing power.

The ultimate goal is named "Alpha HEV," an autono-
mous intelligent HEV, and three main directions are 
highlighted: enhancing modeling, full takeover by DRL, 
and cognitive-oriented energy-saving autonomous 
driving.

In all, this paper summarizes the latest research sta-
tus and presents the promising outlook for DRL-based 
HEVs. The pursuit of autonomous intelligent HEVs holds 
great potential to revolutionize the automotive industry, 
leading to efficient and environmentally friendly vehicles.
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