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Abstract 

Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned 
in this paper. By borrowing the advantages of model-driven and data-driven methods, a fault tolerant nonsingular 
terminal sliding mode control method based on support vector machine (SVM) is proposed. A SVM is designed 
to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method 
and is introduced into a high-gain observer, so as to improve the state estimation and fault detection accuracy 
when the fault occurs. The state estimation value of the observer is used for state reconfiguration. A novel nonsin-
gular terminal sliding mode surface is designed, and Lyapunov theorem is used to derive a parameter adaptation 
law and a control law. It is guaranteed that the proposed controller can achieve asymptotical stability which is supe-
rior to many advanced fault-tolerant controllers. In addition, the parameter estimation also can help to diagnose 
the system faults because the faults can be reflected by the parameters variation. Extensive comparative simulation 
and experimental results illustrate the effectiveness and advancement of the proposed controller compared with sev-
eral other main-stream controllers.

Keywords  Aeronautics electromechanical actuator, Fault tolerant control, Support vector machine, State observer, 
Parametric uncertainty

1  Introduction
With the rapid development of electric technology, elec-
tromechanical actuator is more and more welcomed due 
to its relative cleanness, low noise, flexibility and con-
venient maintenance, compared to the electro-hydraulic 
servo actuation systems, which often have trouble with 
high noise, oil pollution and difficult maintenance and 
lead to a poor comfort for users. For example, both A320 
aircraft and Boeing 787 have successfully substituted 
electric actuators for the traditional hydraulic actua-
tor for some steering engines and conducted some test 

flights. NASA and others jointly developed an electric 
actuator for the X-33 and X-38 space shuttles [1, 2]. In 
addition, in the past, the controller of the aircraft actua-
tor which was usually located in drivers’ cab was far away 
from the actuator, which increased many additional 
equipment such as cables and connectors between the 
actuator and the flight controller, raised cost dramati-
cally and at the same time reduced the reliability of the 
aircraft. Thus, the integrated design of actuators and 
controllers is more and more favored. However, by this 
way the controller will be moved from the original driv-
ers’ cab to the vicinity of the actuator, which deteriorates 
the controllers’ working conditions dramatically and 
increases the probability of system fault greatly. Thus it is 
very important to make fault diagnosis and fault-tolerant 
control (FTC) of electromechanical actuators especially 
for safety-oriented aircraft engineering [3, 4].
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There are mainly two kinds of fault tolerant control 
method including hardware redundancy and analyti-
cal redundancy method. Compared with the former, the 
latter can save the additional cost, space and complexity 
of hardware design, and thus the latter is more attrac-
tive although hardware redundancy is essential in many 
cases. Analytical redundancy method realizes fault toler-
ant control mainly by reconstructing some redundancy 
signals based on the mathematical model of the dynamic 
system.

With the progress of control theory and information 
technology, fault diagnosis based on model and ana-
lytical redundancy fault tolerant technology has made 
some breakthroughs in both linear and nonlinear sys-
tems [5–8]. However, in most of these studies the model 
uncertainties including parameter uncertainties and dis-
turbance are combined with the possible fault for dis-
cussion, and thus the designed observer is not sensitive 
to the system fault. Yao et al. [9–11] carried out a lot of 
academic research, and pointed out that these uncer-
tainties are the main reasons for the difficulty in design 
and implementation of model-based fault diagnosis 
methods. They creatively put forward a kind of nonlin-
ear coordinate transformation based adaptive robust 
observer design method [9]. The parameter uncertainty 
and uncertain nonlinearity which exist widely in practical 
systems are fully considered. At the same time, the stabil-
ity of the observer is ensured by the appropriate robust 
filtering, and the quantitative description of the param-
eter and state estimation error is given, which solves the 
problem that the observer design is easily disturbed by 
the modeling error. Based on the concept of parameter 
adaptive and robust filtering, Yao et al. designed the state 
reconstruction of the nonlinear system for the possible 
additive faults of the system. Then, the proposed param-
eter adaptive, state reconstruction and state observer 
were used to solve the common internal leakage and oil 
pollution faults of the electro-hydraulic servo system. 
The beneficial attempts of online detection, identification 
and controller regulation were made [12], and almost all 
system control performance could be recovered through 
targeted controller regulation. From the above analysis, 
it can be seen that Yao et  al. mainly designs strategies 
of online monitoring system parameters and states with 
the nonlinear mathematical model of the system based 
on the analytical redundancy method, and then detects/
identifies the possible faults of the system. This method 
balances the robustness and sensitivity of fault detec-
tion well, and it is of great value to ensure the safety of 
the system and carry out preventive maintenance in time. 
However, this method is still a model-based method, so it 
is necessary to establish an accurate mathematical model 
first which is not always practical in engineering. What’s 

more, how to distinguish whether the system parameter 
aberration comes from malfunction or it is a normal drift 
with the change of working environment, and how to dis-
tinguish whether the system is faulty or subject to large 
external interference (such as aerodynamic load borne by 
aircraft steering gear) are major difficulties.

In recent years, data-driven methods based on neural 
networks have received more and more attention in the 
field of fault diagnosis and fault tolerant control [13–15]. 
Among these methods, SVM method is based on statis-
tical learning theory, so it has an excellent ability to pro-
cess data of nonlinear system. Especially, SVM algorithm 
has the optimization ability without knowing the specific 
model of the state, only according to a small amount of 
sample data while BP or some other neural networks need 
a large amount of sample data to learn and train them-
selves which degrade the learning efficiency. By training 
itself with the sample data, SVM can obtain a relation-
ship between input and output, which is similar to a map-
ping law of the black box [16–18]. SVM classification and 
regression estimation methods show many advantages in 
solving small sample [19], pattern recognition [20], non-
linear model approximation [21], etc., which also provides 
new solutions for fault diagnosis of electromechanical 
servo systems with nonlinear characteristics.

