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Abstract 

A winding system is a time-varying system that considers complex nonlinear characteristics, and how to control 
the stability of the winding tension during the winding process is the primary problem that has hindered develop-
ment in this field in recent years. Many nonlinear factors affect the tension in the winding process, such as friction, 
structured uncertainties, unstructured uncertainties, and external interference. These terms severely restrict the ten-
sion tracking performance. Existing tension control strategies are mainly based on the composite control of the ten-
sion and speed loops, and previous studies involve complex decoupling operations. Owing to the large number 
of calculations required for this method, it is inconvenient for practical engineering applications. To simplify the ten-
sion generation mechanism and the influence of the nonlinear characteristics of the winding system, a simpler non-
linear dynamic model of the winding tension was established. An adaptive method was applied to update the feed-
back gain of the continuous robust integral of the sign of the error (RISE). Furthermore, an extended state observer 
was used to estimate modeling errors and external disturbances. The model disturbance term can be compensated 
for in the designed RISE controller. The asymptotic stability of the system was proven according to the Lyapunov sta-
bility theory. Finally, a comparative analysis of the proposed nonlinear controller and several other controllers was per-
formed. The results indicated that the control of the winding tension was significantly enhanced.

Keywords Winding tension, Continuous robust integral of the sign of the error (RISE) control, Adaptive control, 
Disturbance compensation, Extended state observer (ESO), Tension control

1 Introduction
As actuation systems are required to be increasingly 
lightweight, it is becoming increasingly important to 
reduce the weight of the structure and increase the 
power-to-weight ratio. Fiber-reinforced materials are 
widely used in lightweight structural designs because 
they have significantly better material properties, such as 
density, elastic modulus, and tensile strength, than tra-
ditional metal materials. Filament winding technology 
[1] was introduced in the 1940s and is currently one of 
the most common production technologies [2, 3]. In the 

1990s, multi-axis winding machines emerged, and the 
development of winding technology entered a new stage. 
With improvements in numerical control technology, 
position control in the winding process has advanced. 
However, owing to the complexity and strong nonlinear-
ity of the tension generation mechanism, tension control 
during the winding process has always been a key factor 
affecting the control performance.

In 1998, Mathur et  al. [4] proposed a relatively com-
plete tension control model for the winding process and 
proposed a formula for the change in coil diameter over 
time. Baumgart et  al. [5–7] first applied robust control 
to tension control in the winding process, taking into 
account the air entrainment effect, and used the Lya-
punov function to prove its stability. In 2004, they pro-
posed the use of the state observer method and verified 
its feasibility. They then studied the controller design of 
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the winding process under finite-time stability. In 2007, 
Pagilla et al. [8] applied the partition concept to long-dis-
tance winding for the first time and established a mathe-
matical model for the material between two guide wheels 
during the winding process for controller design. In 2013, 
Levine et al. [9] proposed the application of a combina-
tion of differential flattening and feedback linearization 
to a winding system and verified its feasibility. In 2016, 
Hou et  al. [10] developed a robust tension observer for 
winding systems. Owing to the research methods pro-
posed by these scholars, tension control has entered the 
nonlinear research stage; however, decoupling the speed 
loop and tension loop is difficult owing to the compos-
ite control of the rewinding/unwinding reel and the 
construction brought about by the partition concept of 
long-distance winding. The modular complexity signifi-
cantly limits the application of additional algorithms.

