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Abstract 

Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm 
to human health. Twin-fluid atomization technology is an effective means of controlling fine particulate matter 
pollution. In this paper, the influences of the main parameters on the droplet size, effective atomization range 
and sound pressure level (SPL) of a twin-fluid nozzle (TFN) are investigated, and in order to improve the atomization 
performance, a multi-objective synergetic optimization algorithm is presented. A multi-physics coupled acoustic-
mechanics model based on the discrete phase model (DPM), large eddy simulation (LES) model, and Ffowcs 
Williams-Hawkings (FW-H) model is established, and the numerical simulation results of the multi-physics coupled 
acoustic-mechanics method are verified via experimental comparison. Based on the analysis of the multi-physics 
coupled acoustic-mechanics numerical simulation results, the effects of the water flow on the characteristics 
of the atomization flow distribution were obtained. A multi-physics coupled acoustic-mechanics numerical simulation 
result was employed to establish an orthogonal test database, and a multi-objective synergetic optimization 
algorithm was adopted to optimize the key parameters of the TFN. The optimal parameters are as follows: A gas 
flow of 0.94 m3/h, water flow of 0.0237 m3/h, orifice diameter of the self-excited vibrating cavity (SVC) of 1.19 mm, 
SVC orifice depth of 0.53 mm, distance between SVC and the outlet of nozzle of 5.11 mm, and a nozzle outlet 
diameter of 3.15 mm. The droplet particle size in the atomization flow field was significantly reduced, the spray 
distance improved by 71.56%, and the SPL data at each corresponding measurement point decreased by an average 
of 38.96%. The conclusions of this study offer a references for future TFN research.

Keywords  Twin-fluid nozzle, BP neural network, Multi-objective optimization, Multi-physics coupled, Acoustic-
mechanics analysis, Genetic algorithm

1  Introduction
Due to the rapid urbanization and industrialization over 
the past decades, atmospheric pollution has become 
increasingly severe [1–4]. The excessive discharge of 
pollutants from industrial production leads to a large 
number of fine particles entering the atmospheric 
environment. Fine particles can reach the alveoli of 
human lungs and cause various respiratory tract and lung 
diseases [5, 6], causing serious harm to human health. 
Therefore, reducing the fine particulate matter emissions 
from diffusive sources is an important issue that must be 
addressed.
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As a key component of wet dust removal equipment, 
atomizing nozzles use the generated fine mist droplets 
to capture dust particles and are widely used in the 
industry [7–9]. However, because of the large areas in 
industrial application scenarios, droplet coverage needs 
to cover a huge area, and it is often necessary to install 
a large number of atomizing nozzles to achieve an 
effective removal of fine particles. The noise generated 
by the large number of nozzles, however, has a very 
negative influence on the working environment [10]. 
Thus, reducing the droplet size, increasing the effective 
range of nozzle atomization, and reducing the noise of 
the atomizing nozzles are pivotal problems to be solved, 
and many investigations have been conducted on these 
topics.

Zhou et  al. [11] designed a centrifugal atomization 
test device for small drone pesticide rotor cup nozzles 
and optimized the structural parameters of the rotor 
nozzle using variance analysis and a quadratic regression 
orthogonal test. Li et al. [12] studied the influence of sine 
waves on mixed hydrogen cross-flow jets using numerical 
simulations and compared the mixing zones of different 
modes. Wang et  al. [13] experimentally investigated 
the atomization properties and dust-suppression 
performance of an X-swirl nozzle. The influence of the 
diameter of the water outlet and the pressure of the water 
inlet on the nozzle parameters was comprehensively 
analyzed, and the nozzle diameter parameters were 
optimized under the condition of a low water supply 
pressure. Akkoli et  al. [14] developed a CFD model of 
a diesel engine for numerical simulation, investigated 
the combined effects of the injector parameters on the 
emission characteristics of the engine by varying the 
geometry of the injector nozzle and determined the 
optimal parameters for reduced emission levels.

The aforementioned research on structural parameter 
optimization and optimization methods for atomizing 
nozzles provides an important reference. However, these 
studies on atomizers mainly focused on a single-fluid 
medium, and the interactions between two fluid media 
need to be studied in more detail.

Recently, nozzle characteristics were investigated using 
the DPM model or Ffowcs Williams-Hawkings (FW-H) 
model. Li et  al. [15] developed an isometric model of a 
vortex ventilation system and a discrete phase model 
(DPM) for numerical simulations to investigate the 
parameter distribution for different flow ratios and obtain 
a suitable axial-radial flow ratio. Thompson et  al. [16] 
performed three-dimensional axisymmetric simulations 
of atomized gas nozzle configurations to evaluate the 
influence of the process parameters on the final particle 
size of the produced metal powders and used numerical 
simulations to qualitatively assess the effects of the 

atomized nozzle geometry and process conditions on 
the average size of the produced powders. Chen et  al. 
[17] investigated the three-dimensional transient flow, 
temperature, solidification, segregation, and inclusion 
transfer during slab continuous casting and successfully 
predicted the number, size, and spatial distribution 
of inclusions in the cross sections of the continuous 
casting slabs. The aforementioned studies have made 
some progress using the DPM-LES or FW-H model for 
investigating the flow field peculiarity of the twin-fluid 
nozzle (TFN). However, none of these studies considered 
the coupled influence of flow and acoustic fields. 
However, in a real situation, the acoustic characteristics 
of the nozzle change significantly because of the intense 
interactions between the gas and liquid phases and 
the wall of the TFN. Moreover, acoustic peculiarities 
influence unstable surface waves [18], thereby affecting 
the droplet diameter. Consequently, it is more accurate to 
use the multi-physics coupled acoustic-mechanics model 
for simulating the working conditions.

TFN has become a popular research topic because of 
its characteristics of producing a small droplet size and 
a superior atomization effect. However, TFN is also very 
noisy and has other disadvantages. Therefore, improving 
the atomization efficiency and reducing the noise are 
urgent problems to be solved. Jedelský et al. [19] provided 
an experimental study of a porous TFN. The experiments 
showed the spatial distribution of the spray using phase 
Doppler anemometry and studied the droplet size-
velocity correlation and dimensions. Jeong et  al. [20] 
studied the spray characteristics of a TFN considering 
water mist and its heptane pool fire extinguishing 
performance. Pezo et al. [21] investigated the influence of 
different nozzle diameters and fluid temperatures on the 
jet characteristics using experimental and computational 
methods. Zhang et al. [22] added a zigzag structure to a 
spherical tuyere to reduce the jet noise, which provided 
a reference for the low-noise optimization of a spherical 
tuyere.