In this paper, in order to have better performance of 
fault diagnosis and fault tolerant control, considering the 
fast response speed, high precision and finite time stabil-
ity of terminal sliding mode controller [22, 23], this kind 
of controller is taken as a main controller. Then by bor-
rowing the advantages of model-driven and data-driven 
methods, a fault tolerant nonsingular terminal sliding 
mode control method based on SVM is proposed. A SVM 
is designed to estimate the possible faults in the system 
by off-line learning from a small sample data with solving 
convex quadratic programming method. This estimation 
is used to compensate the possible fault with feedforward 
cancellation technique in the proposed observer and 
controller to improve the observer and tracking accuracy. 
The residual generated by the output of the observer and 
the real output of the system and the fault estimation 
value of SVM are used to comprehensively judge whether 
the system has faults, including sensor faults and actua-
tor faults, so as to improve the accuracy of fault detec-
tion. The output of the observer is used to reconstruct 
the controller when something is wrong in aeronautics 
electromechanical system. Then Lyapunov theorem is 
used to design a nonsingular terminal sliding mode con-
troller with a parameter adaptation law and to guaran-
teen an asymptotical stability of the proposed controller 
which is superior to many other fault-tolerant nonlinear 
controllers. In addition, the parameter estimation also 
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can be used to help diagnose the system faults since the 
faults can be reflected by the parameters variation.

The highlights of the proposed fault diagnosis and con-
trol method are as follows:

(1)	 A SVM capable of identifying faults by off-line 
learning from a small sample data is introduced into 
a high-gain observer, which helps improve the state 
estimation accuracy and reconfigure the controller 
more precisely.

(2)	 Considering that the frequency domain characteristics 
of the position signal can help judge whether the sys-
tem malfunctions, Fourier transform method is used 
to extract the frequency mean of the position signal, 
which is taken as an input value of SVM to improve the 
fault detection performance.

(3)	 A novel nonsingular terminal sliding mode control-
ler is designed, which can achieve asymptotical sta-
bility superior to many advanced fault-tolerant con-
trollers.

(4)	 A parameter adaption law is also designed, which 
can help to diagnose the system faults because the 
faults can be reflected by the parameters variation.

This paper is organized as follows. Section 2 gives the 
problem formulation and system dynamic models. Sec-
tion  3 presents the design process of fault detection 
method based on SVM. Section 4 shows the design pro-
cedure of nonsingular terminal sliding mode active fault 
tolerant controller. Section 5 carries out the comparative 
simulations and Section  6 carries out extensive experi-
ments and analysis, and some conclusions can be found 
in Section 7.

2 � Problem Description and Dynamic Model
Electromechanical actuator such as a steering engine 
driven by motors is usually composed of actuator , driver, 
mechanical transmission mechanism, inertia load, sensor 
(such as resolver, photoelectric encoder) and controller 
(as shown in Figure 1).

The actuator considered here is a permanent magnet 
motor with a commercial servo electrical driver. The 
motor works in a “current-controlled mode”, that is to 
say, the control value of our controller u, which is out-
put in the form of voltage, is a current command for the 
driver. The control value u is regarded as a value pro-
portional to the output torque of the motor. Then we 
just denote the voltage-torque coefficient as ku. Now 
our goal is to make the inertia load track any specified 
smooth motion trajectory x1d as closely as possible. 
Considering all the above factors, the mathematical 
dynamic model of the electromechanical servo actua-
tion system can be expressed as:

where m is the equivalent inertia of the motor’s rotor and 
load, y is the position of the inertia load, B is the equiva-
lent viscous friction coefficient, d0

(

y, ẏ, t
)

 is the unmod-
eled dynamics, f0

(

y, ẏ, t
)

 represents the system fault 
characteristics related to time and state, and η(t) is the 
time rule of fault occurrence.

where μ is a constant, t0 is the initial time of the fault 
occurrence.

Dividing two sides of Eq. (1) by m, we could obtain:

where θ1 = ku/m,  θ2 = B/m,  dn = d0/m , and 
f = η(t)f0

(

y, ẏ, t
)/

m.
For the convenience of controller design, Eq. (3) can 

be rewritten in a state-space form as follows:

where x = [x1, x2]
T = [y, ẏ]T represents the state vector 

of the position and velocity, and set parameter θ =   [θ1, 
θ2]T.

Considering the specific properties of parameters 
and disturbances of the electromechanical servo actua-
tion system and to provide convenience for the design 
of controller, some assumptions should be made as 
follows.

Assumption 1  All the systematic parameters are invar-
iant unknown variables or slowly time-varying unknown 
variables, that is to say, θ̇1 = θ̇2 = 0.

Assumption 2  All the systematic parame-
ters are bounded and the upper/lower bounds are 
known.  θ ∈ �θ = {θ : 0 < θmin < θ < θmax} where 

(1)mÿ = kuu− Bẏ+ d0
(

y, ẏ, t
)

+ η(t)f0
(

y, ẏ, t
)

,

(2)η(t) =
{

0,

1− e−µ(t−t0),
if t < t0,
if t > t0,

(3)ÿ = θ1u− θ2ẏ+ dn + f ,

(4)
ẋ1 = x2,

ẋ2 = θ1u− θ2x2 + dn(x, t)+ f (x, t),

y = x1,

Figure 1  Block diagram of aeronautics electromechanical servo 
actuation system
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θmax = [θ1max, θ2max]T and θmin = [θ1min, θ2min]T are 
the known upper/lower bounds of the parameters.

Assumption 3  dn(x, t) is a time-varying unknown dis-
turbance, but it is bounded, that is to say, |dn(x, t)| ≤ δd , 
where δd is a upper bound of the disturbance.

Assumption 4  System position tracking instruction 
signal x1d ∈ C2 is bounded.

3 � SVM Based Fault Detection Method Design
Eq. (4) can be expressed in matrix form as follows:

where A =
(

0 1
0 −θ2

)

 , B =
(

0 θ1
)T

, D =
(

0 1
)T

, 

C = (1 0) . According to the rank criterion of a time-
invariant system, rank[C ,CA]T = 2 and thus system Eq. 
(5) is a second-order system satisfying the observability 
condition.

A classic high gain observer is as follows:

It is obvious that when some faults occur in the system, 
the state observation accuracy of the high gain observer 
would decrease because it doesn’t take the faults into 
consideration. To solve this problem, we introduce the 
faults estimation based on SVM into Eq. (6) and we could 
get the following nonlinear observer:

In Eq. (7), x̂1, x̂2 and ŷ represent the position state obser-
vation value, velocity state observation value and system 
output observation value respectively, l1 and l2 represent 
the feedback gains of state observation error, and f̂  rep-
resents the estimation of fault characteristics f  by SVM. 
The structure of SVM is shown in Figure  2. By this way, 
the state observation accuracy of the observer could be 
improved when there is something wrong with the system 
which could help reconfigure the controller designed later 
more effectively.