Disturbances are an important part of the system 
model uncertainty. Since the 1990s, nonlinear algo-
rithms have developed rapidly, and a nonlinear algo-
rithm called sliding mode control (SMC) has been widely 
used because of its simple structure, effective handling 
of bounded model uncertainty, and good steady-state 
tracking accuracy. Owing to the discontinuity problem of 
traditional synovial control, many deformation forms of 
SMC have been derived, among which high-order SMC 
[11, 12] has attracted extensive attention. In recent years, 
the robust integral of the sign of the error (RISE) con-
trol strategy [13] was proposed, which incorporates an 
integral signal feedback term to deal with model uncer-
tainty and has been successfully applied in mechatronic 
systems [14–17]. Additionally, the modeling uncertainty, 
which is the main factor affecting the control perfor-
mance, has been widely studied. Lewis et  al. [18] first 
proposed a method using neural-network approxima-
tion, in which the two-link manipulator is taken as the 
object to compensate for system disturbance during the 
control process of the manipulator, which provided a 
theoretical basis for the subsequent application of neural 
networks. The observer-based control concept proposed 
by Khalil [19] has been developed continuously in recent 
years. Disturbance observers can treat disturbances as 
additional states to approximate them and compensate 
for disturbances and other nonlinear terms [20–23]. 
In Ref. [20], an active disturbance rejection control 
(ADRC) strategy was used to address many uncertain-
ties and additional perturbations in dynamics [24]. The 
core design principle of the ADRC is to use the extended 
state observer (ESO) to estimate disturbances and other 
uncertainty terms and compensate them using the feed-
forward method in the design control input, so that the 
tracking error is bounded and stable. Yao et  al. [25–28] 
experimentally verified that ESO-based compensation 

can deal with external disturbances. The superiority of 
ESO for disturbance compensation processing has been 
proven in many academic studies [29–32]. Therefore, the 
ADRC strategy can effectively deal with various model 
uncertainties, including disturbances, if the ESO can esti-
mate them accurately.

However, the aforementioned research methods sim-
plify the model to different degrees and do not consider 
the nonlinear problems that exist in the actual winding 
process.

In this study, a mathematical model of a winding sys-
tem considering continuous external disturbance and 
friction compensation was established. Compared with 
the traditional tension control model, it is simpler and 
does not require decoupling of the speed and tension 
loops. Meanwhile, by using the ESO to estimate and 
compensate for uncertainties such as disturbances, the 
control law based on the RISE controller is designed. The 
combination of the two makes the system asymptotically 
stable and yields a better control effect than the previous 
control algorithm. This simplifies the design process of 
the tension control and provides a theoretical basis for 
the practical application of additional algorithms.

2  Nonlinear Model of Winding System
The general structure of the winding system is shown in 
Figure  1. Generally, two servomotors drive the rewind-
ing and unwinding shafts. By adjusting the difference 
between the linear speeds of the winding and unwind-
ing ends of the two shafts, a displacement difference was 
generated, and an appropriate tension was generated to 
satisfy the production requirements. A flowchart of this 
is shown in Figure 2.

2.1  Model of Tension Loop
Tension is mainly generated by the displacement difference 
between the two ends of retraction and release. A typi-
cal unwinding rule for a material at the unwinding end is 
shown in Figure  3. The specific influence on the tension 
is shown in Figure 4. Because the fiber material is evenly 
arranged on the substrate from one end to the other dur-
ing production, the material moves to the left and right 
during the unwinding process. Consequently, the length 
from the unwinding end to the wire guide changes during 

Figure 1 Structure diagram of the winding system
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unwinding, affecting the overall span length of the material, 
which influences the tension.

The tension model considering the length variation of the 
fiber material is expressed as follows [33]:

where ri (m) and ωi ( i = 1, 2 ) (rad/s) represent the 
rewinding and unwinding radius and angular veloc-
ity, respectively; E represents the elastic modulus of 
the material, A represents the cross-sectional area of 
the material, Sl represents the material length from the 

(1)T (t,ω1) =
EA

S0
S(t)+∆1(T ,ω1, t),

(2)S(t) = S0+

∫ t

t0

(r1ω1 − r2ω2)dτ + Sl(t),

unwinding axis to the guide wire, S0 represents the mate-
rial length from the guide wire to the rewinding axis, 
∆1(T ,ω1, t) represents other unmodeled disturbances, 
and T  represents the winding tension.

