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Abstract 

In practice, simultaneous impact localization and time history reconstruction can hardly be achieved, due to the ill-
posed and under-determined problems induced by the constrained and harsh measuring conditions. Although 
ℓ1 regularization can be used to obtain sparse solutions, it tends to underestimate solution amplitudes as a biased 
estimator. To address this issue, a novel impact force identification method with ℓp regularization is proposed in this 
paper, using the alternating direction method of multipliers (ADMM). By decomposing the complex primal problem 
into sub-problems solvable in parallel via proximal operators, ADMM can address the challenge effectively. To mitigate 
the sensitivity to regularization parameters, an adaptive regularization parameter is derived based on the K-sparsity 
strategy. Then, an ADMM-based sparse regularization method is developed, which is capable of handling ℓp regulari-
zation with arbitrary p values using adaptively-updated parameters. The effectiveness and performance of the pro-
posed method are validated on an aircraft skin-like composite structure. Additionally, an investigation into the optimal 
p value for achieving high-accuracy solutions via ℓp regularization is conducted. It turns out that ℓ0.6 regularization 
consistently yields sparser and more accurate solutions for impact force identification compared to the classic ℓ1 
regularization method. The impact force identification method proposed in this paper can simultaneously recon-
struct impact time history with high accuracy and accurately localize the impact using an under-determined sensor 
configuration.

Keywords Impact force identification, Non-convex sparse regularization, Alternating direction method of multipliers, 
Proximal operators

1 Introduction
Characterized by exceptional properties of high strength-
to-weight ratio, composites have been widely used in 
such industries as the aerospace to make transporta-
tion lighter [1]. Unfortunately, composite structures are 
quite sensitive to impact forces from foreign object debris 
(FOD) like stones, hail and birds during service, and are 

then susceptible to the barely visible impact damage 
(BVID), including delamination and debonding [2, 3]. 
Such internal damage is tricky to be detected by the rou-
tine procedure like preflight visual inspection, and can 
wherefore wreak havoc on structural integrity, jeopard-
izing service security and even cause catastrophic failure 
[4]. To detect the damage at an early stage, impact force 
monitoring has received considerable attention for its 
progress in reducing human interference and decreas-
ing maintenance cost [5]. It is of great help for monitor-
ing the safety and integrity of composite structures to 
know and record the impact event such as its time his-
tory and location [2]. Measuring impact forces directly 
with transducers tends to be impractical, considering 
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that the excitation sources may be unknown or the exci-
tation location may not be available for the transducer 
installation. In consequence, an indirect alternative that 
has come into the spotlight these days is impact force 
identification (IFI) technique, which combines together 
the accessible responses collected by easy-to-use sensors 
like strain gages and the dynamic model of the monitored 
structure. However, participate to solve the impact forces 
in this inverse problem accurately, tailored algorithms are 
required.

Normally, IFI incorporates two main tasks includ-
ing force history reconstruction and impact localization 
[6, 7]. Jacquelin et  al. [8] employed truncated singular 
value decomposition (TSVD) and Tikhonov regulariza-
tion (TR) to reconstruct impact forces in time domain 
respectively for a comparative study. Thite et al. [9] con-
ducted the force reconstruction through a plate simu-
lation study in frequency domain using TSVD, and 
proposed a singular value rejection threshold criterion. 
Tran et al. [10] developed a deconvolution technique for 
impact force reconstruction in wavelet domain based on 
TSVD. Zhang et al. [11] presented a Bayesian regulariza-
tion (BR) approach for force reconstruction to cope with 
an uncertain structural model, jointly using Monte Carlo 
Markov chain to determine the unknown forces. Li et al. 
[12] dealt with the force identification problem via BR 
in conjunction with adaptive ℓq (q = 1 or 2) norm, treat-
ing force history, precision parameters and q as random 
unknowns. When it comes to IFI, TSVD, TR and BR 
often cannot produce the force history with high accu-
racy generally, since they penalize solutions smoothly 
and false forces appear at unloading stage.