(5)
ẋ =Ax + Bu+D

(

dn + f
)

,

y =Cx,

(6)

˙̂x1 = x̂2 + l1(x1 − x̂1),

˙̂x2 = − θ2x̂2 + θ1u+ l2(x1 − x̂1),

ŷ = x̂1.

(7)

˙̂x1 =x̂2 + l1(x1 − x̂1),

˙̂x2 =− θ2x̂2 + θ1u+ f̂ + l2(x1 − x̂1),

ŷ =x̂1.

Subtracting Eq. (7) from Eq. (4), we could get the error 
state equation as follows:

where x̃1 = x1 − x̂1, x̃2 = x2 − x̂2.
Based on the support vector machine regression method, 

given the sample data set 
(

xi, fi
)

(i = 1, 2, ... , n) where xi 
represents the ith sample data of the state vector, a function 
in a higher dimensional eigenspace can be given to fit the 
sample set as follows:

where w is a weight vector, b is a offset quantity, and σ(·) 
is a RBF kernel function which could map the training 
data set from the input space to the high-dimensional 
feature space. Based on the theory of structural risk mini-
mization, the fitting problem of Eq. (9) is transformed 
into the performance index of the optimization problem 
seeking the optimal solution:

where ξi, ξ∗i  are the relaxation variables. The significance 
lies in allowing certain misclassification of sample data 
under the condition that the sample data is not univer-
sal, that is, to ensure that the optimization problem has a 
solution without overlearning. The constant C represents 
the penalty index, which dominates the penalty degree of 
the misclassified sample. An insensitive loss function ε is 
selected according to the actual situation in the following 
form:

(8)

˙̃x1 =− l1x̃1 + x̃2,

˙̃x2 =− l2x̃1 − θ2x̃2 + dn + f − f̂ ,

ỹ = x̃1,

(9)f̂ (x, t) = wTσ(x)+ b,

(10)

min
w,ξ (∗),b

J (w) = 1

2
wT · w + C

∑

(

ξi + ξ∗i
)

,

s.t. , fi − wTσ (x)− b ≤ ε + ξi,

wTσ (x)+ b− fi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, (i = 1, 2, ... , n),

X1

X2

XM

M

N

y

K(x1,x)

α1y1K(x2,x)

K(x3,x)

K(xn,x)

α2y2

α3y3

αnyn

Figure 2  Structure diagram of support vector machines
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The introduction of ε-insensitive loss function can help 
system be robust to system failures to a certain extent, so 
that the prediction error can be within a certain range. 
When the system has no additive failure, the SVM output 
f̂  is 0.

Literature has theoretically proved that kernel-based 
SVM can approximate a continuous function arbitrarily. 
Due to the model uncertainty and interference inherent 
in the system, the following inequalities hold:

where F is a constant.
Transform observer Eq. (7) into matrix expression form 

as follows:

where L = [l1, l2]T , and according to Eq. (7) and Eq. (12), 
the dynamic equation of system error can be obtained as 
follows:

where state observation error ex = x − x̂ and system out-
put error ey = y− ŷ.

By combining Eqs. (7) and (13), we can get the follow-
ing relations:

Select the gain matrix Ao of the observer to be a Hur-
witz stable matrix that satisfies the Riccati equation as 
follows:

where P, Q are the positive definite matrix and 
P = PT > 0.

The selection of input signal of SVM also has an impor-
tant influence on its approximation performance to the 
fault. Considering the frequency domain characteristics 
of the position signal, such as frequency mean, center 
frequency, can help judge whether the system malfunc-
tions, in this paper, Fourier transform method is used to 
extract the frequency mean of the position signal, which 
is taken as an input value of SVM, together with position 

(11)
�

�

�
f − f̂

�

�

�
=







0 ,
�

�

�
f − f̂

�

�

�
− ε,

�

�

�
f − f̂

�

�

�
≤ ε,

�

�

�
f − f̂

�

�

�
> ε.

(12)
∣

∣

∣
f (x, t)− f̂ (x, t)

∣

∣

∣
≤ F , F > 0,

(13)
˙̂x = Ax̂ + Bu+ L

(

y−ŷ
)

+Df̂
(

x̂, t
)

,

ŷ = Cx̂,

(14)
ėx = (A− LC)ex+D

(

dn + f − f̂
)

,

ėy = Cex,

(15)Ao = A− LC =

(

−l1 1
−l2 −θ2

)

.

(16)AT
o P + PAo = −Q, P = PT > 0, Q > 0,

and speed signals as the input vector, so as to improve the 
fault identification performance. Thus, the input vector 
of SVM is chosen as x = [x1f , x1, x2]T, where x1f  is the fre-
quency mean of the position signal.

Theorem  1  The observation error of the observer Eq. 
(13) with SVM based fault estimation Eq. (9) is bounded.

Proof  See the Appendix.

Remark 1  The fault in the system can be detected 
according to f̂ (x1f , x1, x2) and whether the system fails 
can be judged by whether the detected value f̂ (x1f , x1, x2) 
exceeds a certain threshold. However, since the fault is 
taken into account in Eq. (7), the states observation resid-
ual ex(t) =

√

(x1 − x̂1)2 + (x2 − x̂2)2 would be small and 
we could not judge whether there is a fault in the system 
according to ex(t) now. We only could use the residual 
of Eq. (6) to help implement system fault identification, 
which can be combined with f̂ (x1f , x1, x2) detection 
results, so as to improve the accuracy of fault detection.

In this method, fault estimation uses data-driven 
method and support vector machine is used to detect 
faults through feature extraction, fault classification and 
recognition. Therefore, it is not affected by system model 
and also can get rid of the influence of system disturbance. 
In addition, it is combined with the model driven method 
to further improve the accuracy of fault detection and 
avoid false alarm. In this method, the selection of thresh-
old is particularly critical and it can be chosen appropri-
ately in advance according to engineering experience.

Whether a fault-tolerant control is implemented 
depends on the results of fault detection. If the fault is very 
small, there is no need for a fault-tolerant control to imple-
ment because the robust item in a controller can conquer 
it. If the fault is large and lies in a certain threshold range, 
fault-tolerant control can be carried out to compensate the 
fault and diminish its influence as possible as it can. How-
ever, if the fault is very large and even exceeds a certain 
threshold, a serious fault is indicated and at this time fault-
tolerant control is incapable of action, so other measures 
such as preventive maintenance need to be taken.