As shown in Figure 4, the control input range changes 
periodically as the span length changes. It was verified 
that the tension was mainly affected by the length of the 
material between the rewinding and unwinding axes, 
which affected the torque required by the rewinding 
shaft.

2.2  Model of Speed Loop
The winding system uses a motor as the main power 
source, which rotates the shaft to achieve winding. It is 
assumed that the speed of the unwinding shaft motor in 
this system is effectively controlled and can be measured. 
Therefore, the following mathematical model is estab-
lished for the rewinding axis:

where Ki represents the voltage–torque coefficient, 
which is the amount of output torque per volt; J  repre-
sents the inertia of the winding shaft; u represents the 
control law, which is generated by the controller and 
input to the actuator voltage signal; Ff (ω1) denotes the 
static friction effect; B is the coefficient of viscous fric-
tion; and ∆2(ω1, t) represents disturbances.

The static friction effects are given by [15, 34]:

where a1 and a2 represent friction levels, and c1 , c2 , c3 are 
shape coefficients of various friction effects.

Remark 1 The friction model above is higher-order dif-
ferentiable and symmetric with respect to velocity.

Remark 2 The Coulomb friction coefficient is mod-
eled by the term a1 tanh (c1ω1) ; the term a1 + a2 
represents the stiction coefficient, and the term 
tanh (c2ω1)− tanh (c3ω1) captures the Stribeck effect.

Considering Eq. (4), Eq. (3) can be rewritten as:

where

(3)J ω̇1 = Kiu− r1T − Bω1 − Ff (ω1)−∆2(ω1, t),

(4)
Ff (ω1) = a1 tanh (c1ω1)

+ a2[tanh (c2ω1)− tanh (c3ω1)],

(5)
J ω̇1 =Kiu− r1T − Bω1 − a1Sf(ω1)

− a2Pf(ω1)−∆2(ω1, t),

(6)
Sf (ω1) = tanh (c1ω1),

Pf (ω1) = tanh (c2ω1)− tanh (c3ω1).

Figure 2 Winding tension control flowchart

Figure 3 Lateral movement of the material causes the overall span 
length change

Figure 4 PID control input
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2.3  State‑Space Function of Winding Tension
We define v2 = r2ω2 , x = [x1, x2]

T = [T ,ω1]
T , 

θ1 = EAr1
/

S0 , θ2 = EAv2
/

S0 , θ3 = Ki

/

J , θ4 = r1
/

J , 
θ5 = B

/

J , θ6 = a1
/

J , θ7 = a2
/

J , θb = [θ4, θ5, θ6, θ7]
T , and 

η = [x1, x2, Sf,Pf]
T . Therefore, the system can be expressed 

as the following state-space function:

where d1(t) = EAṠl(t)
/

S0 + ∆̇1(T ,ω1, t) and 
d2(t) = ∆2(ω1, t).

Assumption 1 ∆1(T ,ω1, t) can be differentiated.

Assumption 2 d1(t) and d2(t) are bounded.

3  Design of Extended State Observers
Considering Eq. (7), traditional ESO designs observers 
according to the state-space equation structure of series 
integration; thus, only one observer is used for a system. 
Because all the system states are known, when a system 
needs to observe two external disturbances, two ESO 
observers can be designed to deal with relative uncertain-
ties. We define xe1 = d1(t) and xe2 = d2(t) as additional 
state variables. Let h1(t) and h2(t) be the rates of change 
of the uncertainty, i.e., ẋe1 = h1(t) and ẋe2 = h2(t) . Eq. (7) 
can be described as:

Assumption 3 h1(t) and h2(t) are unknown but 
bounded functions.

From the ESO-based system model, i.e., Eq. (8), we 
observe that two state observers can be constructed as fol-
lows, referring to [26]:

where x̂i represents the estimate of xi ( i = 1, 2),   
x̃i = xi − x̂i represents the estimation errors, x̂ei ( i = 1, 2 ) 
represents the estimates of the extended system states, 

(7)
ẋ1 = θ1x2 − θ2 + d1(t),

ẋ2 = θ3u− θTb η + d2(t),

(8)

{

ẋ1 = θ1x2 − θ2 + xe1,

ẋe1 = h1(t),
{

ẋ2 = θ3u− θTb η + xe2,

ẋe2 = h2(t).

