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Abstract 

This paper aims to develop an automatic miscalibration detection and correction framework to maintain accurate 
calibration of LiDAR and camera for autonomous vehicle after the sensor drift. First, a monitoring algorithm that can 
continuously detect the miscalibration in each frame is designed, leveraging the rotational motion each individual 
sensor observes. Then, as sensor drift occurs, the projection constraints between visual feature points and LiDAR 
3-D points are used to compute the scaled camera motion, which is further utilized to align the drifted LiDAR scan 
with the camera image. Finally, the proposed method is sufficiently compared with two representative approaches 
in the online experiments with varying levels of random drift, then the method is further extended to the offline cali-
bration experiment and is demonstrated by a comparison with two existing benchmark methods.
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1 Introduction
Autonomous vehicle has drawn tremendous attention in 
the last decade from both industrial and academic due to 
its promise in boosting traffic efficiency, improving road 
safety and minimizing energy consumption [1, 2]. It is 
often equipped with LiDAR and camera to obtain reliable 
and comprehensive information about the surroundings. 
Road detection [3–5], object tracking [6–8], and trajec-
tory prediction [9, 10] are exciting examples of LiDAR 
and camera fusion perceptions. In these paradigms, accu-
rate extrinsic calibration is the prerequisite for optimally 
combining the measurements from the multi-sensor 
platform.

Extrinsic calibration is the process of identifying the 
rigid-body transformation between the coordinate sys-
tem of the two sensors, which minimizes the alignment 
error between corresponding points [11]. Most of the cal-
ibration methods are based on recognizing and matching 
the common features from sensor data to determine the 
calibration parameters [12, 13]. Although they provide a 
good estimate of the calibration parameters, traditional 
methods [14, 15] require special fiducials and user inter-
vention, it is widely seen as having been onerous and 
time-consuming.

Accordingly, many works attempt automatic calibrate 
LiDAR and camera utilizing features extracted from the 
natural scenes, such as planes [16, 17], lines [18–20], 
or edges [21–23] without any dedicated targets, and 
achieves well calibration performance. Nevertheless, 
most of these schemes are typically implemented offline, 
they cannot cope with the task of extrinsic calibration 
during vehicle driving.

To address these issues, Schneider et  al. [24] employ 
sensor odometry to recursively estimate the extrinsic 
calibration online. One classic motion-based method 
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proposed by Taylor and Nieto [25] extends the hand-
eye calibration method and incorporates it into a prob-
abilistic framework, which can be used to calibrate 
sensors during vehicle operation. However, these meth-
ods only focus on the online extrinsic calibration, and 
do not explore the monitoring of the possible relative 
pose changes of the sensor during vehicle driving. For 
instance, the relative pose of camera and LiDAR may 
change due to the vibration of vehicle body in the topo-
logically variable driving scenario, significantly degrading 
further perception performance.

If such sensor drift cannot be detected and responded 
in time, it may put people and vehicle nearby under haz-
ardous situations. Hence, an automated pipeline that 
detects the sensor drift and recalibrates the sensors 
online is required to maintain the continuous operation 
of autonomous vehicle. To the best of our knowledge, 
there are only a few works explored on such topic. Corte 
et al. [26] build a unified online pipeline to concurrently 
estimate the extrinsic parameters and observe the param-
eters evolution in long-term operation. However, the 
detection speed of this method is too slow to be used on 
a driving vehicle. Levinson’s method [27] and later vari-
ant [28] first product the depth discontinuity of projected 
LiDAR points and edge intensity from the image, then 
derive a formula that yields the probability that the cur-
rent calibration is accurate and further track the change 
in extrinsic parameter over time. But the detection and 
correction accuracy of this method is not satisfactory due 
to its inherent blurred projection edges, numerous inva-
lid edges, and limited search space.

To address the research gap, i.e., to timely and accu-
rately detect and correct the sensor drift during vehicle 
driving, an automatic LiDAR and camera miscalibration 
detection and correction framework using sensor motion 
cues is proposed. Unlike the above-mentioned works, 
the proposed method uses the deviations of the rota-
tional motions from the two sensors to detect the relative 
pose change in the current frame. To cope with poten-
tial data noise, the sensor motions with their confidence 
level are considered between several historical frames 
and current frame, the number of historical frames and 
confidence is determined by the training data, achieving 
the best accuracy and timeliness in determining sensor 
drift. If the sensor drift in current frame is determined, 
it will be corrected immediately. The Perspective-n-Point 
(PnP) algorithm is used to establish the correspond-
ences between 3-D LiDAR points and 2-D image points 
to estimate the scaled camera motion, which is further 
used to correct the extrinsic parameters. It also consid-
ers historical frame information to ensure the accuracy of 
the correction. Besides, unlike Levinson’s method which 
tries to find the corresponding features from completely 

different modalities, the proposed method estimates 
each sensor motion in the same modality which has been 
widely validated and applied to ensure the accuracy of 
the algorithm.