In summary, studies on the optimization of twin-fluid 
atomization nozzles have focused on single-component 
structures and single optimization methods. Few studies 
have been conducted on the multi-parameter, multi-
objective synergetic optimization of the entire structure. 
However, a multi-parameter and multi-objective analysis 
of the overall structure of a TFN is key to improving 
its efficiency. In our previous work, Chen et  al. [23, 
24] analyzed and compared the effects of self-excited 
vibrating cavity (SVC) on the spray performance of TFN 
using the phase Doppler method. Numerical analysis 
and comparative experiments on twin-fluid atomization 
nozzles under different parameter conditions were 
conducted, and the effects of different gas-liquid pressure 
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ratios and structural parameters on the atomization 
performance were studied in detail. The results indicate 
that the SVC structure promotes the secondary 
atomization performance of a TFN and the study 
provides a reference for the optimized design of TFN.

In this study, a TFN was selected, and a method 
combining a multi-physics coupled acoustic-mechanics 
numerical simulation and an intelligent synergetic 
optimization algorithm was adopted for optimizing the 
key parts of the overall structure of the TFN. By analyzing 
the numerical simulation results of the multi-physics 
coupled acoustic mechanics, the effects of the water 
flow rate on the characteristics of the atomization flow 
field were obtained. Furthermore, the comprehensive 
effects of the main parameters of TFN on the droplet 
size, effective atomization range and sound pressure 
level (SPL) were investigated in detail, a multi-objective 
synergetic optimization scheme was determined, and 
validation tests were carried out to verify the validity of 
the optimization model with a physical prototype.

2 � Methodology
2.1 � Mathematic Model
2.1.1 � Mathematic Model of Nozzle Flow Field
During the atomization process of the TFN in this 
study, compressed air intensified the instability of the 
liquid phase membrane interior and exterior of the 
nozzle and accelerated the fragmentation of the liquid 
phase membrane into tiny particle-size droplets, which 
enhanced the atomization performance of the TFN. 
Turbulence, cavitation, aerodynamic disturbances, and 
droplet fragmentation can be considered synthetically 
using the Euler-Lagrange method. The DPM model based 
on the Euler-Lagrange method meets the requirements 
for the simulation of a TFN [25]. In the DPM, the 
trajectory of the droplets can be solved by computing the 
differential equations of the forces acting on the particles 
in the Lagrange coordinate system. The differential 
equation describing the trajectory of the liquid droplets 
is represented in the Cartesian coordinate system, as 
follows:

where up is the velocity of the discrete phase particles, FD 
is the drag force on the discrete phase particles, ul is the 
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velocity of the continuous phase fluid, ρp is the density 
of the discrete phase particles, ρl is the density of the 
continuous phase fluid, mp is the mass of the discrete 
phase particles, T is the fluid temperature, DT,p is the 
thermal swimming force coefficient, and t is the time.

The narrow flow space inside the TFN, extremely high 
fluid-phase flow velocity, high atomization time, and 
strong turbulence can easily lead to the generation of a 
local vortex. To precisely simulate the TFN atomization 
process, the large eddy simulation (LES) model was used 
to conduct a numerical simulation [26]. The LES control 
equation is expressed as:

where τij is the sub-mesh stress, τij = ρuiuj − ρui · uj  , xi 
and xj are the coordinate components, the i and j indices 
are (1, 2, 3), ūi and ūj is the instantaneous filtering speed, 
p is the pressure on the fluid unit, ρ is fluid density, and μ 
is the dynamic viscosity.

2.1.2 � Mathematic Model of Nozzle Acoustic Field
Many droplets were ejected and impacted the oscillation 
cavity, causing it to vibrate at a higher frequency 
during atomization. High-frequency oscillations in the 
oscillation cavity can generate sound waves. Their size 
reflects the strength and energy of the sound waves. Any 
change in the sound wave has an important influence 
on the fragmentation of the droplets, which is another 
important factor affecting the atomization performance 
of the TFN. Therefore, it is necessary to study the 
acoustic characteristics of the TFN, which is conducive 
to further understanding the atomization properties of 
the TFN in multi-physics coupling.

The additional pressure caused by the vibrations of 
sound waves is called sound pressure. The consequence 
of sound pressure is a change in the atmospheric pressure 
caused by the vibrations of the sound waves. Sound 
pressure is an important indicator of the sound field 
characteristics and an important characteristic of the 
sound wave intensity. Sound pressure level (SPL) is often 
used to define sound pressure.

The instantaneous sound pressure value at a certain 
moment in the sound field generated by the sound source 
is expressed as:
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(3)p(x, t) = pm cos (ω1t − kwx),
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where pm is the amplitude of the sound pressure, ω1 is the 
angular frequency of the vibration, kw is the wave num-
ber, and kwx is the initial phase.

The effective sound pressure can be obtained by taking 
the instantaneous sound pressure from a specific time 
interval and calculating the root mean square of the time. 
The formula is as follows:

The variable form of the effective sound pressure could 
be acquired by substituting Eq. (3) into Eq. (4):

In Eq. (5), the effective sound pressure pa can be 
calculated if the sound pressure amplitude pm is obtained. 
The relationship between LP and the effective sound 
pressure pa is as follows:

where p0 is the reference sound pressure value, usually p0 
is 2×10-5 Pa.

2.1.3 � Multi‑Physics Coupled Acoustic‑Mechanics Model
In this study, the flow of the gas-liquid two-phase and the 
droplets in the flow field was extremely complex during 
the atomization of the TFN. The vibrations of the SVC 
significantly influenced the turbulence of the flow field 
and caused noise. Therefore, this problem involves multi-
physics coupling. It is necessary to integrate knowledge 
on bidirectional fluid-solid coupling, computational 
aeroacoustics, and discrete phase models to build a 
multi-physics coupled acoustic-mechanical model for the 
multi-physics coupling numerical simulation of the TFN.

The hybrid method in the computational aero-acoustics 
(CAA) simplifies the entire acoustic field calculation 
area by making a reasonable distinction between the 
source area, where the fluid itself generates the acoustic 
field, and the propagation area, where the sound source 
diffuses. Moreover, the nonlinear effect distinguished 
between the fluid and solid phases, which significantly 
reduced the computational effort of the numerical 
simulation.

In the TFN, the interactions of the internal fluid with 
the solid boundary cause acoustic problems; therefore, 
the FW-H model is adopted, which can be described as 
follows [27]:
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The right-hand side of the equation represents the 
monopole, dipole, and quadrupole source terms. c0 is the 
far-field velocity of the sound, ρ0 is the undisturbed den-
sity, p0 is the undisturbed pressure, H(f) is the Heaviside 
function, σij is the Kronecker symbol, δ(f ) is the Dirac 
function, Pij is the stress tensor, and Tij is the Lighthill 
tensor.