(9)

{

˙̂x1 = θ1x2 − θ2 + x̂e1 + 2ωo1

(

x1 − x̂1
)

,

˙̂xe1 = ω2
o1

(

x1 − x̂1
)

,
{

˙̂x2 = θ3u− θTb η + x̂e2 + 2ωo2

(

x2 − x̂2
)

,

˙̂xe2 = ω2
o2

(

x2 − x̂2
)

,

xei and x̃ei = xei − x̂ei represent the estimation errors, 
and ωoi > 0 is the tuning parameter of the ESO observer 
bandwidth.

The choice of the polynomial coefficients in Eq. (9) is 
given by Refs. [26] and [35].

From Eq. (9), the first ESO is constructed according 
to the first rather than the second equation of Eq. (7). 
However, from an application perspective, the inherent 
disturbance of the tension loop is an obstacle to nonlin-
ear control, and the state estimation of the second equa-
tion of Eq. (7) by the ESO is driven by the velocity signal, 
which contains measurement noise—particularly in prac-
tice. Therefore, the disturbance estimation of the velocity 
loop may be affected.

From Eqs. (8) and (9), the observer estimation error 
can be expressed as:

We define the following variables:

The state estimation error dynamics can be given as:

where

Here, A1 and A2 are Hurwitz matrices, and the two 
positive matrices P1 and P2 satisfy the Lyapunov equation 
AT
i Pi + PiAi = −I , where I is an identity matrix.

Lemma 1 [35]: Considering Assumption 3, the esti-
mated states are always bounded. Meanwhile, there exist 
two constants σ > 0 and υ > 0 such that if the time 

(10)�o(s) = (s + ωo)
2.

(11)

{

˙̃x1 = x̃e1 − 2ωo1x̃1,

˙̃xe1 = h1(t)− ω2
o1x̃1,

{

˙̃x2 = x̃e2 − 2ωo2x̃2,

˙̃xe2 = h2(t)− ω2
o2x̃2.

(12)



















ε = [ε1, ε2]
T =

�

x̃1,
x̃e1

ωo1

�T

,

γ = [γ1, γ2]
T =

�

x̃2,
x̃e2

ωo2

�T

.

(13)















ε̇ = ωo1A1ε + B1
h1(t)

ωo1
,

γ̇ = ωo2A2γ + B2
h2(t)

ωo2
,

(14)
A1 = A2 =

[

−2 1
−1 0

]

,

B1 = B2 =

[

0
1

]

.
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T > 0 , c and a greater than 0 in finite time satisfy the fol-
lowing equation.

According to the main analysis in Ref. [35], it can be 
known that the construction of the ESOs in Eq. (9) stabi-
lizes, and the estimation error of the expansion state can 
approach zero when the values of the parameters ωo1 and 
ωo2 are increased. Thus, the closed-loop stability is proven.

4  Design of Adaptive Rise Controller
4.1  Control Target
The target of the control is to maintain the winding tension 
at a constant value, which is denoted as x1d . The tension 
tracking error e1 is defined as follows:

Assumption 4 The desired tension trajectory x1d is sec-
ond-order derivable and bounded.

According to Assumption 1, we define:

where k1 is a positive constant, α1 denotes the virtual con-
trol law for x2 , e2 represents the error between x2 and α1 , 
and r represents the additional error signal.

4.2  Controller Design
According to Eqs. (8), (17), and (18), the error r can be 
expressed as:

sign(•) denotes the standard signum function, which is 
expressed as:

and the virtual control law α1 can be designed as:

(15)
∣

∣x̃j
∣

∣ ≤ σ , σ = O

(

1

ωc
o1

)

, j = 1, ∀t ≥ T ,

(16)
∣

∣x̃l
∣

∣ ≤ υ, υ = O

(

1

ωa
o2

)

, l = 2, ∀t ≥ T .