Specifically, this paper mainly presents three contri-
butions. First, an accurate and reliable miscalibration 
determination method is devised based on the motion 
deviation between LiDAR and camera. Second, an auto-
matic correction algorithm is proposed to recalibrate the 
sensor pair using the scaled camera motions estimated 
by associating the 2-D feature points with correspond-
ing 3-D points. Third, the proposed online miscalibration 
detection and correction method is further extended to 
the offline scenario.

2  Related Works
2.1  Offline Approaches
Researches [16] present similar approaches to such 
problem using geometric constraints associated with 
a trihedral object which is ubiquitous in human-made 
environments, such as two adjacent walls together with 
floor or ceiling. Aiming at the extrinsic calibration for 
multiple small FoV LiDARs and cameras, Liu et  al. [17] 
propose an adaptive voxel map to shorten the calibration 
time based on the existence of natural plane features. Yu 
et  al. [18] estimate the correspondences between van-
ishing points in the image and the structural lines in the 
point clouds to find camera pose in LiDAR coordinate 
system. Nevertheless, these methods are only applicable 
in structured environments.

To broaden the application range, Brown et  al. [19] 
simultaneously consider both points and lines informa-
tion from the image and point cloud, but it still requires 
a dense 3D point set. To solve these concerns, a robust 
and globally-optimal inlier set cardinality maximiza-
tion approach is designed in Ref. [20], it can be used in 
circumstances where the structure is not obvious. Com-
pared with point, line, or plane features mentioned 
above, edge features are more common in the environ-
ment. Kang et al. [21] and Taylor et al. [22] estimate cali-
bration parameters by aligning the extracted edges from 
images and point cloud with the Gaussian mixture model 
and the gradient orientation measure, respectively. To 
achieve pixel-level accuracy of aligning natural edge fea-
tures in the two sensors, Yuan et al. [23] specially devel-
oped an efficient and accurate LiDAR edge extraction 
method based on point cloud voxel cutting and plane 
fitting, leading to more accurate calibration parameters. 
Besides, Pandey et  al. [29] maximize the mutual infor-
mation between the reflectivity of point cloud and the 
corresponding intensity of the image pixels to obtain 
accurate calibration between LiDAR and camera, but this 
approach relies on specific sensor data and is susceptible 
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to the uniformity of lighting. Ishikawa et al. [30] optimize 
the hand-eye LiDAR and camera calibration framework 
by integrating the scaled camera motion using the sensor 
fusion odometry, without the reflectance information. 
However, none of the above methods could cope with the 
online calibration situation.

2.2  Online Approaches
Schneider et al. [24] use the observed motion difference 
in sensor odometry to estimate the extrinsic parameter 
with the unscented kalman filter, however, the filter is 
sensitive to the initial state vectors and the covariance 
matrices, the optimization of which might get stuck in 
local minimum. Taylor and Nieto [25] extend the motion-
based calibration in the form of hand-eye calibration, 
which examines the individual sensor motion and the 
uncertainty of its reading, an appearance-based refine-
ment approach is further used to increase its accuracy. 
This method provides comparable quality to most labori-
ous techniques and is suitable for end users. Based on the 
dual quaternions representation, Horn et al. [31] provide 
online capable global and local strategies that are used for 
non-planar and planar motion-based calibration. How-
ever, these methods lack the mechanism of detecting 
the sensor drift during vehicle driving, if an autonomous 
vehicle can not detect the sensor drift in time, it will 
bring potential safety hazards to the following driving.