In composite structural health monitoring, localization 
is often considered as the first step in quickly measuring 
impact forces to avoid fatal damage to the structure. Qiu 
et  al. [13] employed pattern recognition to localize the 
impact firstly in time domain and then reconstructed its 
history using the TR method. Yan et al. [14] presented a 
two-step method to accomplish the IFI of the composite 
plate, localizing the impact using a nonlinear unscented 
Kalman filter first and then reconstructing impact force 
time history by BR. When the number of monitored 
locations rises, accessible measurements are limited 
and under-determined cases might be faced. Traditional 
methods are usually incapable of dealing with these 
problems, especially for identifying time history and 
localization simultaneously [15]. As an eye-catching reg-
ularization method, sparse regularization (SR) explores 
the inherent sparsity of impact forces in the joint time-
space domain [16–18], making it very popular in fields 
such as fault diagnosis [19, 20] and image processing [21]. 
Under such strong constraints brought by sparse pri-
ors, SR can achieve the force reconstruction and impact 

localization at the same time, even in under-determined 
circumstances [22]. Ginsberg et  al. [17] addressed IFI 
via SR, and achieves simultaneous localization and 
reconstruction of the impact force with a basis pursuit 
denoising algorithm. Also other types of loads, say, mov-
ing forces [23] and distributed forces [24] are able to be 
identified by SR. To further promote the identification 
accuracy, enhanced SR [25] and group SR [16, 26] were 
proposed respectively.

These aforementioned methods are ℓ1-norm based SR, 
as a relaxation of ℓ0-norm, which unavoidably produce 
biased estimations and underestimate the true solution 
[27–29]. Then non-convex penalties are getting more and 
more attention in place of ℓ1-norm to improve the spar-
sity and accuracy of IFI [22, 30–32]. As a typical non-con-
vex regularizer, the quasi-norm ℓp ( 0 ≤ p < 1 ) has gained 
popularity in a wide range of fields [27, 28] because the 
non-convex ℓp regularization performs much better 
than the convex ℓ1 regularization in promoting sparsity 
and obtaining more accurate solutions when p < 1 . Sev-
eral typical algorithms have been employed to resolve ℓp
-norm regularized IFI problems. Aucejo [31] introduced 
an iteratively reweighted least-squares (IRLS) algorithm 
to solve the multi-parameter multiplicative ℓp regulariza-
tion model of IFI in frequency domain. Qiao [32] adopted 
an iteratively reweighted ℓ1-norm (IRL1) algorithm to 
tackle an additive ℓp regularization regularized IFI model 
in time domain. Both IRLS and IRL1 suffer from several 
limitations when implemented in IFI: (i) The two algo-
rithms optimize the surrogate functions respectively 
rather than the original function, so the solution accu-
racy is limited [33]; (ii) These two algorithms converge to 
an undesired local minima when an inappropriate initial 
solution is utilized, so pre-computing the initial solu-
tion is generally required, which is time-consuming and 
unstable [31, 32]; (iii) Both algorithms usually admit slow 
convergence when the transfer matrix is ill-conditioned 
[33]. Thus, the non-convex ℓp optimization problem still 
remains difficult for IFI.