2.2 � Numerical Simulation
2.2.1 � Physics Model and Operating Conditions
The operating conditions and structure parameters of the 
TFN were as shown in Table 1.A 3D model is shown in 
Figure 1.

The turbulent flow in a TFN is extremely complicated, 
and to simulate the atomization progress more precisely, 
it is necessary to establish a large flow field area external 
to the TFN. Therefore, a square area of 1.5 × 1.5 × 4.0 m 
is set up as the external flow field. Figure 2(a) shows the 
CFD mesh interior of the TFN and a CFD mesh model is 
shown in Figure 2(b).

The internal region of the TFN presents a complex gas-
liquid coupled problem owing to its small structure size, 
high local pressure, and intense turbulence. The CFD 
model of the TFN atomization was meshed using the 
grid partitioning strategy. The situation is particularly 
complicated at the confluence of the gas and liquid 
phases, as well as in the region between the TFN outlet 
and SVC. Therefore, this region must be meshed using 
nonstructural tetrahedral grids. Owing to the large 
region and regular space of the exterior flow field of the 
TFN, a regular hexahedral grid can be adopted to reduce 
the number of grids, reduce the calculation time, and 
save computer resources. The entire mesh model of the 
TFN flow field consists of a mixed mesh with 2534893 
mesh cells and 2297503 mesh nodes. There were 195866 
mesh cells inside the nozzle with an average cell size of 
1.2 mm. Meanwhile, 2339027 mesh cells were set in the 
exterior region, with an average cell size of 30 mm.

2.2.2 � Multi‑Physics Coupled Acoustic‑Mechanics Numerical 
Simulation Method

In this study, the ANSYS Workbench platform was 
used for performing numerical simulations. First, 
the flow field and structural models were set up 
in advance, and the wall surface was defined as a 
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fluid-solid coupled surface in the SVC. Second, the 
fluid-solid coupled surface was set in Fluent, and the 
transient structure was mated by the System Cou-
pling solver to accurately establish the bidirectional 
fluid-solid coupling model. Third, the data from the 
coupling surfaces were iterated and exchanged in the 
coupling solver to obtain the variation patterns of the 
flow and structural fields of the TFN.

Finally, based on bidirectional fluid-solid coupling, a 
multi-field coupling analysis was performed by adding 
the acoustic phase and spray phase modules through 
Fluent. The FW-H model, LES, and DPM models were 
matched with each other to construct a multi-physics 
coupled acoustic-mechanics model for integrally 
investigating any changes in the physical phases, such 
as the pressure, velocity, and acoustic phases in the flow 
field. The DPM parameters are listed in Table 2.

Table 1  Operating conditions and structure parameters of TFN

Parameter Initial value

Gas flow Q1 (m3/h) 1.0

Water flow Q2 (m3/h) 0.035

Compressed air inlet diameter J (mm) 4.5

Water inlet diameter R (mm) 0.8

Distance S (mm) 3.0

SVC length P (mm) 7.8

SVC diameter N (mm) 3.4

Nozzle outlet diameter H (mm) 2.3

Orifice depth L (mm) 1.5

Orifice diameter D (mm) 2.0

Compression section K (mm) 4.73

Throat section M (mm) 1.06

Expansion section T (mm) 3.71

Figure 2  Mesh model: (a) Interior mesh model of TFN, (b) External mesh model of TFN

1-air inlet, 2-air channel, 3-nozzle shell, 4-atomizing core, 5-nozzle outlet, 6-self-excited vibrating cavity, 7-water inlet, 8-water channel
Figure 1  TFN model: (a) 3D physical model, (b) Cutaway view of TFN
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2.2.3 � Boundary Conditions
Using the multi-physics coupled acoustic-mechanics 
model, a numerical simulation was used for research-
ing the atomization process. The physical parameters of 
water and air were set in the solver, and water and air 
were set as the main media for the TFN. Table 3 shows 
the main physics parameters and initial values (25 ℃ and 
101.325 kPa). The finite volume method was adopted and 
the SIMPLE arithmetic was used.

2.2.4 � Grid Independence Verification
From an analysis of the grid-independence verification 
shown in Table 4, it was determined that a change in the 
number of grids inside the TFN had a greater influence 
on the calculation results than the number of grids out-
side the TFN within a certain boundary. This is because 
the interior structure of the TFN is extremely complex, 
and the use of an unstructured mesh, the mesh quality, 
and density of the calculation results have a more impor-
tant effect. Simultaneously, the regional structure of the 
TFN outflow field was well organized, and the number 
of grids had a small impact on the calculation results. 
According to the analysis, with an increase in the mesh 
number, the deviation in the mesh numbers inside and 
outside the TFN could be controlled to within 0.5%, and 

the deviation was very small. Therefore, we believe that 
grid-independent validation (2 million grid count levels) 
has been completed, and that any subsequent computa-
tional analysis based on this grid number is reasonable 
and reliable.

2.2.5 � Acoustic Field Model
A multi-physics coupled acoustic field characteristic 
model of a TFN was established, and the SPL was used as 
the main assessment criterion for revealing the effects of 
the process parameters and parameters of the atomizing 
nozzle on the SPL of the TFN. Before starting a numeri-
cal simulation in a multi-physics coupled acoustic field, 
it is necessary to collect SPL data by setting up multiple 
spatial monitoring points. Therefore, by considering the 
center of the TFN outlet as the coordinate origin, five 
monitoring points were set in the radial and axial direc-
tions of the TFN. Figure 3 shows a coordinate chart of the 
SPL monitoring points and Table  5 lists the coordinate 
information.

2.3 � Twin‑Fluid Atomization Experiments
In this study, an atomization test system was designed 
to conduct spray tests on a TFN. Figure 4 illustrates the 
design principles and components. It consists of two 

Table 2  DPM model parameters

Parameter Value

Particle tracking time step Δt (s) 1×10−4

Particle velocity (m/s) 10

Particle density (kg/m3) 1000

Particle diameter (m) 1.2×10−3

Particle angular velocity (rad/s) 5

Particle shape Customized

Particle injection type Surface

Number of injected particles 1×104

Temperature (°C) 25

Thermal conductivity (W/(m·K)) 0.59

Table 3  Physics parameters and initial values

Physics parameters Initial value

Air density (kg/m3) 1.184

Water density (kg/m3) 997.1

Air viscosity (mPa·s) 0.01834

Water viscosity (mPa·s) 0.8937

Droplet surface tension (N/m) 0.072

Droplet initial mass flow (kg/s) 0.01

Earth’s gravity (m/s2) 9.81

Table 4  Verification results of mesh independence

Grid area Grid number Average 
droplet size 
(μm)