To address this issue, Corte et al. [26] devise a unified 
motion-based calibration method to simultaneously esti-
mate the kinematic parameters and extrinsic parameters, 
while continuously observe the parameters evolution. 
But the detection speed reported in their experiments 
reaches 30 seconds, which is unacceptable for a driving 
vehicle. Levinson et  al. [27] report a real-time miscali-
bration detection and automatic tracking algorithm, it 
operates on the principle that depth discontinuities in the 
LiDAR data tend to project onto the edges in the image 
when the calibration is accurate. Based on this princi-
ple and the statistical test, Levinson’s method can detect 
whether the current sensor calibration is accurate in each 
frame and track the sensor drift over time. However, the 
background edge tends to intersect with the foreground 
edge due to the parallax between two sensors, resulting 
in edge blur in the projected depth image. Moreover, a 
large number of invalid edge features in the camera image 
are not related to the depth discontinuities, which may 
lead the optimization in the wrong direction. To narrow 
the search space of the extrinsic parameters for robust 
convergence, later variant work by Xu et  al. [28] utilize 
the monocular depth estimation together with the edge 
information to penalize the large deviation caused by 
invalid edges, but the depth estimated by the monocular 
visual odometry is not accurate due to its scale ambiguity.

Deep learning based techniques are also leveraged to 
monitor and correct calibration errors online. Schneider 
et al. [32] train five neural network models with different 
degrees of sensor drift to iteratively refine the calibration 
output, but it needs to be retrained each time the sensor 
intrinsics vary since it overlooks the output space geom-
etry nature. For this, Iyer et al. [33] train CalibNet with 
geometric supervision by reducing the dense photomet-
ric error and dense point cloud distance error between 
the misaligned and ground truth depth maps. On this 
basis, Mharolkar et al. [34] propose RGBDTCalibNet in 
which low level features and high level features are com-
bined to establish correspondences in the scene. But, 
the above methods emphasize minimizing the calibra-
tion error while ignoring the tolerance within the error 
bounds. To address this issue, Yuan et al. [35] use a deep 
generative model to learn an implicit tolerance model, it 
can estimate a wide range of miscalibration using a single 
frame image and point cloud as the inputs. However, the 
deep learning based frameworks need a large number of 
training data which their performance heavily relies on, 
this means the calibration may be unsatisfying when the 
environment or sensor configuration changes.

3  Overview of the Approach
When the sensors drift unexpectedly during opera-
tion of the autonomous vehicle, the calibration param-
eters change correspondingly and the original extrinsic 
parameters are not applicable anymore, deteriorating 
the proper continuous task of the vehicle. To maintain 
accurate calibration, detecting the sensor drift with high 
reliability is firstly required, then an automated approach 
is expected to update the extrinsic parameters online 
in response to the sensor pose changing. Based on this 
insight, as depicted in Figure  1, the approach can be 
divided into the following stages.

1) Miscalibration detection: A time-domain series of 
corresponding camera images and LiDAR scans is first 
retrieved, and determine the calibration state by compar-
ing the camera motions estimated from the image cues 
and point cloud cues respectively.

2) Automatic correction: If sensor drift is determined, 
the scaled camera motion is estimated using the projec-
tion constraints between visual feature points and LiDAR 
3-D points and correct the sensor drift with point cloud 
transformation and registration.

4  Miscalibration Detection
First, camera is synchronized with LiDAR by searching 
the nearest neighbor sensor data on the time domain; 
then, the individual camera motions between the cur-
rent frame and the last n frames are estimated from the 
two modalities; finally, considering the position error of 
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LiDAR points at a closer distance is dominated by trans-
lation while at further distances is dominated by rotation 
[36], and most LiDAR points have a long-range meas-
urement in the outdoor scene, the rotational drift in 
miscalibration detection is concerned only, the camera 
rotational motions estimated from the camera cues and 
LiDAR cues are compared to determine whether the cur-
rent frame drifts.

4.1  Camera Motion Estimation from Visual Cues
For each new incoming camera image Ik , oriented fast 
and rotated brief features ufk ,g , g=1, 2, ...,NI are extracted 
and matched with the previous images Ik−n , n=1, 2, ...,N  
in a local window using the lowe’s algorithm [37], the 
essential matrix Eck

ck−n
 are determined by the eight-point 

algorithm [38]. Then the essential matrix Eck
ck−n

 is decom-
posed into the transformation matrix 
T̃

ck
ck−n

= [Rck
ck−n

|t̃ckck−n
] . It should be noted that the recov-

ered translation t̃ckck−n
 is the unit norm due to the inherent 

scale ambiguity in monocular camera.

4.2  Camera Motion Estimation from Point Cloud
The LiDAR point cloud is firstly preprocessed, including 
the ground points and distant points removing, and the 
voxel grid down-sampling, to enhance the robustness and 
speed of point cloud registration. Then the point cloud is 
transformed into the camera coordinate system using the 
original extrinsic parameters according to:

where pc ∈ R
3 and pl ∈ R

3 denote a 3-D point in the 
camera coordinate frame and the LiDAR coordinate 
frame, respectively. Rc

l ∈ SO(3) , is the rotation matrix 
and can be parametrized by the Euler angle (yaw, pitch, 
and roll) [Rψ ,Rθ ,Rφ]

T , tcl =[tx, ty, tz]
T is the translation 

vector.