In this contribution, in order to address the aforesaid 
issues existing in ℓp regularization, a novel ℓp sparse 
regularization approach for IFI is proposed based on 
the principle of ADMM [34], which can simultaneously 
reconstruct force time-history and localize the impact 
with an under-determined sensor configuration. The 
proposed ADMM-based algorithm for IFI shows the 
following merits: (i) By virtue of ADMM, the primal 
complicated problem is split into three easier sub-prob-
lems, so the large-scale problems caused by multi-point 
impact monitoring can be solved; (ii) Each subproblem is 
resolved directly in virtue of proximal operators, which 
can promote high-accuracy IFI results; (iii) This algo-
rithm ensures that it converges to a stationary point, 
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providing feasible solutions for IFI; (iv) The non-convex 
optimization requires no well-chosen initial solution 
in advance; (v) The algorithm solves non-convex sparse 
regularization problems with arbitrary p values. None-
theless, the solutions produced by regularization tech-
nique are considerably sensitive to the regularization 
parameter, and inappropriate choices result in poor esti-
mations. Unfortunately, there is still no versatile criteria 
for regularization parameter selection [35]. In this arti-
cle, an adaptive parameter strategy is proposed for IFI: (i) 
The IFI problem is translated into a K-sparsity problem 
by considering the joint space-time sparsity priori; (ii) 
An adaptive regularization parameter is derived accord-
ing to the relationship between the sparsity value K and 
the regularization parameter λ; (iii) The optimal sparsity 
value K is determined by minimizing the identification 
mean squared error (MSE) which is feasibly estimated by 
Monte Carlo Generalized Stein Unbiased Risk Estimate 
(MC-GSURE) technique [36]; (iv) Once K is decided, an 
adaptive λ is automatically updated at each iteration and 
fine-tuning is not required even if the noise level of meas-
urements changes. Finally, an ADMM-based Sparse Reg-
ularization method named ADMM-SpaRe is proposed 
for IFI.

This paper is organized in the following way. In Sec-
tion  2, inverse analysis for impact force reconstruction 
and localization is presented as the theoretical back-
ground. In Section 3, the ℓp sparse regularization model 
for IFI is established, an efficient algorithm termed 
ADMM-SpaRe is proposed to resolve this model, and 
parameter setting strategies are discussed in detail. Sec-
tion 4 presents a series of experimental studies to prove 
the effectiveness and performance of the proposed 
method and compares the results of this method with 
those of the ℓ0 and ℓ1 regularization methods. The con-
clusions are summarized in Section 5.

2  Inverse Analysis for Impact Force reconstruction 
and Localization

For a linear time-invariant (LTI) multi-input/multi-
output (MIMO) mechanical system, when subjected to 
impact forces, its structural responses can be obtained 
via the convolution integral as

where xi(t) represents the response at point i , and the 
impulse response function (IRF) hij(t) denotes the lin-
ear transmission between the external force at the 
input position j (j ∈

{

1, 2, ..., nf
}

) and the response at 
the output position i (i ∈ {1, 2, ..., nr}) in continuous 

(1)xi(t) =
nf
∑

j=1

t
∫

0

fj(τ )hij(t − τ )dτ ,

time domain. Zero initial conditions are assumed, i.e., 
fj(t) = hij(t) = xi(t) = 0 when t < 0 are assumed. Dis-
cretizing the convolution integral with a fixed sampling 
interval �t leads to the following algebraic equation [17, 
37],

in which Hij ∈ ℜN×N is a Toeplitz-like matrix and N  
is the analyzed data length. Eq. (2) can be rewritten in 
matrix-vector form as,

where f = [ f1 f2 ... fnf ]T ∈ ℜnf ×N . For a MIMO dynamic 
system, a more generalized form of Eq. (3) can be 
expressed as,

Then, a compact output form for impact responses can 
be written as,

with the transfer matrix H ∈ ℜnr ·N×nf ·N , the impact force 
vector f ∈ ℜnf ·N and the measurement vector x ∈ ℜnr ·N . 
Once f  is obtained, both the time history and localization 
of impact forces are known.

As for the forward problem, once the transfer matrix 
H and the external force vector f  are known, responses x 
can be readily calculated using Eq. (5). When the trans-
fer matrix H and responses of the mechanical system are 
known to monitor the external impact forces acting on it, 
namely solving f  in Eq. (5), the inverse problem is termed 
impact force identification (IFI). Generally, according 
to the relationship between the quantity of inputs and 
outputs, IFI problems are divided into three categories: 
1) the over-determined case when nr > nf  ; 2) the even-
determined case when nr = nf  ; 3) the under-determined 
case when nr < nf  . Whatever the case, IFI may be intrin-
sically ill-conditioned, for even minute variations can 
cause large fluctuations in force identification. Further-
more, this inverse problem might be ill-posed, as the use 
of noisy and limited measurements cannot consequen-
tially produce a unique and stable solution, especially 
in the under-determined case, and tackling the under-
determined case is the focus of this work.