Deviation (%)

Inside the nozzle 41587 40.74 4.769

83692 42.61 0.397

195545 42.78 0

316259 42.67 0.257

402463 42.71 0.164

Outside the nozzle 1205417 41.24 3.600

1953826 42.85 0.164

2340242 42.78 0

3057419 42.73 0.117

4854761 42.68 0.234

Table 5  Coordinate information

Axial 
monitoring 
point

Coordinate (mm) Radial 
monitoring 
point

Coordinate (mm)

1 (0, 0, 0) 6 (200, 0, 50)

2 (100, 0, 0) 7 (200, 0, 100)

3 (200, 0, 0) 8 (200, 0, 150)

4 (300, 0, 0) 9 (200, 0, 200)

5 (400, 0, 0) 10 (200, 0, 250)
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parts: a two-fluid atomization system and a phase Dop-
pler particle analyzer (PDPA, Dantec). The twin-fluid 
atomization system was used to control and monitor the 
operating parameters of the test process. Air and water 
were used as working liquids. The atmospheric pressure 
was 102.6  kPa and the ambient temperature was 24 ℃ 
[28].

A PDPA system was used to measure the size distribu-
tion, diameter, droplet concentration, and axial velocity. 
Figure  5 shows a physical diagram of the device. Each 
test was repeated three times to ensure the accuracy and 
reliability of the results. The overall uncertainty in the 
droplet velocity and size was approximately 5% consider-
ing random error, statistical uncertainty, and systematic 
error. Specific parameters and experimental details can 
be found in another article published by our team, see 
Ref. [29].

The acoustic field test is mainly measured by the SPL 
that measured by the sound level meter. The test instru-
ment used is the Sigma brand handheld high-precision 
AR854 sound level meter, the frequency response is 
20−8000  Hz, its measurement range is 30−130 dB, and 
the measurement accuracy is ± 1.5 dB. As the atomized 
flow field of the TFN interfered with the test instrument 
to a certain extent, the test was conducted by selecting 
multiple measurement points mainly in the radial direc-
tion of the TFN. To exclude the impact of any back-
ground noise, the measurement time was chosen to be 
late at night, and the impact of any ambient noise on the 
measurement value was minimized. To accurately locate 
the position of the measured space point, we used a tape 
measure to measure the distance between each measure-
ment point before the measurement and then carried out 
data collection.

2.4 � Verification and Analysis of Numerical Simulation
To verify the numerical simulation, spray process data 
of the atomization flow field, SMD distribution of 
the droplets on the nozzle center axis, and SPL were 
extracted and compared with the test results.

Multi-physics-coupled numerical simulations of the 
TFN were performed under operating conditions. The 
particle size distributions at different positions were 
obtained. The gas flow Q1 was 1.0  m3/h and the water 
flow Q2 was 0.025−0.04 m3/h.

As shown in Figure  6, the variation law of the SMD 
presented by the simulation was consistent with the 

Figure 3  Coordinate chart of SPL monitoring points of TFN

Figure 4  Flow diagram of experimental setup for twin-fluid atomization
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experimental test, and the SMD variation pattern was 
similar to the curve presented in the test results. The 
error was small, with a maximum error of 5.42%. Based 
on this analysis, the multi-physics coupled acoustic-
mechanics numerical simulation significantly improved 
the precision in predicting the atomization flow field 
characteristics, indicating that the multi-physics coupled 
acoustic-mechanics model has a high accuracy.

The above-mentioned nozzle structure is used for 
multi-physics coupled acoustic-mechanics numerical 
simulation calculations and experimental tests with 
Q1=1.0 m3/h and Q2=0.03 m3/h. Meanwhile, five meas-
uring points were selected along the radial direction at 
the axial positions of the nozzle of 100, 200, and 300 
mm, and the spacing between the measuring points 
was 50 mm. Subsequently, the simulation data of the 
SPL were extracted from the numerical simulation and 
compared with the test results.

As shown in Figure  7, the pattern of the nozzle SPL 
distribution along the radial direction simulated by the 
numerical simulation is in accordance with the experi-
mental results, and the variation pattern of the SPL for 
different axial distances is in close agreement with the 
experimental results.

In summary, the results of the multi-physics coupled 
acoustic-mechanics analysis were consistent with 
the test results. This indicates that the multi-physics 
coupled acoustic-mechanics model is precise and that 
the simulation is reasonable.

3 � Multi‑Physics Coupled Acoustic‑Mechanics 
Analysis

To analyze the influence of various working parameters 
on the atomization flow field, the flow field distribu-
tion of the TFN was obtained using a multi-physics 
coupled acoustic-mechanics model. Previous stud-
ies have shown that the spray velocity has an impor-
tant influence on both the particle size and distance, 

Figure 5  Actual device view of the PDPA system: (a) Main component, (b) Measuring probe

Figure 6  Comparison of simulations and experiments for droplet 
SMD

Figure 7  Comparison of simulations and experiments for SPL
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with a higher spray velocity favoring droplet breakup, 
resulting in a smaller overall droplet size and a longer 
spray distance [23]. Therefore, the water flow rate was 
selected as the variable for analyzing the effect of the 
water flow rate variation on the overall atomization flow 
field characteristics, and the effect of the water flow 
rate variation on the spray velocity was investigated.

3.1 � Effect of Water Flow on Spray Velocity
3.1.1 � Effect of Water Flow on Velocity Distribution
Figure  8 shows the distribution law of the internal 
velocity field of TFN for various water flow rates, and 
it is obvious by comparison that as the water flow rate 
increases, the internal velocity of TFN shows a decreas-
ing trend. This is because an increase in the water flow 
led to an increase in the internal flow resistance of the 
TFN. The most intuitive manifestation of the increase in 
the internal flow resistance of the TFN was the reduction 
in velocity, which resulted in a decrease in the internal 
velocity of the TFN as the water flow increased.

Moreover, when the water flow rate was Q2 = 
0.035  m3/h, the velocity of most areas inside the noz-
zle exceeded 80  m/s. When Q2 was further increased, 
the flow velocity inside the TFN decreased to a certain 
extent, resulting in a smaller difference between the gas 
and liquid flow velocities.

3.1.2 � Effect of Water Flow on Velocity Vector
Based on the simulation results of the multi-physics cou-
pled acoustic-mechanics model, the internal velocity 
vector diagram of the TFN under various Q2 values was 
drawn, as shown in Figure 9.