(1)pc = Rc
l · pl + tcl ,

For each new point cloud 
Pk=

{

pk ,i ∈ R
3|i = 1, 2, ...,NL

}

 with NL number of 3-D 
points, it is registered with the prior point cloud Pk−n , 
n=1, 2, ...,N  to find the sensor motion Tlk

lk−n
 from the 

previous scans to the current. The normal distribution 
transform (NDT) algorithm is deployed for point cloud 
registration, due to its shown speed and accuracy [39]. 
NDT subdivides the point cloud Pk into a set of voxels 
and represents the spatial information of the voxels by 
the normal distributions Mk:

where NV  is the number of the voxel points, µk ,i is the 
mean vector, and �k ,i is the covariance matrix of the cell.

Given the reference point cloud distribution Mk and 
the preceding point cloud Pk−n , the transformation 
matrix Tlk

lk−n
= [Rlk

lk−n
|tlklk−n

] can be found by optimizing 
the following objective function:

where d1 and d2 are positive regularizing factors.

4.3  Calibration State Determination
Once a set of sensor motions are estimated, the calibra-
tion state can be determined by comparing the corre-
sponding rotational components Rck

ck−n
 and Rlk

lk−n
 . Ideally, 

(2)µk ,i=
1

NV

NV
∑

i=1

pk ,i,

(3)�k ,i=
1

NV − 1

NV
∑

i=1

(

pk ,i − µk ,i

)(

pk ,i − µk ,i

)T
,

(4)f
(

Pk−n,R
lk
lk−n

, t
lk
lk−n

)

=
|Pk−n|
∑

i=1

−d1 exp

(

−d2

2
p̂Tk ,i�

−1
k ,i p̂k ,i

)

,

(5)p̂k ,i = R
lk
lk−n

pk−n,i + t
lk
lk−n

− µk ,i,

Figure 1 Overview of the proposed framework
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if there is no relative offset between the two sensors, 
there exists:

where E is an identity matrix. However, in real imple-
mentations, the motion estimations are always corrupted 
by measurement noises, synchronization offsets, and 
motion estimation errors, which means the error Re

k−n 
between Rck

ck−n
 and Rlk

lk−n
 is unavoidable even when no sen-

sor drift occurred.

The error Re
k−n threatens the determination of calibra-

tion state, to distinctly show the error in each rotation 
axis, the rotation error Re

k−n is converted into the form of 
Euler angle:

where rij is the elements in the rotation matrix.
The typical frequency distribution histograms of the 

Euler angle errors from the real-world data are indi-
cated in Figure  2. These training data including the 
camera image and LiDAR points are collected by the 
autonomous vehicle. A Gaussian can be fitted to each of 
the three distributions,

(6)R
lk
lk−n

Rck
ck−n

T = E,

(7)Re
k−n = R

lk
lk−n

Rck
ck−n

T.

(8)

eψ ,k−n = atan2(r21, r11),

eθ ,k−n = atan2

(

−r31,

√

r232+r233

)

,

eφ,k−n = atan2(r32, r33),

(9)

f (ej,k−n) =
1

σj
√
2π

exp

(

−
(ej,k−n − µj)

2

2σ 2
j

)

, j = ψ ,φ, θ ,

where µj is the mean , σj is the standard variance.
Therefore, to avoid error detections, a certain amount 

of error margin te is considered in the implementation. 
If the Euler angle errors are all within the margin te , it 
is believed that no sensor drift occurred in the current 
frame.

If any Euler angle error ej,k−n exceeds the margin te , the 
current frame may have drifted, the confidence Cj,k−n 
of drifting occurred on the corresponding axis can be 
described by

Here, to maintain the detection sensitivity in each rota-
tion direction, the maximum Euler angle error is taken 
into consideration:

And there is also a tradeoff between the window size 
and error detection, a larger window could be needed to 
reliably detect errors, with the downside that the previ-
ous frames farther from the current frame contribute less 
to the detection, since the noise of motion estimation 
between two frames increases. Taking the above factors, 
the miscalibration can be determined by

where α is the global drift coefficient.
Accordingly, to determine the optimal hyperparameter, 

a statistical test is performed under an extensive series 
of coefficients and window sizes with the collected data, 
shown in Figure  3. As expected, the accuracy improves 
with the benefit of added frames, however, the differ-
ence in the data feature between the front frame and cur-
rent frame increases with the window size, engendering 
a larger motion estimation error and further degrading 
the signal-to-noise ratio in miscalibration determination. 
Consequently, the determination accuracy under window 
sizes 9 and 10 decrease slightly. Instead, it is noted that 
a 7-frame window is significantly more robust, and the 
maximum determination accuracy 99.63% appears under 
coefficient 0.945. Hence, the above two hyperparameters 
are selected to accurately and robustly detect the current 
sensor drift.