Remark 2  The selection of training samples is particu-
larly crucial for approximation performance of SVM. 
We select a large number of working conditions, includ-
ing normal working conditions, actuator failure work-
ing conditions, sensor failure working conditions, and 
composite failure working conditions, and collect system 
state information under various working conditions as 
input, with known faults as output, so that the samples 
cover various working conditions as much as possible. 
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By this way, SVM can obtain an excellent approximation 
performance.

4 � Active Fault Tolerant Non‑Singular Terminal 
Sliding Mode Controller Design

Step 1: Sliding mode surface design
Define tracking error as follows:

x1d is the command signal, e0, e1 and e2 are the tracking 
errors of position, velocity and acceleration respectively.

A sliding mode surface is designed as follows:

where α>0, β>0, λ1>1, λ2>1, and

Differentiating the sign function term sgn�(·) , we 
could get:

The design idea of Eq. (18) is illustrated as follows: 
when the initial system position tracking error is 
large, the function of αsgn�1(e0) is stronger than that 
of βsgn�2(e1) . When the position tracking error slowly 
converges to zero, βsgn�2(e1) dominates the conver-
gence of speed tracking error.

Meanwhile, in order to realize continuous nonsingu-
lar terminal sliding mode control, a sliding mode sur-
face is redesigned combining with integral sliding mode 
as follows:

where

and c, ki are constants.
The sign function of sliding mode control makes the con-

troller discontinuous in design. Therefore, by further dif-
ferentiating the sign function term sgn�(·) defined in the 

(17)
e0 = x1 − x1d,

e1 = ė0,

e2 =ė1 = ë0,

(18)σ1 = e0 + αsgn�1(e0)+ βsgn�2(e1),

(19)sgn�(e) = |e|�sgn(e) =











e�, e> 0,

0, e= 0,

−(−e)�, e< 0,

(20)(sgn�(e))′ =
{

�|e|�−1ė, e �= 0,
0, e = 0.

(21)

σ2 = σ1 − e0 + s

=αsgn�1(e0)+ βsgn�2(e1) + ce0 + e1 + ki

∫ t

0
e0dτ ,

(22)s = ce0 + e1 + ki

∫ t

0
e0dτ ,

sliding mode surface switching function Eq. (21), namely 
differentiating Eq. (21), the control term sgn�(·) is continu-
ous and non-singular in the case of time continuity accord-
ing to Eqs. (19) and (20). Therefore, the derivative of Eq. 
(21) is obtained as follows:

Denote ρ1 and ρ2 as follows:

Obviously, Eqs. (24) and (25) are continuous. Therefore, 
Eq. (23) can be expressed as:

Step 2: Control law design
Therefore, a parameter-adaption based non-singular 

terminal sliding mode controller (PANTSMC) can be 
designed:

In Eq. (27), ua represents a model feedforward compen-
sation term, and is carried out by real-time updating esti-
mation of parameter and state estimation. us1 represents 
a linear feedback term, and k1>0 is a tunable parameter of 
the linear feedback term. us2 represents a nonlinear robust 
feedback term, which has a strong robustness effect.

Step 3: Parameter adaptive law design
An adaptive law is designed for the system parameters θ̂ , 

which is taken from the following adaptive function:

where ϕ =  (u   −x2)T.
The adaptive law of system parameters is designed as 

follows:

(23)

σ̇2 = σ̇1 − ė0 + ṡ

=α�1|e0|�1−1 · e1 + β�2|e1|�2−1 · ė1 + ṡ

=
(

c + α�1|e0|�1−1
)

· e1 +
(

1+ β�2|e1|�2−1
)

·
(

θ1u− θ2x2 + dn + f − ẍ1d
)

+ kie0.

(24)ρ1 = α�1|e0|�1−1,α > 1, �1 > 1,

(25)ρ2 = β�2|e1|�2−1,β > 1, �2 > 1.

(26)

σ̇2 = (c + ρ1) · e1 + kie0

+ (1+ ρ2) ·
(

θ1u− θ2x2 + dn + f − ẍ1d
)

.

(27)

u = 1

(1+ ρ2)θ̂1
(ua + us),

ua =− (1+ ρ2) ·
(

−θ̂2x̂2 + f̂ − ẍ1d

)

− [(c + ρ1) · e1 + kie0],

us =us1 + us2 , us1 = −k1σ2.

(28)τ = ϕσ2,

(29)˙̂
θ = (1+ ρ2) · Projθ̂ (Γ τ )− kθ θ̂ ,
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where kθ  >  0, Γ represents a positive definite diagonal 
adaptive rate matrix.

Define the discontinuous mapping function as follows:

Step 4: Disturbance upper bound adaptive law design
In general, it is difficult to know δd in Assumption 3 

according to objective conditions and thus an adaptive 
law of the disturbance upper bound is designed here:

where δ̂d is the estimation of δd , and kδ> 0.
As the denominator (1+ ρ2)θ̂1 is always greater than 0, 

controller Eq. (27) is completely non-singular. Substitut-
ing the controller Eq. (27) into Eq. (26), we can get:

where f̃ = f − f̂ .
Step 5: Robust term design

(30)Proj
θ̂i
(τi) =







0,
0,
τi,

if θ̂i = θimax and τi > 0,

if θ̂i = θimin and τi < 0,
otherwise.

(31)˙̂
δd = (1+ ρ2)γ |σ2| − kδδ̂d ,

(32)

σ̇2 =− k1σ2 + us2 + (1+ ρ2)

(

θ̃1u− θ̃2x2 + θ̂2x̃2 + dn + f̃
)

=− k1σ2 + us2 + (1+ ρ2)

(

−θ̃
T
ϕ + θ̂2x̃2 + dn + f̃

)

,

In general, there always exist some errors between the 
real values and the estimation values of system parame-
ters θ and it is the same for δd and δ̂d . Thus it is necessary 
to construct a nonlinear robust feedback item us2 to over-
come the influence of system parameter estimation error 
θ̃ , disturbance upper bound estimation error δ̃d and SVM 

observation error f̃  , in order to improve the stability and 
accuracy of the system.