As shown in Figure  9(a)–(d), although the velocity 
vector inside the TFN changes significantly with an 
increase in the water flow rate, it has little influence on 
the velocity vector at the outlet region of the TFN. As 
the velocity at the outlet was not significantly affected by 
the water flow, there was no obvious change in the veloc-
ity trajectory or eddy current phenomenon in this area. 
Although the flow-field disturbance in the SVC region 
was relatively severe, the velocity vectors in the sur-
rounding regions were not significantly disturbed. Com-
pared with the influence of the gas flow rate, a change in 
the water flow rate had a weak influence on the velocity 
vector at the outlet of the TFN and around the SVC.

3.2 � Influence of Water Flow Variation on SPL
3.2.1 � Changes of SPL in Axial Direction of TFN
The variation rule of the axial distribution of the SPL for 
different water flows Q2 is shown in Figure 10. By com-
paring the changes in the axial distribution of the SPL, 
it was found that the SPL of the TFN decreased with an 
increase in the axial distance. At the nozzle outlet with an 
axial distance of 100 mm, the SPL decreased significantly 
by approximately 47.6%. As the axial distance increased, 
the SPL slowly decreased. When the axial distance 

Figure 8  Effect of the water flow on the velocity distribution of the flow field inside TFN: (a) Q2=0.025 m3/h, (b) Q2=0.03 m3/h, (c) Q2=0.035 m3/h, 
(d ) Q2=0.04 m3/h
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increased from 100 to 400  mm, the SPL decreased by 
12.5%, 7.3%, and 5.1%, respectively. The decay rate of 
the SPL gradually decreased beyond an axial distance 
of 100  mm, and this phenomenon is mainly related to 
the energy loss during the axial propagation of acoustic 
waves.

In addition, comparing the law of change of SPL under 
various water flows, it was found that with an increase in 
the water flow, the nozzle axial direction of SPL showed 
a tendency to first decrease and then increase, but the 
overall change in SPL between different water flows was 

not large. At 400 mm from the outlet of the TFN, the SPL 
varied between 57 and 67 dB for four different water flow 
rates, and the noise was significantly reduced compared 
with the high decibel noise at the nozzle outlet.

3.2.2 � Changes of SPL in Radial Direction of TFN
Figure 11 shows the variation in the radial distribution of 
the SPL under different water flow rates at an axial dis-
tance of 200 mm. By comparison with the change law of 
the radial distribution of the SPL, it was found that the 
SPL of the nozzle gradually decreased with increasing 
radial distance. For the radial distance studied, the over-
all decrease in the SPL of the TFN at different water flow 
rates was approximately 7.9%. This is because the meas-
urement points are distributed outside the strong turbu-
lence zone, and the influence of the turbulence weakens 
the decrease in the SPL. From the point of view of the 
nozzle operating noise, Q2 = 0.035 m3/h is considered a 
good choice for the nozzle operating parameters.

4 � Multi‑Objective Synergetic Optimization 
Method

4.1 � Determination of Multi‑Objective Synergetic 
Optimization Algorithm Scheme

From the simulation results, it is found that the opera-
tional parameters and parameters of the twin-fluid noz-
zle (TFN) have some effect on each characteristic index. 
Considering the multifaceted indicators of a TFN in 
order to improve its comprehensive performance in all 

Figure 9  Effect of water flow on the velocity vector of flow field inside TFN: (a) Q2=0.025 m3/h, (b) Q2=0.03 m3/h, (c) Q2=0.035 m3/h, 
(d) Q2=0.04 m3/h

Figure 10  Effect of water flow on axial distribution of SPL
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aspects and achieve maximum optimization, it is cru-
cial to conduct a multi-objective synergetic optimization 
algorithm study of the TFN.

In this study, a multi-objective synergetic optimization 
algorithm method based on the orthogonal test matrix 
analysis method, BP neural network algorithm, and 
genetic algorithm is proposed to carry out a multi-objec-
tive synergetic optimization algorithm study of the TFN, 
determine the order of influence of each parameter on 

the characteristic index, and obtain the optimal param-
eters under a multi-objective case [30]. First, a multi-
objective synergetic optimization algorithm database is 
established by the orthogonal test method. Then, a bal-
anced, intelligent, fast, and accurate optimization scheme 
is built using the complementary advantages and disad-
vantages of the orthogonal test matrix analysis method, 
BP neural network [31–33] and genetic algorithm [34] for 
calculating the optimal values within the interval of the 
operating parameters and parameters of the TFN. Finally, 
the values of each characteristic index are predicted. A 
flowchart of the multi-objective synergetic optimization 
algorithm scheme is shown in Figure 12.

4.2 � Establishment of Multi‑Objective Synergetic 
Optimization Database

According to previous research results [35] and engi-
neering application requirements, six key optimization 
parameters were selected: Gas flow Q1, water flow Q2, 
orifice diameter D, orifice depth L, distance between 
the SVC and the outlet of nozzle S, and the nozzle out-
let diameter H. The droplet size ds, effective atomization 
range bs and sound pressure level (SPL) as of the TFN 
were considered as the main characteristic indicators. 
An orthogonal test scheme with six factors and five lev-
els was adopted to establish an initial database for the BP 

Figure 11  Effect of water flow on radial distribution of SPL

Figure 12  Flow chart of multi-objective synergetic optimization scheme
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neural network. The ranges of the values for the six key 
optimization parameters are listed in Table 6.

According to the initial values and value ranges of the 
six key optimization parameters shown in Table  6, a 
multi-objective and multi-parameter L25(56) orthogonal 
test plan was formulated. A point 400 mm away from the 
TFN exit center point was used as a reference, and the 
results of the combination of different parameters and 

the multi-physics coupled acoustic-mechanics numerical 
simulation are shown in Table 7. 

4.3 � Establishment of BP Neural Network
The data obtained using the L25(56) orthogonal test 
scheme were used as the initial training database for 
the BP neural network. Through repeated training, the 
network learns the nonlinear laws hidden in the data. 
The qualified BP neural network has a high degree of 
nonlinear global effects, strong self-adaptive self-learning 
ability, and a high degree of parallelism.