5  Automatic Correction
When the sensor drift at the current position is detected, 
the automatic recalibration strategy is then implemented. 
The scaled camera motions Tck

ck−n
 are first retrieved 

through associating the 2-D feature points ufk ,g from the 

(10)Cj,k−n =
∫ ej,k−n

−ej,k−n

f (ej,k−n)dx, j = ψ ,φ, θ .

(11)el,k−n = max{Cj,k−nej,k−n}.

(12)

N
∑

n=1

(

el,k−n+eg ,k−n

)

> α

N
∑

n=1

(

max{ej,k−n} +
√

1

3

∑

e2j,k−n

)

,

Figure 2 Typical frequency distribution histograms of the Euler 
angle errors from the real-world statistical data and fitted Gaussian 
distributions probability density curve (Solid line represents the area 
of [µj − 3σj ,µj + 3σj], j = ψ ,φ, θ)
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image Ik and the corresponding 3-D points pk−n,i from 
prior point cloud Pk−n ; then the camera motions esti-
mated from point cloud Tlk−n+1

lk−n
 is further employed to get 

the motion Tck
ck−1

 between the current and previous 
frames. Through transforming the prior un-drifted 
LiDAR scan Pk−1 to the current position and registered 
with the drifted point cloud Pk , the extrinsic parameters 
of the current frame Tck

lk
 are finally corrected by multiply-

ing the registration matrix TR
ck

.

5.1  Association of Point Cloud with Feature Points
As depicted in Figure  4, association of depth measure-
ments pk−n,i with the visual feature points ufk ,g is exe-
cuted by first projecting the prior un-drifted LiDAR scan 
Pk−n to the corresponding image Ik−n using

where upk−n,i is the projection of pk−n,i in the pixel coordi-
nate system, π(·) is the projection function.

The projected point cloud is aligned well with the 
image since no sensor drift happened in the previous 
frames. After that, the feature points ufk−n,g extracted in 
the camera motion estimation are associated with depth 
projections upk−n,i using the nearest neighbor search if a 
valid range value is found within a small local neighbor-
hood ta:

In the implementation, ta is generally 2 pixels. And the 
projected point upk−n,i whose depth is closer than its 
neighbors are paired up with the feature point ufk−n,g , on 

(13)u
p
k−n,i = π(Kpk−n,i),

(14)
∥

∥

∥
u
f
k−n,g − u

p
k−n,i

∥

∥

∥

L2
< ta.

account of the farther 3-D range points are less likely to 
coincide with the feature points due to the occlusion and 
parallax; besides, the points which actually fall in the 
image are considered only.

Then, by the knowledge of the matched feature points 
between the prior image Ik−n and current image Ik , the 
3-D-to-2-D correspondence between the point pk−n,i in 
the previous LiDAR scan and the feature point ufk ,g in the 
current image can be accordingly constructed. Then the 
camera motion Tck

ck−n
 can be estimated with the perspec-

tive-from-n-points (PnP) algorithm embedded in the 
RANSAC scheme to robustly discard the outliers:

By minimizing the reprojection error of all inliers, this 
bundle adjustment (BA) problem is solved using Leven-
berg–Marquart (LM) optimization method, the Ceres 
Solver C++ Library is employed to perform the nonlin-
ear optimization.

5.2  Correction Matrix Calculation
Then the estimated camera motions from LiDAR cues 
T

lk−n+1

lk−n
,n = 2, 3, ...,N  between the adjacent scans in the 

window are utilized to establish further constraints,

Therefore, a series of motion matrices nT
ck
ck−1

   is 
obtained,  n = 2, 3, ...,N  between the current frame 
and the previous frame, and the final motion 
T
ck
ck−1

= [Rck
ck−1

|tckck−1
]  is obtained by

(15)
Tck
ck−n

= arg min
1

2

∑

∥

∥

∥
u
f
k ,g − π(KTck

ck−n
pk−n,i)

∥

∥

∥

2

2
.