The designed nonlinear robust term us2 = us21 + us22 
should satisfy:

where εσ1 > 0 and εσ2 > 0.
Take the following nonlinear robust terms us21 and us22 , 

which satisfy Eqs. (33), (34) and (35) :

The state observation error of the observer designed 
in the third part is bounded, and (1+ ρ2)≥1. Therefore, 
hσ = hσ (t) in Eq. (36) should be chosen to satisfy:

When the nonlinear robust terms us21 and us22 are 
designed, Eq. (33) is obviously satisfied. Eqs. (34) and 
(35) are proved to hold as follows.

Substituting Eq. (38) and Eq. (36) into Eq. (34), we 
could get:

(33)σ2us21 ≤ 0, σ2us22 ≤ 0,

(34)σ2

[

us21 + (1+ ρ2)

(

θ̂2x̃2 + f̃
)]

≤ εσ1,

(35)σ2

[

us22 + (1+ ρ2)

(

dn + δ̃dsgn(σ2)
)]

≤ εσ2,

(36)us21 = − h2σ
4εσ1

σ2 = −k21σ2,

(37)us22 = −

[

(1+ ρ2)δ̂d

]2

4εσ2
σ2 = −k22σ2.

(38)hσ (t) ≥ (1+ ρ2)

(

θ2max

∣

∣x̃2
∣

∣+
∣

∣

∣
f̃
∣

∣

∣

)

.

(39)

σ2

�

us21 + (1+ ρ2)

�

θ̂2x̃2 + f̃
��

≤ σ2











−

�

(1+ ρ2)

�

θ2max

�

�x̃2
�

�+
�

�

�
f̃
�

�

�

��2

4εσ1
σ2 + (1+ ρ2)

�

θ2max

�

�x̃2
�

�+
�

�

�
f̃
�

�

�

�











≤ −





(1+ ρ2)

�

θ2max

�

�x̃2
�

�+
�

�

�
f̃
�

�

�

�

σ2

2
√
εσ1





2

+ 2
1

2
√
εσ1

√
εσ1(1+ ρ2)

�

θ2max

�

�x̃2
�

�+
�

�

�
f̃
�

�

�

�

σ2 − εσ1 + εσ1

≤ −





(1+ ρ2)

�

θ2max

�

�x̃2
�

�+
�

�

�
f̃
�

�

�

�

σ2

2
√
εσ1

−√
εσ1





2

+ εσ1

≤ εσ1.
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Therefore, Eq. (34) holds.
Substituting Eq. (37) into Eq. (35), we could obtain:

Therefore, Eq. (35) holds.
The overall control strategy structure designed in this 

section is shown in Figure 3.

Lemma 1 (Barbalet lemma) [24]  If x : [0,∞) ∈ R is 
uniformly continuous, and when lim

t→∞

∫ t
0 x(τ )dτ exists 

and is bounded, then lim
t→∞

x(t) = 0.

Lemma 2 [25]  For the parameter vector θ , θ̂ , θ̃ , 
θ̃ = θ̂ − θ , the following inequality holds:

(40)

σ2

[

us22 + (1+ ρ2)

(

dn + δ̃dsgn(σ2)
)]

=−

[

(1+ ρ2)δ̂d

]2

4εσ2
σ 2
2 + (1+ ρ2)

[

dnσ2 +
(

δ̂d − δd

)

|σ2|
]

≤−
[

(1+ ρ2)δ̂dσ2

2
√
εσ2

]2

+ 2
1

2
√
εσ2

√
εσ2(1+ ρ2)δ̂d |σ2| − εσ2 + εσ2

≤−
[

(1+ ρ2)δ̂d |σ2|
2
√
εσ2

−√
εσ2

]2

+ εσ2

≤εσ2.

(41)
−tr(θ̃Tθ̂ ) = −θ̃Tθ̂ ≤ −1

2
||θ̃ ||2F + 1

2
||θ ||2F = −1

2
θ̃Tθ̃ + 1

2
θTθ ,

tr(·) represents the trace of the matrix, and || · ||F is the 
F-norm of the matrix ·.

Theorem  2  The controller Eq. (27) with observer Eq. 
(12), parameter adaption law Eq. (29) and disturbance 
upper bound adaption law Eq. (31) can ensure that the 
system can achieve asymptotical stability.

Proof  See the Appendix.

Remark 3  Based on the above analysis, for the elec-
tromechanical position servo system, the designed con-
troller can achieve asymptotical convergence of tracking 
error, which is superior to many advanced fault tolerant 
controllers. The observations based on the SVM can be 
used to compensate the additive faults in the system. 

Figure 3  Structure diagram of parameter adaptation and SVM based non-singular terminal sliding mode control strategy
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The state estimation of the observer (12) can be used to 
reconstruct the controller and under the action of the 
adaptive law (29) and (31), the system status x1 can accu-
rately track the desired instruction x1d. What’s more, the 
designed active fault-tolerant controller (27) is continu-
ous and non-singular which is convenient for implemen-
tation in engineering application. In addition, the param-
eter estimation can help diagnose the specific faults since 
the faults can be reflected by the parameters variation.

Remark 4  There are many parameters in the designed 
controller and a guideline on how to choose these param-
eters is given as follows. α is the coefficient before the 
sign function term of the tracking error, β is the coef-
ficient in front of the sign function term of the tracking 
error derivative. Increasing α will improve the conver-
gence rate of the tracking error, but if it is too large, oscil-
lation will occur. When the tracking error is small, the 
convergence effect is not very good, but increasing β can 
improve the convergence speed. λ1, λ2 are the exponent 
of the sign function term, which are generally bigger than 
1. c is the coefficient of the tracking error term in the slid-
ing function, and ki is the coefficient of the tracking error 
derivative term. Generally, the larger the value is, the 
faster the tracking error converges. kσ is the gain of the 
robust term, and increasing kσ will make the system more 
robust in the presence of external disturbances.

5 � Simulation and Analysis
In order to verify the effectiveness of non-singular termi-
nal sliding mode active fault tolerant control, the com-
parison will be made with the simulation results of four 
kinds of controllers. The parameters of the four control-
lers are as follows:

(1)	 PID: PID controller is the most common close-loop 
feedback controller in industrial application. It is 
composed of three parts, including proportional 
unit P, integral unit I and differential unit D. The 
corresponding three parameters are set as follows: 
kp = 12, ki = 20 and kd = 0.9.