(17)e1 = x1 − x1d.

(18)
r = ė1 + k1e1,

e2 = x2 − α1,

(19)

r = ė1 + k1e1

= ẋ1 − ẋ1d + k1e1

= θ1x2 − θ2 + xe1 − ẋ1d + k1e1

= θ1e2 − θ2 + xe1 − ẋ1d + k1e1 + θ1α1,

(20)sign(•) =

{

1, if • ≥ 0,
−1, if • < 0,

(21)α1 = α1a + α1s, α1s = α1s1 + α1s2,

where kr > 0 is a positive feedback gain; the function of 
α1a is a model compensation term; α1s and α1s1 represent 
the robust and linear robust feedback laws, respectively; 
and α1s2 is a RISE term. β̂ represents an estimated robust 
feedback gain, and the function is updated as

where γ > 0 represents an adaptation gain. α1s2 is to 
compensate for modeling uncertainties by appropriately 
selecting adaptive gains.

According to Eqs. (21) and (22), Eq. (19) can be rewrit-
ten as follows:

Considering Eq. (21) and ė2 = ẋ2 − α̇1 , differentiating r 
with respect to time yields:

According to Eq. (25), the controller u can be defined 
as:

where k2 represents the positive feedback gain. A discon-
tinuous projection can be given as:

ϕ is bounded, and the function is updated as:

where κ > 0 is an adaptation gain and

(22)

α1a =
1

θ1

[

θ2 − x̂e1 + ẋ1d − k1e1
]

, α1s1 = −
1

θ1
kre1,

α1s2 = −
1

θ1

t
∫

0

[

krk1e1 + β̂sign(e1)
]

dτ ,

(23)˙̂
β = γ rsign(e1),

(24)r = θ1e2 + θ1α1s2 + x̃e1 − kre1.

(25)

ṙ = θ1ė2 + ˙̃xe1 − krr − β̂sign(e1)

= θ1ẋ2 − θ1α̇1 + ˙̃xe1 − krr − β̂sign(e1)

= θ1θ3u− θ1θ
T
b η + θ1xe2

− θ1α̇1 + ˙̃xe1 − krr − β̂sign(e1).

(26)u = ua + us, us = us1 + us2,

(27)

ua =
1

θ1θ3

[

θ1θ
T
b η − θ1x̂e2 + θ1α̇1

]

, us1 = −k2e2,

us2 = −
1

θ1θ3
ϕ̂sign(e2 + r),

(28)Proj(•) =







0, if ϕ̂ = ϕmax and • > 0,

0, if ϕ̂ = ϕmin and • < 0,

•, otherwise,

(29)˙̂ϕ = Proj[κ(e2 + r)],
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Substituting Eqs. (26) and (27) into Eq. (25) yields:

From Eqs. (25) and (32), ė2 is expressed as:

4.3  Stability Analysis
Considering Eqs. (23) and (29), we select the proper feed-
back gains k1, k2 , and kr and select β according to Lemma 
2. The control law of Eq. (26) guarantees that the tension 
tracking error is regulated and that all the system signals 
are bounded.

Lemma 2 The function L(t) can be designed as:

where N = −r ˙̃xe1 , and N  is sufficiently smooth.

Assumption 5 

If we can select β to satisfy the inequality

the following defined function P(t) is always positive:

Proof See Appendix A.

We define a Lyapunov function as:

(30)α̇1 = α̇1a + α̇1s, α̇1s = α̇1s1 + α̇1s2,

(31)

α̇1a =
1

θ1

[

θ2 −
˙̂xe1 + ẍ1d − k1ė1

]

, α̇1s1 = −
1

θ1
krė1,

α̇1s2 = −
1

θ1

[

krk1e1 + β̂sign(e1)
]

.