(16)Tck
ck−n

= Tck
ck−1

2
∏

n=N

T
lk−n+1

lk−n
.
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and window sizes

Figure 4 Diagram of associating feature points ufk,g in image Ik 
with the points pk−n,i in LiDAR scan Pk−n
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where nqckck−1
 is the quaternion corresponding to the rota-

tion matrix nRck
ck−1

 . Then the prior un-drifted LiDAR scan 
Pk−1 is transformed to the current position as the refer-
ence point cloud PR

k  using the motion matrix Tck
ck−1

 . After 
that, the current drifted point cloud Pk is registered with 
the reference scan PR

k  to find the correction matrix TR
ck

 . 
Finally, the extrinsic parameter Tck

lk
 between the LiDAR 

and camera is corrected by

6  Experiments and Discussion
In this section, to evaluate the accuracy and robustness 
of the proposed calibration technique, the experiment 
results are described in detail with a real-world dataset 
collected from the built autonomous driving test plat-
form, and compare it to other state-of-the-art calibration 
methods.

6.1  Experiment Setup
The sensor setup is mounted on the autonomous driv-
ing platform, as shown in Figure  5, and it consists of a 
40 beams LiDAR and a high-definition camera with a 
resolution of 1280 × 720. The initial extrinsic parame-
ters between the two sensors are firstly obtained by the 
method in Ref. [40] for its conspicuous accuracy, and fur-
ther finetuned manually by the experts.

To verify the effectiveness of the method, the test data 
are collected in a road environment different from that of 
determining the hyperparameters. In the experiment, a 
random offset is applied to the LiDAR scans to emulate 
sensor drift, this way provides us with the ground truth 
in the sensor extrinsic parameters.

6.2  Online Miscalibration Detection and Correction
To examine the method performance, an extensive series 
of experiments are performed with the collected data. 
Random synthetic offsets with different sizes ((0.2°‒2.0°) 
and (0.5‒3  cm)) and frequencies (1‒10  Hz) are applied 
to all six calibration parameters to more realistically 

(17)qckck−1
= 1

N − 1

N
∑

n=2

nqckck−1
,

(18)R
ck
ck−1

=qckck−1
= qckck−1

/||qckck−1
||,

(19)t
ck
ck−1

= 1

N − 1

N
∑

n=2

ntckck−1
,

(20)T
ck
lk
=TR

ck
T

ck
lk
.

emulate the sensor drift under the margin of 10° in rota-
tion and 20 cm in translation which represents quite a 
high size of drift for the sensors on autonomous vehicle.

The proposed approach is compared with two repre-
sentative techniques including Levinson’s method [27] 
and deep learning based method RGGNet [35] which 
are implemented as follows: for Levinson’s method, the 
grid search space is expanded from 1 to 4 according to 
the synthetic offsets for reliable results, and the Gauss-
ian distribution corresponding to the objective function 
is fitted. For RGGNet, the model and weight parameters 
provided in the original framework is used to conduct 
the experiments. Considering the huge amount of data 
required for the network, transfer learning technique 
is employed to train the annotated 4000 pairs of train-
ing data which has applied random offsets as the above 
setting.

Figure  6 reports the calibration results of the above 
methods with the same deviations which include no drift, 
small drift, and large drift stages. The first 50 frames are 
used to inspect whether the methods incorrectly clas-
sify a normal calibration, it is noted that the proposed 
method always discerns the correct calibration while 
Levinson’s method makes some mistakes. Two issues 
combine to give these results, the first is the edge features 
between different modalities are not easy to align, and 
often lead the optimization in the wrong direction, while 
the proposed method uses the same modality to estimate 
the sensor motions for miscalibration detection which 
eliminates the systemic errors induced by the feature 
alignment; the second is that Levinson’ method relies on 
a statistical test and does not consider the changes on 
each axis, its inherent probability-based detecting mech-
anism will inevitably lead to the wrong classification. As 
for RGGNet, it runs calibration network every frame for 
lacking miscalibration detection mechanism, and the 

Figure 5 The autonomous vehicle carrying the sensor setup
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limited amount of training data does impede the gener-
alization capability of the network, resulting in the oscil-
lation about the right value.

The next 200 frames are leveraged to evaluate the cali-
bration correcting performance under random small drift 
and large drift in all six dimensions at once. It is evident 
that the proposed approach outperforms Levinson’s 
method and RGGNet in both rotation and translation. 