Inevitably, noise is introduced into the measurements 
causing the solution to "runs away" uncontrollably, and it 

(2)xi =
nf
∑

j=1

Hijfj ,

(3)xi = [ Hi1 Hi2 . . . Hinf ]f ,

(4)
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is hardly possible to obtain the desired result through clas-
sical methods, like QR factorization or least squares. But it 
is the stable and unique solution that allows for a meaning-
ful interpretation in relation to the basic inverse problem 
model. Thus, the impact force identification problem is 
reformulated by numerical treatment. The well-known reg-
ularization technique is resorted to, containing additional 
assumptions of the solution like sparsity. In this work, an 
ADMM-based ℓp sparse regularization method with adap-
tive regularization parameters is proposed for IFI in the 
under-determined case.

3  Formulation of IFI via ℓp Regularization
To stabilize the resolving of Eq. (5) for f  , since the inverse 
problem may be ill-conditioned or ill-posed (e.g., the 
condition number of H is quite large or H is singular), the 
ℓp regularization technique is brought in,

where the first term 12�x −Hf�22 measures the differ-
ences between the linear model Hf  and the output x , 
the second term ‖f‖pp measures the sparsity of f  , and the 
positive constant � is the so-called regularization param-
eter. When p = 2 , this model is known as the Tikhonov 

(6)minimize
f

1

2
�x −Hf�22 + ��f�pp,

Figure 1 A brief flowchart of ADMM-SpaRe for IFI
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Figure 2 Experimental set-up of the composite laminated plate test: (a) Measurement setup, (b) Sensor placement
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regularization and is one of the most widely employed 
models for regularization of linear inverse problems. 
When p = 1 , the model is called the least absolute 
shrinkage and selection operator(LASSO). Here, the ℓp-
norm ( 0 < p ≤ 1 ) is defined loosely,

Additionally, when p = 0 , the ℓ0-norm defines that 
‖f‖0 is the quantity of non-zero entries of f  . These quasi-
norms have been extensively applied in many fields 
thanks to their excellent properties [27, 28, 38].

The regularization method based on ℓp-norm is hard to 
be optimized. Especially, the resulting optimization prob-
lem is not convex while 0 ≤ p < 1 . The non-convex prob-
lem is usually intractable as undesired local minima tend 
to be acquired reluctantly. To deal with the ℓp regulari-
zation model for IFI, an efficient algorithm is developed 
under ADMM framework.

3.1  Reformulating the IFI Model under ADMM Principle
As one of splitting methods, ADMM is a simple but pow-
erful optimization algorithm that works for both convex 
and non-convex problems [34]. By means of ADMM, the 
problem (6) can be reformulated as,

where the data fidelity term F(f)= 1
2
�x −Hf�22 , the 

penalty term G(z)=��z�pp , and an additional vector of 
variable z is introduced for variable splitting. Then, the 
augmented Lagrangian can be derived as [34],

where u is a scaled vector of Lagrangian multipliers, and 
ρ denotes the positive penalty parameter which can be 
adjusted to promote the rate of convergence. Minimiz-
ing Lρ(f , z,u) with respect to f  and then with respect to 
z , and conducting a multiplier update, yields three steps,

where f-update and z-update can be accomplished by 
computing the proximal operator of the convex quadratic 
term in Eq. (10) and the ℓp-norm ( 0 ≤ p ≤ 1 ) in Eq. (11), 
respectively, which will be studied in the following sec-
tion. Then the u-update shall be carried out through Eq. 

(7)�f�p = (

∣

∣f1
∣

∣

p +
∣

∣f2
∣

∣

p + . . .+
∣

∣fn
∣

∣

p
)
1/p.