5 � Results and Discussion
5.1 � Multi‑Objective Orthogonal Test Matrix Analysis
Taking the droplet size (ds), effective atomization range 
(bs), and sound pressure level (SPL) (as) of the twin-
fluid nozzle (TFN) as the main evaluation indicators, 
the multi-objective synergetic orthogonal simula-
tion method shown in Table  7 was utilized using the 

Table 6  Initial values and ranges

Optimization parameters Initial value Ranges

A Gas flow Q1 (m3/h) 1.0 0.8−1.2

B Water flow Q2 (m3/h) 0.035 0.025−0.045

C Orifice diameter D (mm) 2.0 1.0−3.0

D Orifice depth L (mm) 1.5 0.5−2.5

E Distance S (mm) 4.0 2.0−6.0

F Nozzle outlet diameter H (mm) 2.3 1.3−3.3

Table 7  L25(56) orthogonal test scheme and results

No. Test factor Particle size 
ds (μm)

Range bs (m) SPL as (dB)

A
Gas flow Q1 
(m3/h)

B
Water flow 
Q2 (m3/h)

C
Orifice 
diameter D 
(mm)

D
Orifice 
depth L 
(mm)

E
Distance S 
(mm)

F
Nozzle outlet 
diameter H (mm)

1 0.8 0.025 1.0 0.5 2.0 1.3 46.18 2.53 61.14

2 0.8 0.030 1.5 1.0 3.0 1.8 48.06 1.68 59.68

3 0.8 0.035 2.0 1.5 4.0 2.3 44.91 2.07 77.53

4 0.8 0.040 2.5 2.0 5.0 2.8 58.17 1.33 74.55

5 0.8 0.045 3.0 2.5 6.0 3.3 33.38 1.75 73.09

6 0.9 0.025 1.5 1.5 5.0 3.3 37.06 1.80 50.59

7 0.9 0.030 2.0 2.0 6.0 1.3 33.99 3.24 63.06

8 0.9 0.035 2.5 2.5 2.0 1.8 61.93 2.48 58.39

9 0.9 0.040 3.0 0.5 3.0 2.3 73.27 2.55 80.42

10 0.9 0.045 1.0 1.0 4.0 2.8 42.18 1.92 66.34

11 1.0 0.025 2.0 2.5 3.0 2.8 44.92 2.82 59.76

12 1.0 0.030 2.5 0.5 4.0 3.3 40.79 2.35 52.98

13 1.0 0.035 3.0 1.0 5.0 1.3 70.72 2.14 60.10

14 1.0 0.040 1.0 1.5 6.0 1.8 32.85 2.02 53.82

15 1.0 0.045 1.5 2.0 2.0 2.3 51.04 2.61 79.32

16 1.1 0.025 2.5 1.0 6.0 2.3 37.72 3.02 58.79

17 1.1 0.030 3.0 1.5 2.0 2.8 74.90 1.67 66.64

18 1.1 0.035 1.0 2.0 3.0 3.3 37.04 2.86 61.47

19 1.1 0.040 1.5 2.5 4.0 1.3 72.42 2.04 75.46

20 1.1 0.045 2.0 0.5 5.0 2.3 61.45 3.43 62.36

21 1.2 0.025 3.0 2.0 4.0 1.8 34.09 1.59 80.74

22 1.2 0.030 1.0 2.5 5.0 2.3 37.35 1.31 59.32

23 1.2 0.035 1.5 0.5 6.0 2.8 31.58 2.63 70.26

24 1.2 0.040 2.0 1.0 2.0 3.3 66.40 2.12 51.84

25 1.2 0.045 2.5 1.5 3.0 1.3 56.45 1.72 75.33
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multi-physics coupled method. A test scheme (columns 
2−7 in Table  7) was adopted, and the results of each 
evaluation index were calculated and obtained (col-
umns 8−10 in Table 7).

To obtain the main factors of the characteristic index 
of the TFN under multiple objectives and the order of 
influence of each parameter, an orthogonal test matrix 
analysis was adopted to calculate the weights of each 
factor and each level of influence on the characteristic 
index; the optimal experimental scheme and order of 
effect of each parameter were determined according to 
the magnitude of the weight values.

Based on the results obtained in Table  7 for the 
multi-objective orthogonal test plan, a multi-objective 
orthogonal test matrix analysis model was established, as 
shown in Table 8.

According to the data in Table 7, the target layer, factor 
layer, and horizontal layer matrix of each characteristic 
index in the multi-objective case were established. kij was 
defined as the arithmetic mean of the results obtained at 
the jth level of factor i. At the same time, it was considered 
that the smaller the target expectation of the droplet size 
and SPL, the better, while the larger the target expectation 
of the effective atomization range. If the target layer matrix 
is M, Md is the target layer matrix of the droplet size, Mb is 
the target layer matrix of the effective range of atomization, 
and Ma is the target layer matrix of the SPL.

In some target orthogonal test schemes, the larger was the 
expected value of the target, the better (such as the effective 
range of atomization). The target layer matrix is expressed as:

In some target orthogonal test schemes, the smaller 
the expected value of the target was, the better (such as 
the droplet size and SPL). The matrix of the target layer is 
expressed as:
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kij denotes the sum of the 

arithmetic mean values of the results obtained at each 
level of factor i, defines the factor layer matrix as T, 
where Td is the factor layer matrix of the droplet particle 
size, Tb is the factor layer matrix of the effective range of 
atomization, and Ta is the factor layer matrix of the SPL. 
The specific description of the factor layer matrix is as 
follows:

Si = Ri

/

6
∑

i=1

Ri , where Ri denotes the range of the ith 

factor in the orthogonal test, then the horizontal layer 
matrix is defined as S, where Sd is the horizontal layer 
matrix of the droplet particle size, Sb is the horizontal 
layer matrix of the effective range of atomization, and Sa 
is A matrix of the horizontal layers for SPL. The 
horizontal layer matrix is described in detail as follows:

Determining the weight of each target is key in the 
multi-objective orthogonal experiment matrix analysis, 
as it affects the precision of the results for each factor in 
the global optimization. The total weight matrix of the 
target value is expressed as:

ωAj = K1jT1S1 represents the weight value of the effect 
of the jth level of factor A on the target. This can reflect 
the degree of impact of this level on the target and can 
serve as the range of factor A.

If ωd is the weight matrix of the droplet size, ωb is 
the weight matrix of the effective range of atomization, 
and ωa is the weight matrix of the SPL, the calculation 
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(11)S =
[

S1 S2 · · · S6
]T
.

(12)

ω = MTS =

[ωA1,ωA2,ωA3,ωA4,ωA5, · · · ,ωF1,ωF2,ωF3,ωF4,ωF5]
T.

Table 8  Matrix analysis model

Hierarchical structure Model

Target layer Droplet size, Effective range 
of atomization, SPL

Factor layer A; B; C; D; E; F

Horizontal layer A1−A5; B1−B5; C1−C5; D1−D5; E1−E5; F1−F5
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formula of the total weight matrix ωT of the multi-objec-
tive is:

According to the data in Table  7 and in combination 
with Eqs. (8)−(14), the total weight matrix value of the 
multi-objective evaluation was calculated and is shown 
in Table  9. Based on the calculation of the total weight 
matrix value of the multi-objective evaluation presented 
in Table 9, the weight value of each different factor and 
the optimal level of each factor can be obtained. By com-
paring the weight values of different factors, the primary 
and secondary order of the effect of various factors on 
the multi-objective evaluation, and the optimal combina-
tion of the factor levels can be obtained.