(32)
ṙ = −krr − k2e2 + θ1x̃e2 + ˙̃xe1

− ϕ̂sign(e2 + r)− β̂sign(e1).

(33)θ1ė2 = −k2e2 + θ1x̃e2 − ϕ̂sign(e2 + r).

(34)e1 → 0 as t → ∞.

(35)L(t) = r[N − βsign(e1)],

(36)|N | ≤ ξ1,
∣

∣Ṅ
∣

∣ ≤ ξ20.

(37)β ≥ ξ1 +
1

k1
ξ2,

(38)P(t) = β|e1(0)| − e1(0)N (0)−

∫ t

0
L(τ )dτ .

(39)
V =

1

2

(

e21 + θ1e
2
2 + r2 + γ−1β̃2 + κ−1ϕ̃2 + 2P

)

.

Lemma 3 If the adaptation gain β is positive, the ine-
quality in Eq. (37) is satisfied, and the feedback is selected 
appropriately, the matrix �1 is positive-definite.

Proof See Appendix B.

Then, Eq. (34) can be satisfied under closed-loop 
conditions.

Remark 3 Lemma 3 implies that the controller pro-
posed in Eq. (26) can bring the system into an asymptoti-
cally stable state.

5  Comparative Experimental Results
5.1  Experimental Setup
The validation testbed used to demonstrate the proposed 
controller design is shown in Figure 5. In this experimen-
tal platform, the rewinding and unwinding axes were 
driven by servomotors 1 and 2, respectively. The tension-
detection module is shown in Figure 6. The servomotors 
were Kollmorgen AKM24D-ACBNAA-00 with a rated 
current of 2.21 A, rated torque of 1.41 N·m, and maxi-
mum velocity of 8000 r/min. The Heidenhain ERN 480 
rotary encoder has a line count of approximately 2048. 
The measuring amplitude of the tension sensor was 50 
N, and the accuracy was approximately 0.1%. The meas-
urement and control software were used with a 16-bit 
analog/digital (A/D) transition board (Advantech PCI-
1716), which collected the tension signal; a 16-bit counter 
card (Heidenhain IK-220), which collected the position 
signals of the rewinding and unwinding axes; and a 16-bit 
digital/analog (D/A) transition board (Advantech PCI-
1723). The sampling time was 0.5 ms. The speed sig-
nal was obtained by differentiating the derivative of the 

(40)�1 =





k1 − 1
2 0

− 1
2 kr

1
2

0 1
2 k2



.

Figure 5 Experimental platform for winding tension
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high-precision position signal. The parameters of the 
winding system are presented in Table 1.  

5.2  Comparative Experimental Results
To demonstrate the advantages of the proposed control-
ler, we compared it with three other controllers.

(1) ESOARISE

The control gains were selected as k1 = 20,  kr = 6 , 
and k2 = 10 . The observer bandwidth parameter was set 
as ωo1 = 30 and ωo2 = 20 . The adaptation rates of the 
parameters were set as γ = 5 and κ = 1.

(2) ARISE

The input of adaptive RISE control is:

The virtual control law α1 in Eq. (41) is:

(41)u =
1

θ1θ3

[

θ1θ
T
b η + θ1α̇1 − k2e2

]

.

The control gains are identical to those of ESOARISE.

(3) RISE

The control law of RISE is:

and the virtual control law α1 in Eq. (43) is:

The RISE feedback gain is β = 350 , and the control 
gains and winding system parameters are identical to 
those in ESOARISE.

(4) PID

Proportional–integral–derivative (PID) control-
lers are widely used in engineering. The PID gains are 
selected as kp = 15 , ki = 8 , and kd = 0.

In practical applications, the tension should be stable. 
The proposed controllers were run with a tension tra-
jectory given by:

which ensured that x1d increased slowly from 0 to a 
constant value without mutation and was sufficiently 
smooth.