It can be seen that yaw is the most precise on the whole 
among the three rotation directions, as the high hori-
zontal angular resolution of LiDAR makes no matter 
the point cloud registration, the edge extraction, or the 
semantic extraction work in a more natural way. This also 
makes the proposed method perform well in two transla-
tion directions X and Z on the horizontal plane. On the 
other side, the relatively low vertical resolution degrades 
the calibration accuracy of the above methods in pitch 
and Y direction, for example, the proposed method fails 
to calibrate the sharp drift in pitch around frame 224, 
but it still quickly maintains the continuous and accurate 
correction of the following drift frames thanks to multi-
frame based correction mechanism. For roll, X, and Z 
direction, drift induces smaller deviations in the point 
cloud projection map according to the projection princi-
ple, which explains the difficulty of accurate calibration 
of the two compared methods since their inputs are both 
the point cloud projection. The proposed method per-
forms well and is not affected at all for that it can accu-
rately estimate the changes in these directions based on 
point cloud registration.

To more intuitively show the performance of the above 
methods in miscalibration detection and correction, the 
experimental outcomes are numerically summarized in 
Table  1. Precision and recall denote the percentage of 
correctly classified frames in all detected frames and all 
drifted frames, respectively. RGGNet is not considered 
for lacking a classification mechanism. Compared with 
Levinson’s method, the proposed approach gives a much 
more accurate classification, the precision and recall are 
boosted from 84.97% and 88.02% to 94.67% and 95.8%, 
respectively. The remaining metrics are the mean abso-
lute errors between the estimated calibration parameters 
and the ground truth, the proposed method outshines 
the other two counterparts in all directions. It is worth 
noting that Levinson’s method is often slightly biased to 
sensor overlap and this may cause local optima, moreo-
ver, the limited search space is unable to cope with large 
drift. RGGNet calibrates with only the current frame, 
and its limited generalization ability does not guarantee 
an accurate calibration without the benefits of historical 
frames.
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Figure 6 Evaluation results of the online drift detection 
and correction

Table 1 Performance comparison of miscalibration detection and correction

Methods Precision
(%)

Recall
(%)

Yaw
(°)

Pitch
(°)

Roll
(°)

X
(cm)

Y
(cm)

Z
(cm)

Lev 84.97 88.02 0.495 0.652 0.742 7.20 7.69 6.47

RGGNet - - 0.517 0.541 0.428 8.50 9.87 8.58

Ours 94.67 95.81 0.157 0.189 0.172 2.45 3.62 2.46
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A qualitative example of miscalibration correction is 
depicted in Figure  7, the camera images are projected 
onto the LiDAR scans giving each of the points an asso-
ciated color. The typical miscalibration correcting results 
under small drift and large drift conditions are shown in 
the left and right column, respectively, the red rectangle 
areas indicate the misalignment. There exists some slight 
misalignment in the results of the proposed method 
when the depth changes dramatically, such as the distant 
green belt projected onto the vehicle top. However, from 
the global perspective, it can be discerned that the pro-
posed method delivers radically higher alignment accu-
racy and robustness, compared to Levinson’s method and 
RGGNet method.

6.3  Offline Miscalibration Detection and Correction
Besides the online calibration scenario, the proposed 
method can be extended to offline miscalibration detec-
tion and correction task, for example, when an autono-
mous vehicle returns to the parking spot after a period of 
operation, the sensors may have drifted and therefore an 
in-field calibration is needed.

To address this problem, some adjustments are made 
to the proposed method. First, several well-calibrated 
scan-image pairs with different poses at the parking 
spot are previously sampled as the reference data, their 

function is equivalent to that of the previous frames in 
Section 4. Then, only one current scan-image pair from 
the spot is required to determine the calibration state 
according to Eq. (12). Finally, according to Section  5, 
the transformation matrices from the reference frame 
to the current frame are estimated and the final cor-
rection matrix is further obtained. Compared with the 
online task, the reference data pairs of the offline task 
have a stronger spatial association, which is conducive 
to the determination of calibration state, in addition, 
more data may bring a higher probability of outliers. 
Hence, the number of reference data pairs should be 
reconsidered. The determination accuracy under dif-
ferent number of reference frames is tested, the experi-
ment is repeated 100 times for each number with the 
mean reported (see Figure  8). It can be seen that the 
best accuracy 0.9983 reaches under 6 frames.