It can be seen from the total weight matrix value of 
the multi-objective evaluation in Table 9 that the maxi-
mum values of the comprehensive total weight of the 
five levels of each factor for the droplet size, effec-
tive range of atomization, and SPL are A3=0.030167, 
B1=0.036257, C1=0.041276, D1=0.036967, E5=0.044744, 
and F5=0.032748, respectively. It can be seen that from 

(13)
ωd = MdTdSd , ωb = MbTbSb, ωa = MaTaSa,

(14)ωT = (ωd + ωb + ωa)
/

3.

among the six optimization parameters selected in this 
study, compared with the other parameters, the param-
eters of the SVC have an evident influence on the multi-
characteristic indices, and that the influence of the 
diameter D of the SVC is dominant.

Based on the orthogonal test matrix analysis, the 
optimal combination of factors was determined as 
A3B1C1D1E5F5 in the multi-objective case. The optimal 
result of the comprehensive analysis is: A gas flow rate of 
1.0 m3/h, water flow rate of 0.025 m3/h, orifice diameter 
of 1.0  mm, orifice depth of 0.5  mm, distance between 
SVC and the outlet of nozzle of 6.0  mm, and a nozzle 
outlet diameter of 3.3 mm. Table 10 presents the results 
of the matrix analysis.

5.2 � BP Neural Network Multi‑Objective Prediction
To further increase the stability and convergence training 
speed of the BP neural network, the initial training 
database of the L25(56) orthogonal test scheme, as shown 
in Table 7, was expanded.

In the interval set by each optimization parameter, the 
original gas flows of 0.8, 0.9, 1.0, 1.1, 1.2 were replaced 
with 0.85, 0.95, 1.05, 1.15, and 1.17, respectively, and the 
numerical simulation calculation was carried out and 25 
new groups of samples were obtained. Then, the water 

Table 9  Total weight matrix value of multi-objective evaluation

Weight matrix Numerical value Weight matrix Numerical value Weight matrix Numerical value

ωA1 0.026560 ωC1 0.041276 ωE1 0.033101

ωA2 0.029612 ωC2 0.037325 ωE2 0.034881

ωA3 0.030167 ωC3 0.041130 ωE3 0.034803

ωA4 0.029678 ωC4 0.037350 ωE4 0.034137

ωA5 0.026943 ωC5 0.033206 ωE5 0.044744

ωB1 0.036257 ωD1 0.036967 ωF1 0.029326

ωB2 0.033151 ωD2 0.034617 ωF2 0.030344

ωB3 0.032796 ωD3 0.031827 ωF3 0.030336

ωB4 0.028589 ωD4 0.034595 ωF4 0.028956

ωB5 0.031490 ωD5 0.033091 ωF5 0.032748

Table 10  Results of multi-objective orthogonal test matrix analysis

Category Results

Sensitivity of each factor A B C D E F

Percentage (%) 14.3 16.2 19.0 17.1 18.2 15.2

Factors affecting the order of priority C>E>D>B>F>A

The optimal level of each factor A3; B1; C1; D1; E5; F5

Optimal factor level combination A3B1C1D1E5F5
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flows of 25, 30, 35, 40, and 45 were replaced with 27.5, 
32.5, 37.5, 41.5, and 43.5, respectively, and the numeri-
cal simulation calculation was carried out and 25 new 
groups of samples were obtained. From this, a total of 75 
sets of samples were obtained as BP neural network sam-
ple training database.

The BP neural network established in Section 4.3 was 
used and was trained using the 75 sets of sample data 
mentioned above. Figure 13 shows the error curve of the 
BP neural network training process.

As shown in Figure  13, the mean square error at 
the beginning of training was relatively large. With 
the forward feedback on the error during the training 
process, the weights and thresholds were continuously 
updated. Simultaneously, the training error gradually 
decreased and approached the target error ( 1× 10−7 ) 
step-by-step. With an increase in the training time, the 
approximation speed of the training error was greatly 
improved, indicating that the nonlinear mapping ability 
of the input and output of this BP neural network was 
greatly improved after training and learning. The BP 
neural network requires only seven training cycles to 
achieve the set high convergence accuracy, which shows 
that the BP neural network structure established in 
Section 4.3 is reliable, and that the parameter settings are 
reasonable.

The sample data-matching results of the BP neural net-
work obtained after seven feedback trainings are shown 
in Figure  14, whereby the fitting degree between the 
simulated output of the BP neural network and the actual 
output was as high as 98.96%. This indicates that the BP 
neural network has a good fitting effect, and that its non-
linear mapping ability between the input and output is 
very strong. This matching result further demonstrates 
the correctness of the BP neural network structure estab-
lished in Section 4.3 and the rationality of the parameter 
setting.

5.3 � Optimal Parameters for Multi‑Objective Synergetic 
Optimization Algorithm

To achieve seamless parameter optimization within 
the interval, the value range of each key optimization 
parameter in Table  6 was used as the parameter 
optimization interval of the genetic algorithm, and 
the mature BP neural network (trained as described 
in Section  4.3) was applied to compute the individual 
adaptation of the population in the genetic algorithm. 
Finally, the optimum solution for the parameter was 
determined by searching in parallel within the global 
scope of the parameter search interval.

Based on the co-optimization method of the BP neural 
network and GA, the genetic algorithm program com-
piled using the mathematical software MATLAB was 
used for the calculation. When the operation reached 
500 generations, the program ended. Figure 15 shows the 
optimization process of the GA evolution.

As shown in Figure  15(a), the droplet size gradually 
approached the optimal solution with the evolution of 
the GA. This phenomenon is mainly due to the selection, 
crossover, and mutation operations of the GA. Under the 
biological evolutionary group optimization mechanism 
of "survival of the fittest,” excellent genes are retained and 
continue to evolve, the droplet size gradually decreases 
and eventually becomes stable, and the target value grad-
ually approaches the global optimal solution of 18.18 μm. 
The effective fogging range in Figure  15(b) increases 
stepwise as the number of the evolutionary generations 
increases, and the value of the effective fogging range 
basically tends to a stable state after 300 generations of 
evolution, indicating that the effective fogging range has 

Figure 13  Training process error curve of BP neural network

Figure 14  Matching result of sample data for BP neural network
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reached the global optimal solution of 3.86 m at this time. 
The SPL in Figure  15(c) decreases step-by-step as the 
evolutionary generations increase; when the number of 
generations reaches 400, the process of finding the opti-
mal target value for the SPL ends, and the global optimal 
solution of the SPL is 34.45 dB.

After the global optimization of the GA was completed, 
the physics optimization algorithm process was 
completed, and the global optimal parameter value and 
optimal target result were obtained through a multi-
objective synergetic optimization algorithm. Table  11 
presents the comparative results before and after the 
multi-objective synergetic optimization algorithm.