The tension tracking errors and actual tension signals 
of ESOARISE, ARISE, RISE, and PID are shown in Fig-
ures  7 and 8, respectively. The control input u for the 
four controllers is shown in Figure 9. The velocity of the 
rewinding axis is shown in Figure  10. The estimations 
of xe1 and xe2 are shown in Figure 11. The root-mean-
square (RMS) values of each controller are presented in 
Table 2. In addition to the graph with the tracking error, 
the curves of physical quantities such as the actual ten-
sion, input voltage, and velocity of the rewinding are 
presented. The actual tension curve reflects the ten-
sion tracking performance, and the stability of the 
rewinding speed largely determines the accuracy of the 

(42)

α1 =
1

θ1
[θ2 + ẋ1d − k1e1 − kre1]

−
1

θ1

t
∫

0

[

krk1e1 + β̂sign(e1)
]

dτ .

(43)u =
1

θ1θ3

[

θ1θ
T
b η + θ1α̇1 − k2e2

]

,

(44)

α1 =
1
θ1
[θ2 + ẋ1d − k1e1 − kre1]

−
1
θ1

t
∫

0

[krk1e1 + βsign(e1)]dτ .

(45)x1d = 10
(

1− e−t
)

,

Figure 6 Detection module for winding tension

Table 1 Parameters of the winding system

Parameter Value

Young’s modulus E ( N/m2) 1.6 ×  109

Material cross-sectional area A (m2
) 1.2 ×  10−6

Material span S0 (m) 1.8

Velocity of unwinding v2 ( m/s) 8 ×  10−2

Radius of rewinding r1 (m) 7.4 ×  10−2

Equivalent inertia J ( kg ·m2) 6.3 ×  10−3

Voltage–torque coefficient Ki (N ·m/V) 3.2 ×  10−2

Viscous friction coefficient B 1.3 ×  10−1

Friction levels a1, a2 0.02, 0.01

Corresponding coefficients c1, c2, c3 500, 15, 1.5
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tension control. Finally, the input voltage represents the 
amplitude of the electrical signal required by the sys-
tem to achieve accurate control.

In Figure  7, we can intuitively observe the track-
ing effect of each controller on the tension. As shown, 
ESOARISE had the best control effect among all the 

Figure 7 Tension tracking errors of the four controllers

Figure 8 Actual tension values of the four controllers

Figure 9 Control input voltages of the four controllers

Figure 10 Velocity of the rewinding axis for the four controllers

Figure 11 Disturbance estimation of the ESOARISE controller

Table 2 RMS values of the controllers

Controller Value

ESOARISE 0.2507

ARISE 0.3918

RISE 0.6079

PID 0.6967
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controllers, and the PID controller had the worst control 
effect.

In addition, Figure 7 shows that RISE had better track-
ing performance than PID, confirming the effectiveness 
of the utilized nonlinear model and integral robust terms.

The tracking error of ARISE was more stable than 
that of RISE, verifying the effectiveness of the improve-
ment of robust gain adaptation for the global tracking 
performance.

ESOARISE outperformed the other controllers in all 
aspects, as shown in Figures  7, 8, 9, 10. In particular, it 
was significantly better with regard to angular velocity 
and tension tracking error, verifying the effectiveness of 
disturbance compensation in the control law based on 
the ESO. The values of disturbances compensation are 
presented in Figure 11.

In Table  2, the values of ESOARISE are better than 
those of the other controllers, confirming the effective-
ness and advanced nature of the proposed controller at 
the data level.

6  Conclusions
For a typical winding system, we considered the influence 
of the material length change between the rewinding and 
unwinding ends on the system tension as a time-varying 
interference term and reestablished the mathematical 
model of the winding system accordingly. An ESO was 
used to estimate the time-varying interference term, 
which was designed according to the continuous RISE 
method, and the parameter adaptive concept was used 
as the online update method for robust gain. The asymp-
totic stability of the system was verified using the Lyapu-
nov function.