(8)minimize
f

F(f)+ G(z), subject to f − z = 0,

(9)
Lρ(f , z,u) =

1

2
�x −Hf�22 + ��z�pp + ρu

T
(f − z)+ ρ

2
�f − z�22,

(10)

f
(k+1) = argmin

f

(
1

2
�x −Hf�22 + ρ(u

(k)
)
T
f + ρ

2

∥

∥

∥
f − z

(k)
∥

∥

∥

2

2
),

(11)

z
(k+1) = argmin

z

(��z�pp+
ρ

2

∥

∥

∥
f
(k+1) − z + u

(k)
∥

∥

∥

2

2
),

(12)u
(k+1) = u

(k) + f
(k+1) − z

(k+1),

(12). A critical point of the augmented Lagrangian can be 
reached in the end [39].

3.2  Resolving Subproblems Using Proximal Operators
The subproblems in Eq. (10) and Eq. (11) can be handled 
efficiently by proximal operators. Commonly, given a 
function h(v) , its proximal operator is given by [40]:

where w denotes the input vector. To begin with, for f
-update, the proximal operator of the convex quadratic 
function h(f) = 1

2ρ
�x −Hf�22 + (u

(k)
)
T
f  is taken as,

which is equivalent to the minimization in Eq. (10). The 
optimal solution of Eq. (14) is calculated by taking the 
derivative with respect to f  and setting it equal to 0 , that 
is,

and hence the f-update can be gained in a closed-form as

In the end, a compact expression of f-update step leads 
to,

(13)proxhv (w)= argmin
v

{

h(v)+ 1

2
�v − w�22

}

,

(14)proxhf (z
(k)

)= argmin
f

{

h(f)+ 1

2

∥

∥

∥
f − z

(k)
∥

∥

∥

2

2

}

,

(15)
(H

T
H+ ρI)f

(k+1) −H
T
x − ρ(z

(k) − u
(k)

) = 0,

(16)
f
(k+1) = (H

T
H+ ρI)

−1
(H

T
x + ρ(z

(k) − u
(k)

)).

Figure 3 Optimal parameter choosing by minimizing MC-GSURE 
MSE: (a1) Minimizing MC-GSURE MSE by changing K  , (b1) Minimizing 
MC-GSURE MSE by changing � , (a2) Results of IFI ℓ1/2 regularization 
indicated by REs using different K  s, (b2) Results of IFI using ℓ1/2 
regularization indicated by REs using different � s
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The z-update can be accomplished by computing the 
proximal operator of ℓp-norm(0 ≤ p ≤ 1 ). To make the 
description easy to follow, a general proximal operator 
form is studied with h(v)=�v�pp scaled by µ , which is,

(17)f
(k+1) = proxhf (z

(k)
).

Different p s make for different solutions of Eq. (18), 
and detailed studies come as follows.

I) When p = 0 , the corresponding proximal operator 
known as hard-thresholding [38] is defined component-
wise as:

where wi represents the ith element in vector w , and T (µ) 
is the threshold, where T (µ) =

√
2µ.

II) When p = 1 , the proximal operator is the familiar 
soft-thresholding operator [41],

where T (µ) = µ.
III) When 0 < p < 1 , the corresponding proximal 

operator has no analytic solution, but can be resolved via 
an inexact proximal operator called generalized shrink-
age / thresholding (GST) operator [28],

where Tp(µ)=(2µ(1− p))
1

2−p + µp(2µ(1− p))
p−1
2−p is the 

thresholding value derived in Ref. [28], and v(M+1)
i  is the 

output of v(m+1)
i = |wi| − µp(v

(m)

i )
p−1,m = 0, 1, 2, ...,M . 