As shown in Table 11, after multi-objective synergetic 
optimization, the orifice diameter and orifice depth of 
the TFN have significantly changed, the effective range of 
atomization has been significantly improved, the droplet 

size has been greatly improved, the SPL has dropped 
significantly, and the three objectives have been well 
optimized in the expected direction.

5.4 � Comparative Analysis of Multi‑Objective Synergetic 
Optimization Results

To further verify that the optimal parameters and optimal 
target results were obtained, a new physical model using 
optimal parameters is required, and a multi-physics 
coupled acoustic-mechanics numerical simulation of 
the TFN is performed. The specific parameters of each 
TFN are listed in Table 12, where nozzle No. 3 is the TFN 
before optimization and nozzle No. 5 is the TFN after 
optimization. To intuitively recognize the effects of the 
water flow on the noise and SMD of the droplets, nozzles 
1, 2, and 4 shown in Table 12 were established.

Figure 15  Optimization process of GA evolution: (a) Droplet size, (b) Effective range of atomization, (c) SPL
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Figure  16 shows the droplet SMD values at different 
positions on the central axis of the TFN. The optimiza-
tion effect of the droplet SMD on different measuring 
points in space was remarkable. The multi-objective 
synergetic optimization algorithm achieved the goal of 
reducing the droplet size.

Figure  17 shows the SPL curves of the TFN before 
and after optimization. Within the range of the data col-
lected, the maximum SPL value of the optimized No. 5 
nozzle was smaller than that of the minimum value of 
the No. 3 nozzle, the minimum drop in the data of each 
corresponding measurement point was 25.74%, and the 
maximum was 52.11%. The multi-objective synergetic 
optimization algorithm was more effective, and the SPL 
performance in the atomized flow field was significantly 
improved.

The effective range of atomization reflects the spa-
tial dispersion ability of the droplets. To visually analyze 
and compare the change in the effective range of atom-
ization before and after the optimization of the TFN, a 
multi-physics coupled acoustic-mechanics numerical 

simulation method was applied in the calculation of the 
atomization space flow field of No. 3 nozzle before opti-
mization and No. 5 nozzle after optimization.

Table 11  Comparison of results of multi-variable multi-objective optimization

Category Optimization parameters

Gas flow Q1 
(m3/h)

Water flow Q2 
(m3/h)

Orifice diameter 
D (mm)

Orifice depth L 
(mm)

Distance S (mm) Nozzle outlet 
diameter H 
(mm)

Before optimization 1.0 0.035 2.0 1.5 4.0 2.3

After optimization 0.94 0.0273 1.19 0.53 5.11 3.15

Rate of change (%) 6.00 22.00 40.50 64.67 27.75 36.96

Category Target result

Droplet size ds (μm) Effective range of atomization bs (m) SPL as (dB)

Before optimization 34.82 2.25 63.82

After optimization 18.18 3.86 34.45

Rate of change (%) 47.79 71.56 46.02

Table 12  Detailed parameters of each TFN

Nozzle number Nozzle parameters

Gas flow Q1 
(m3/h)

Water flow Q2 
(m3/h)

Orifice diameter D 
(mm)

Orifice depth L 
(mm)

Distance S (mm) Nozzle outlet 
diameter H 
(mm)

No. 1 1.0 0.025 2.0 1.5 4.0 2.3

No. 2 1.0 0.030 2.0 1.5 4.0 2.3

No. 3 1.0 0.035 2.0 1.5 4.0 2.3

No. 4 1.0 0.040 2.0 1.5 4.0 2.3

No. 5 0.94 0.0273 1.19 0.53 5.11 3.15

Figure 16  Comparison of SMD curves of different TFN
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Figure 18 shows a comparison of the effective range of 
atomization before and after optimization of the TFN. It 
is evident that the axial distance of nozzle No. 5 in the 
atomization flow field space significantly increased by 

71.56% compared with that of No. 3 nozzle before opti-
mization. Moreover, although the optimized operating 
parameters were reduced compared with those before 
optimization, the motion ability of the droplet did not 
weaken, which indicates that the changes in the SVC 
parameters influence the energy carried by the droplets 
and their spatial motion behavior. After optimization, the 
properties (droplet size, spray range, and SPL) of the TFN 
improved, which was beneficial for improving the atomi-
zation behavior for wet dust removal.

6 � Conclusions
In this study, a method combining a multi-physics 
coupled acoustic-mechanics numerical simulation 
and an intelligent synergetic optimization algorithm 
was adopted for optimizing the key parts of the overall 
structure of the TFN. The main conclusions are as 
follows.

(1) Based on the analysis results of the multi-physics 
coupled acoustic-mechanics numerical simulation, 
the effect of the water flow on the characteristics of 

Figure 17  Comparison of SPL curves of nozzles before and after 
optimization

Figure 18  Comparison of atomizing range of TFN before and after optimization: (a) Before optimization, (b) After optimization
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the atomization flow field was obtained. As the water 
flow increases, the velocity of the external flow field 
of the TFN first increases and then becomes stable, 
while the SPL of the TFN in the axial direction 
decreases first and then increases. At a water flow 
rate of 0.035 m3/h, the SPL reached a minimum value 
of approximately 9.8% of the maximum value.
(2) The orthogonal test matrix analysis method was 
applied to perform parameter optimization analysis 
for the TFN, and the optimal combination of factors 
was obtained in the case of multiple objectives. The 
optimal result of the comprehensive analysis is: a gas 
flow rate of 1.0 m3/h, water flow rate of 0.025 m3/h, 
SVC orifice depth of 0.5 mm, SVC orifice diameter of 
1.0 mm, distance between SVC and the outlet of TFN 
of 6.0 mm, and nozzle outlet diameter of 3.3 mm.
(3) The multi-objective synergetic optimization algo-
rithm method is applied to synergistically optimize 
the parameters of TFN, and the optimal combina-
tion of parameters is obtained: a gas flow rate of 0.94 
m3/h, water flow rate of 0.0237 m3/h, and SVC orifice 
diameter of 1.19 mm, SVC orifice depth of 0.53 mm, 
distance between SVC and the outlet of TFN of 5.11 
mm, and nozzle outlet diameter of 3.15 mm.
(4) In the distance enhancement predicted by the 
multi-objective synergetic optimization algorithm 
method, the optimized droplet particle size in 
the atomization flow field space was significantly 
reduced, and the spray distance enhancement 
reached 71.56%. The reduction in the sound pressure 
level (SPL) data at each corresponding measurement 
point was 25.74% at the minimum and 52.11% at the 
maximum.
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