(1) Through a test analysis, with consideration of the 
linear velocity at the end of the unwinding reel as a 
known state, the state-space equation is redesigned, 
making it more convenient for the application of 
nonlinear algorithms. Compared with other control 
methods, the proposed method based on the ESO 
suppresses the interference to the winding tension 
caused by disturbances and increases the control 
accuracy for the tension of the winding system. 
Thus, it provides a theoretical basis for the develop-
ment of tension control.

(2) However, this study had limitations. For example, 
only the control of the rewinding speed was consid-
ered, and the unwinding speed was assumed to be 
constant. Therefore, the improvement in the con-
trol performance was limited. In addition, the struc-
tural stability of glass fiber materials is poor, leading 
to errors and low consistency in the experimental 

results. Therefore, our future research will focus on 
model completeness and material selection.

Appendix A
To ensure the positive definiteness of the Lyapunov func-
tion (Eq. (39)) while guaranteeing the negative-definiteness 
of the Lyapunov-function differential, an auxiliary function 
P(t) > 0 must be designed to eliminate redundant terms, 
that is, N = −r ˙̃xe1 and β̂sign(e1) . This is defined as P(t) in 
Eq. (38), where

Through integration by parts, Eq. (35) can be rewritten 
as follows:

where the constant terms β|e1(0)| and e1(0)N (0) can be 
compensated in P(t) . Substituting Eq. (47) into Eq. (38) 
yields:

Considering Eq. (36), we can ensure that P(t) > 0 is 
always satisfied when β is designed as given by Eq. (37).

Appendix B
The time derivative of Eq. (39) can be expressed as:

Substituting Eqs. (18), (23), (29), (32), and (33) into Eq. 
(49) yields:

(46)

∫ t

0
L(τ )dτ =

∫ t

0
r[N − βsign(e1)]dτ

=

∫ t

0
(ė1 + k1e1)[N − βsign(e1)]dτ .

(47)

∫ t

0
L(τ )dτ = e1N |

t
0 − β|e1||t0

+

∫ t

0
k1e1

[

N −
1
k1

Ṅ − βsign(e1)
]

dτ

=β|e1(0)| − e1(0)N (0)+ e1N − β|e1|

+

∫ t

0
k1e1

[

N −
1
k1

Ṅ − βsign(e1)
]

dτ ,

(48)

P(t) = β|e1| − e1N −

∫ t

0
k1e1

[

N −
1
k1

Ṅ − βsign(e1)
]

dτ .

(49)
V̇ = e1ė1 + e2θ1ė2 + rṙ + β̃γ−1 ˙̂β + ϕ̃κ−1 ˙̂ϕ + P.

(50)

V̇ = e1(r − k1e1)+ e2
[

−k2e2 + θ1x̃e2 − ϕ̂sign(e2 + r)
]

+ r
[

−krr − k2e2 + θ1x̃e2 + ˙̃xe1
]

+ r
[

−ϕ̂sign(e2 + r)− β̂sign(e1)
]

+ β̃rsign(e1)+ ϕ̃Proj(e2 + r)
− r[N − βsign(e1)].
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We define β̃ = β̂ − β , ϕ̃ = ϕ̂ − ϕ , and Eq. (50) can be 
rewritten as:

If ϕ is sufficiently large, we have the following:

When Eqs. (52) and (53) are substituted into Eqs. 
(51), this function is bounded as:

where e is defined as e = [e1, r, e2]
T , and the matrix Λ1 

defined in Eq. (40) is positive-definite. Therefore,

where �min(Λ1) is the minimal eigenvalue of matrix Λ1 . 
Therefore, we can infer that V ∈ L∞ and W ∈ L2 , which 
implies that e1 , r , and e2 are bounded. Additionally, the 
states x1 , x2 , and u are bounded. We know that all the 
error signals of this system are bounded according to Eq. 
(55). From Assumption 5, we can easily verify that the 
time derivative of W  is bounded and uniform.
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