(2)	 TSMC: The terminal sliding mode controller is a 
nonlinear sliding mode controller which can make 
the system converge to the equilibrium state in 
finite time [22]. Its parameters are set as follows: 
α =  20, β =  210, λ1 =  10, λ2 =  8, c =  40, ki =  50, 
k1 + k21 + k22 = 65, kθ = 0.1, γ = 10, kδ = 0.1. The 
control parameters are choose as Γ  = diag{150, 50} 
and the initial estimated value of θ , θ̂ is chosen as [1, 
8]. The real value of θ is [7.8, 0.8].

(3)	 TSMC-RBF: The RBF based terminal sliding mode 
fault tolerant controller uses RBF NN to detect the 

faults and compensate the faults. The specific 
design is similar to the design procedure in Sec-
tion 3 and RBF instead of SVM is used here, and the 
specific parameters are as follows: b = 100,

c1 = 110, c2 = 15, q = 29, p = 31, k1  +  k21  +  k22   

= 0.5, c =
(

1 1.3 0.61 0.91 1.5
1 1.3 0.61 0.91 1.5

)

 , wi = 0.

(4)	 TSMC-SVM: The SVM based non-singular termi-
nal sliding mode fault tolerant controller proposed 
in this paper. The specific parameters are as follows: 
α =  20, β =  210, λ1 =  10, λ2 =  8, c =  40, ki =  30, 
k1 + k21 + k22 = 60, kθ = 0.2, γ = 10, kδ = 0.1. The 
control parameters are chosen as Γ  = diag{150, 50} 
and the initial estimated value of θ , θ̂ is chosen as 
[8, 1]. The real value of θ are [7.8, 0.8]. The initial 
estimate of the upper bound of the disturbance 
δ̂d(0) = 0.

The desired trajectory is set as 
x1d = 10(1− e−0.5t) sin(0.5t) . There are additive faults 
f = (1−e−t)(4 + 0.01x1x2) (N·m) and time-varying distur-
bances dn = x1x2(N·m) in the system, and the moment of 
inertia is reduced to 0.5 times of the original. The simula-
tion results of the three controllers in the above system 
are as follows.

Table 1  Performance indexes of each controller in simulation in 
the composite case

Controller Me (°) µ(°) σ(°)

PID 0.0077 0.0035 0.0019

TSMC 5.4775 × 10−4 2.3502 × 10−4 1.3445 × 10−4

TSMC-RBF 1.7324 × 10−4 4.3329 × 10−5 2.2648 × 10−5

TSMC-SVM 3.6067 × 10−5 2.5073 × 10−5 1.5288 × 10−5

Figure 4  Velocity errors and estimation of additive faults
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To evaluate the control performance of each control-
ler, the following evaluation indexes are adopted as in 
Table 1.

The three performance indexes Me, μ, σ, that is to say, 
the maximum, average, and standard deviation of the 
tracking errors, are used to evaluate the quality of each 
control strategy, and their definitions are made as follows:

1) Maximal absolute value of the tracking errors is 
used as an index of measure of tracking accuracy and is 
defined as:

where M is the number of the recorded digital signals.
2) Average tracking error is defined as:

(42)Me = max
i=1,...,M

{|e(i)|},

and is used as an objective numerical measure of average 
tracking performance.

3) Standard deviation performance index is defined as:

to measure the deviation level of tracking errors.
As can be seen from Figure  4, the fault estimation 

error of the fault detection method based on SVM is 
very small, which helps the controller estimate the 
fault and compensate it leading to a good robustness to 
the fault. In addition, the speed tracking error is held 
within a small range.

Figures  5 and 6 show the estimation performance 
of the observer without fault compensation and the 
observer with fault compensation before the fault-
tolerant control is implemented. From them, we can 
see that the estimation error of the observer without 
fault compensation is obviously larger than that of the 
observer with fault compensation, especially for the 
velocity estimation error while the former is 0.2°/s and 

(43)µ = 1

M

M
∑

i=1

|e(i)|,

(44)σ =

√

√

√

√

1

M

M
∑

i=1

(|e(i)| − µ)2,

Figure 5  Observation value and observation error of x1, 
x2 of nonlinear observer without fault compensation 
before the fault-tolerant control is implemented

Figure 6  Observation value and observation error 
of x1, x2 of nonlinear observer with fault compensation 
before the fault-tolerant control is implemented

Figure 7  Observation value and observation error of x1, x2 
of nonlinear observer with fault compensation after the fault-tolerant 
control is implemented

Figure 8  Parameter estimation curves
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the latter is less than 0.1°/s. This shows that we could 
use the estimation error of the observer without fault 
compensation to help us detect the fault and use esti-
mation value of the observer with fault compensation 
to reconfigure the fault-tolerant controller.

Figure  7 shows the estimation performance of the 
observer with fault compensation after the fault-tolerant 
control is implemented. We could see that the observer 
can estimate the position and speed of the system pre-
cisely since the faults have been compensated both in the 
observer and in the controller. At this time the observed 
states could help to reconstruct system states in the con-
troller designed in Section 4.

From Figure 8, we could see that the system parameter 
estimation can converge to a certain range near the real 
value and thus help the controller to compensate model 
parameter uncertainty. In addition, it also could help us 
diagnose the faults since the parameters variation can 
reflect specific faults.

Finally, it can be seen from Figure  9 and Table  1 that 
the terminal sliding mode controller has a higher control 

accuracy and faster response speed than that of PID in 
the same working condition, while the performance 
of the non-singular terminal sliding mode active fault-
tolerant controller is better than that of terminal sliding 
mode controller, due to the design of active fault-tolerant 
control strategy. In addition, compared with TSMC-RBF, 
TSMC-SVM has higher accuracy and better stability 
which shows that SVM has a better nonlinearity fitness 
performance according to a small sample data than RBF.

6 � Experiment and Analysis
In order to verify the effectiveness of the algorithm men-
tioned in this paper, the non-singular terminal sliding 
mode fault-tolerant control algorithm is experimentally 
studied and compared with PID and non-singular termi-
nal sliding mode algorithm in terms of control accuracy 
and response speed. The structure of the experimental 
platform is shown in Figure 10.