To assess the accuracy and robustness of the pro-
posed method in the offline scenario, edge-based 
method GMM [21] and intensity based method IM 
[29] are employed to compare with the proposed one, 
these two in-field calibration approaches are imple-
mented as below: for GMM, images from monocular 
camera are used instead of omnidirectional camera, 
and replace the spherical camera model with pinhole 
model, the thresholds for image and point cloud edge 
scores are 0.15 and 0.12, respectively. For IM, 20 scan-
image pairs at multiple nearby locations of the parking 
spot, as in the original manuscript, are used to generate 
a better estimate of the joint and marginal probability 
distributions.

In the experiments, the LiDAR pose is manually 
adjusted within the order of 10° for rotation param-
eters and 20 cm for translation parameters to emulate 
the sensor drift, then use the target-based calibration 
method [40] to find extrinsic parameters with minimal 
projection error, the ground truth of each LiDAR pose 

Figure 7 Textured point clouds using miscalibration correction 
parameters of each method: (a) Drifted, (b) Ground truth, (c) The 
proposed method, (d) Levinson’s method, and (e) RGGNet method 
(The left and right columns show the typical correction results 
of small drifts and large drifts, respectively, the red rectangles indicate 
the misalignment)
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Figure 8 Determination accuracy of calibration state under different 
number of reference frames
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is subsequently obtained by manually finetuning these 
parameters. 100 calibration trials with random drift are 
performed, the results are presented in Figure  9 and 
Table 2.

It can be discerned that the proposed method con-
verges to more consistent results compared with GMM 
and MI, except for the roll direction. Nevertheless, the 
proposed method completely outshines its counter-
parts in mean absolute error metric, as summarized in 
Table  2, indicating the accuracy and robustness of the 
proposed method. Similar to Levinson’s method, GMM 
has difficulty in estimating the vertical drift (Y direction) 
owing to the sparse angle resolution of LiDAR and its 
limited field of view. In addition, a reasonably tuning of 
weight, displacement, and standard deviation for GMM 
can be invariably heuristic and experiential. MI runs on 
the establishment of correspondence between the sur-
face reflectivity from LiDAR and the gray-scale intensity 
reported by camera, which is looser than the edge con-
straints. Besides, the shadows of occluding objects in the 
image corrupt the correlation of intensity and reflectivity, 
producing a weak input for MI algorithm. These induce 

the greater fluctuation and more undesired outliers of the 
MI outcomes. As listed in Table  2, the offline results of 
the proposed method show increased performance com-
pared to the online results. This is mainly ascribed to the 
stronger spatial association of the scan-image pairs, and 
there are no asynchronous time stamps and motion dis-
tortion problems engendered by data acquisitions on a 
moving vehicle.

To give a qualitative comparison, the point cloud tex-
tured by each representative calibration parameter of 
these methods is illustrated in Figure 10. In this instance, 
the result of the proposed method is visually comparable 
with the textured point cloud generated from the ground 
truth, while the other two methods show slightly larger 
uncertainty in the translation, for example, the wall is 
obviously offset to the right. These findings prove the 
validity and progressiveness of the proposed proposed 
method regarding its accuracy and robustness.

7  Conclusions
This paper presents an automatic miscalibration detec-
tion and correction framework for LiDAR and camera 
to confront the calibration error induced by sensor drift 
during vehicle operation.

Its effectiveness is first demonstrated in the online mis-
calibration and correction experiments, the quantitative 
and qualitative comparison results with two representa-
tive techniques, Levinson’s method and RGGNet, verify 
the accuracy and robustness of the proposed scheme 
with varying levels of random drift.
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Figure 9 Box plot of calibration error (The boxes indicate the 25th 
and 75th percentiles, and the red lines in the boxes represent median 
values. The whiskers represent the most distinct values within 1.5 
times box height from the boxes. Red “×” symbols indicate errors 
out of that range)

Table 2 Mean absolute error of offline calibration

Methods Yaw
(°)

Pitch
(°)

Roll
(°)

X
(cm)

Y
(cm)

Z
(cm)

GMM 0.132 0.168 0.114 3.48 5.44 3.47

IM 0.201 0.277 0.219 3.40 6.24 5.65

Ours 0.090 0.121 0.102 2.31 2.62 2.09

Figure 10 Qualitative comparison of the offline calibration task: (a) 
Ground truth, (b) The proposed method, (c) GMM, and (d) MI (The red 
rectangles indicate the misalignment)
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The proposed method is also extended to the offline 
task, a comparative study with two existing in-field cali-
bration approaches, GMM and MI, is also performed. 
The results further validate the consistency and precision 
of the proposed method.

A direction to improve this work is to boost the feature 
extraction speed without sacrificing accuracy for the reg-
istration algorithms of point cloud and image to realize 
the real-time operation of the proposed method.
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