The experimental platform consists of a base, a pair of 
permanent magnet synchronous motors, electric driv-
ers and rotary encoders with an accuracy of ±13 s, iner-
tia plate, power supply, and a measurement and control 
system. The left servo channel is used to simulate the 
high-precision motion control of aero electromechanical 
system, and the right servo channel is used to simulate 
faults and disturbances. An industrial computer with a 
real-time operating system RTU and monitoring soft-
ware is the kernel part of the measurement and control 
system. C language is used to write the control program. 
A 16-bit digital/analog (D/A) conversion card for send-
ing control commands and a 16-bit acquisition card for 
collecting the position information of the photoelec-
tric encoder are equipped in the computer. The control 
cycle is 0.5 ms. The system velocity is generated by the 
backward difference of the high precision position signal. 
Meanwhile, a second-order Butterworth filter with a cut-
off frequency of 50 Hz is used to restrain the measured 
noise in the speed signal.

Four controllers are tested for the desired trajectory 
x1d = 10(1− e−0.5t) sin(0.5t) ° and three cases are tested 
for this motion trajectory. The three cases are as follows:

1)	  Fault case: Only an additive fault is added in the sys-
tem and the additive fault f =  (1 − e-t)(4 + 0.01x1x2) 
(N·m).

2)	 Time-varying disturbances case: To verify the fault-
tolerant control performance of the controller in the 
presence of external disturbances, a time-varying dis-
turbances dn = x1x2 (N·m) with a fault as in case 1 are 
added to the system.

3)	 Composite case: In this case, in addition to the time-
varying disturbances and a fault as in case 2 added 
to the system, the moment of inertia of the system 

Figure 9  Position tracking error

Figure 10  Experimental bench structure
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changes, which is reduced to 0.5 times of the original 
value.

The four controllers are the same as those in the sim-
ulation part and their experimental parameters are as 
follows:

(1)	 PID: The three parameters are: kp = 2500 , ki = 210 , 
kd = 100.

(2)	 TSMC: The terminal sliding mode parameters 
are as follows: α = 20, β = 210, λ1 = 100, λ2 = 800, 
c =  100, ki =  50, k1 +  k21 +  k22 =  120. The other 
parameters are the same as the simulation.

(3)	 TSMC-RBF: The parameters are: wi = 0 , b = 100 , 

c =
(

1 1.3 0.61 0.91 1.5
1 1.3 0.61 0.91 1.5

)

 , α  =  20, β  =  210, 

λ1  =  100, λ2  =  800, c  =  100, ki  =  3, 
k1 + k21 + k22 = 120.

(4)	 TSMC-SVM: The parameters are: α  =  20, 
β  =  210, λ1  =  100, λ2  =  800, c  =  100, ki  =  3, 
k1 + k21 + k22 = 120. The other parameters are the 
same as those in the simulation.

To test the effectiveness of the proposed fault-tolerant 
control algorithm, an additive fault is added in the system 
in case 1. The tracking performance of the four control-
lers in fault case is shown in Figure  11 and Table  2. As 
can be seen, the performance of TSMC is better than that 
of PID since PID has no adaptive ability and cannot iden-
tify the fault and compensate it while TSMC has certain 
robustness to faults. By employing the proposed fault 
detection observer to estimate the fault and compen-
sate them, both TSMC-RBF and TSMC-SVM controllers 
have better performance than the other two controllers. 
However, TSMC-SVM has higher control accuracy and 
response speed than those of TSMC-RBF since SVM is 
superior to RBF in solving small sample approximation 
problem.

Figure 11  Tracking error in fault case

Table 2  Performance indexes of each controller in fault case

Controller Me (°) µ (°) σ (°)

PID 0.0369 0.0324 0.0215

TSMC 0.0271 0.0266 0.0059

TSMC-RBF 0.0247 0.0011 0.0023

TSMC-SVM 0.0230 9.3360 × 10−4 0.0021

Figure 12  Tracking error in time-varying disturbances

Table 3  Performance indexes of each controller in the time-
varying disturbances case

Controller Me (°) µ (°) σ (°)

PID 0.0391 0.0424 0.0227

TSMC 0.0431 0.0232 0.0046

TSMC-RBF 0.0367 0.0017 0.0045

TSMC-SVM 0.0338 0.0016 0.0041

Figure 13  Tracking error in parameter perturbation

Table 4  Performance indexes of each controller in the 
composite case

Controller Me (°) µ (°) σ (°)

PID 0.0618 0.0483 0.0256

TSMC 0.0365 0.0229 0.0044

TSMC-RBF 0.0238 0.0037 0.0031

TSMC-SVM 0.0208 0.0036 0.0025
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To further test the effectiveness of the proposed fault-
tolerant control algorithm in the presence of external dis-
turbances and the fault, case 2 has been carried out. As 
can be seen from Figure 12 and Table 3, the control accu-
racy of TSMC-SVM decreased compared to that in case 
1, since external disturbances has increased the influ-
ence of the system model uncertainties on control accu-
racy. However, the TSMC-SVM controller still has the 
highest control accuracy and the fastest response speed 
among the four controllers. That is because the fault can 
be identified by SVM accurately and compensated in the 
controller and the influence of disturbances and compen-
sation error can be overcome by the non-singular termi-
nal sliding mode control law. In addition, SVM is superior 
to RBF in solving small sample approximation problem. 
Thus in case 2 the TSMC-SVM controller shows better 
performance than the other controllers.

In order to test the effectiveness of the proposed fault-
tolerant control algorithm in the most complex and poor 
working condition, in which there exist disturbances, 
parameter perturbation and the faults simultaneously, 
case 3 has been implemented. As seen from Figure  13 
and Table 4, the control accuracy of TSMC-SVM further 
decreased compared to that in case 1 and case 2, since 
both external disturbances and parameter perturbation 
have further increased the influence of the system model 
uncertainties on control accuracy. However, the TSMC-
SVM controller still has the highest control accuracy and 
the fastest response speed among the four controllers, 
since the fault can be identified by SVM accurately and 
compensated, the parameter perturbation can be cap-
tured by the adaptive law of TSMC-SVM which helps 
reduce the total uncertainties greatly, and the influence 
of disturbances can be overcome by the non-singular ter-
minal sliding mode control law. In addition, since SVM 
is better than RBF in solving small sample approximation 
problem, the TSMC-SVM controller shows better perfor-
mance than the other controllers in case 3.

7 � Conclusions
In this paper, a fault tolerant non-singular terminal slid-
ing mode control method based on support vector 
machine (SVM) is proposed for aeronautics electrome-
chanical system subjected to system fault, the parametric 
uncertainty and unknown bounded disturbances. SVM is 
designed to estimate the possible faults in the system by 
off-line learning from a small sample data, which helps 
estimate the fault and compensate it in the proposed 
controller. An observer is designed to estimate the sys-
tem states to make fault detection and reconstruct the 
states in the controller when something malfunctions in 
electromechanical system. A fault tolerant non-singular 
terminal sliding mode controller with the SVM based 

observer is designed, and Lyapunov theorem is used to 
prove its asymptotical stability. Extensive comparative 
simulation and experimental results illustrate the effec-
tiveness and advancement of the proposed controller 
compared with several other main-stream controllers.

Appendix
Proof of theorem 1

For the dynamic equation of system observation error 
Eq. (13), the Lyapunov function is chosen as follows:

The time-based differential of Eq. (45) is:

In Eq. (46), �min(Q) represents the minimum eigen-
value of the matrix Q , and �max(P) represents the maxi-
mum eigenvalue of the matrix P . The above inequality 
can be expressed as follows:

Multiply both sides of the inequality of Eq. (47) by e�1t 
to get:

Integrate over [0, t], and the above formula can be 
obtained:

It is proved that the designed observer is bounded 
stability.

Proof of theorem 2
Take the Lyapunov function as follows:

(45)V (ex) =
1

2
eTx Pex.

(46)

V̇ (ex) =
1

2
ėTx Pex +

1

2
eTx Pėx

= 1

2

[

(A− LC)ex +D
(

dn + f − f̂
)]T

Pex

= 1

2
eTx

(

AT

o P + PAo

)

ex + eTx PD
(

dn + f − f̂
)

≤− 1

2
�min(Q)�ex�2 +

∣

∣

∣
eTx PD

∣

∣

∣
(F + δd)

≤− 1

2
�min(Q)�ex�2 +

1

2
�ex�2 +

1

2
[�max(P)(F + δd)]

2

≤− 1

2
[�min(Q)− 1]�ex�2 +

1

2
[�max(P)(F + δd)]

2

≤− �min(Q)− 1

�max(P)

1

2
eTx Pex +

1

2
[�max(P)(F + δd)]

2

≤− �min(Q)− 1

�max(P)
V + 1

2
[�max(P)(F + δd)]

2.

(47)V̇ ≤ −�1V + �2.

(48)
d

dt
(V (t)e�1t) ≤ e�1t�2.

(49)V ≤ (V (0)− �2

�1
)e−�1t + �2

�1
≤ V (0)+ �2

�1
.
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Its time differential is:

Since the system state observation error is bounded 
and the fault estimation error is known to be bounded 
according to Eq. (11), the adaptive rate Eq. (29) and Eq. 
(31) are substituted into Eq. (50) to obtain:

Substituting the conditions Eq. (34) and Eq. (35) satis-
fied by the nonlinear robust term us2 into Eq. (52), the 
following equation can be obtained:

Lemma 2 is applied to obtain:

In Eq. (54), εσ = εσ1 + εσ2 > 0. Define λk1 = min{2k1, kθ, 
kδ}, λk2 =  kθ2 Ŵ

−1θTθ + kδ
2 γ

−1δ2d + εσ , Then Eq. (54) can 
be expressed as:

(50)V (t) = 1

2
σ 2
2+

1

2
Γ −1θ̃

T
θ̃+1

2
γ−1δ̃2d .

(51)

V̇ (t) = σ2σ̇2 + Γ −1θ̃
T ˙̂
θ + γ−1δ̃d

˙̂
δd

= σ2

{

−k1σ3 + us2 + (1+ ρ2)

(

−θ̃
T
ϕ + θ̂2x̃2 + dn + f̃

)}

+ Γ −1θ̃
T ˙̂
θ + γ−1δ̃d

˙̂
δd .

(52)

V̇ (t) =− k1σ
2
3 + us2σ2 + (1+ ρ2)

(

θ̂2x̃2 + f̃
)

σ2

− (1+ ρ2)θ̃
T
ϕσ2 + (1+ ρ2)dnσ2

+ Γ −1θ̃
T
[

(1+ ρ2) · Projθ̂ (Γ τ )− kθ θ̂
]

+ γ−1δ̃d

[

(1+ ρ2)γ |σ2| − kδδ̂d

]

=− k1σ
2
2 + us21σ2 + (1+ ρ2)

(

θ̂2x̃2 + f̃
)

σ2

+ us22σ2 + (1+ ρ2)

(

dnσ2 + δ̃d |σ2|
)

− (1+ ρ2)θ̃
T
ϕσ2 + Γ −1θ̃

T
(1+ ρ2) · Projθ̂ (Γ τ )

− kθΓ
−1θ̃

T
θ̂ − kδγ

−1δ̃d δ̂d .

(53)
V̇ (t) ≤ −k1σ

2
2 − kθΓ

−1θ̃
T
θ̂ − kδγ

−1δ̃d δ̂d + εσ1 + εσ2.

(54)

V̇ (t) ≤− k1σ
2
2 − kθΓ

−1θ̃
T
θ̂ − kδγ

−1δ̃d δ̂d + εσ1 + εσ2

≤− k1σ
2
2 + kθΓ

−1

(

−1

2
θ̃
T
θ̃ + 1

2
θTθ

)

+ kδγ
−1

(

−1

2
δ̃2d + 1

2
δ2d

)

+ εσ1 + εσ2

≤− k1σ
2
2 − 1

2
kθΓ

−1θ̃
T
θ̃ − 1

2
kδγ

−1δ̃2d

+ 1

2
kθΓ

−1θTθ + 1

2
kδγ

−1δ2d + εσ .

To solve the above differential equation, we can get:

Therefore, lim
t→∞

V (t) ≤ �k2
�k1

 , the system is bounded and 
stable. when t goes to infinity, V is bounded, thus σ2 is 
bounded, and there are integral terms 

∫ t
0 e0dτ and 

bounds in σ2. According to Lemma 1, e0 →0 when t→∞, 
and then x1 →x1d. Theorem 2 is proved.
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