Empirically M is chosen as 2, and v(0)i  is initialized as 
|wi| . Notably, the hard-thresholding and soft-threholding 
functions are special cases of GST with p = 0 and p = 1 
[28], and when p = 1/2 or 2/3 , a closed-form solution 
can be deduced [35, 42]. Hence, considering the general-
ized p values, the GST thresholding is utilized for ℓp reg-
ularization herein. Accordingly, combining Eq. (11) with 
Eq. (18), and after some variable substitution, especially 
v = z , w = f

(k+1) + u
(k) and µ = �

/

ρ , the proximal 
operator for the z-update is given by,

and then the update step for z can be compactly written 
as,

By virtue of the ADMM, the optimization for problem 
(8) can be handled succinctly by three main steps, briefly 
indicated in Eq. (17), Eq. (23) and Eq. (12).

(18)proxh,µ(w) = argmin
v

{µ�v�pp +
1

2
�v − w�22}.

(19)proxh,µ(w)i =
{

0, |wi| ≤ T (µ),
wi, |wi| > T (µ),

(20)

proxh,µ(w)i =
{

0, |wi| ≤ T (µ),
sign(wi)(|wi| − µ), |wi| > T (µ),

(21)proxh,µ(w)i =
{

0, |wi| ≤ Tp(µ),

sign(wi)v
(M+1)
i , |wi| > Tp(µ),

(22)
prox

hz ,
�

ρ

(f
(k+1) + u

(k)
) = argmin

z

{ �
ρ
�z�pp +

1

2

∥

∥

∥
z − f

(k+1) − u
(k)

∥

∥

∥

2

2
},

(23)z
(k+1) = prox

hz ,
�

ρ

(f
(k+1) + u

(k)
).

Figure 4 Identification results of nine monitored locations 
under varying p values: (a) REs, (b) PREs, (c) LAi s
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3.3  Deriving the Adaptive Regularization Parameter Using 
K‑sparsity

As we all know, the results of regularization techniques 
are quite sensitive and vulnerable to the selection of 
the regularization parameter � . And it is generally dif-
ficult to choose the optimal � which mainly depends on 
the noise level and the transfer matrix [43]. Once noise 
levels or transfer matrices change, careful and energy-
draining operations to find optimal � are inevitable. To 
overcome these obstacles, a robust and adaptive strategy 
for the � selection is developed according to K-sparsity 
[35], because IFI is actually a K-sparsity problem in time 
domain, thanks to its joint space-time sparsity priori. 
Specifically speaking, the z-update in Eq. (23) is involved, 
and z expects the identical sparsity as f  according to the 
constraints in Eq.  (8). Instead of a fixed � , the � can be 
set adaptively in light of the K-sparsity priori, that is, the 
adaptive threshold T  is set to the K th largest element in 
the input vector w(k) = f

(k+1) + u
(k) (in absolute value) 

at each iteration [35], which is expressed as

where 
∣

∣w
(k)

∣

∣

[K ] denotes the K th largest component (in 
absolute value) in the vector w(k) at the kth iteration. 
Resolving Eq.  (24) can lead to a reliable choice of � at 
each iteration, and here an analytic solution of � can be 
gained as,

Finally, the derived ℓp regularization algorithm with 
adaptive regularization parameters named ADMM-
SpaRe for IFI is stated in Algorithm  1  (shown in 
Table  1). Besides, the Algorithm  1 stops when the 
relative maximum change of adjacent iterations 
becomes less than a small value ε , say ε=10−5 here, i.e., 
∥

∥f
(k+1) − f

(k)
∥

∥

∞ < ε ·
∥

∥f
(k)

∥

∥

∞ . Note that early termina-
tion in the f-update and z-update steps can even give 

(24)T (k)
(p,

�

ρ
) =

∣

∣

∣
w

(k)
∣

∣

∣

[K ]
,

(25)
�
(k) =

(

∣

∣w
(k)

∣

∣

[K ]

)(2−p)

p(2−p)(2− 2p)(p−1) − 2p+ 2
.

Figure 5 The estimated forces via ℓp regularization ( p = 0, 0.4, 0.5, 0.6, 1 ) with the true impact force applied at location #7
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Figure 6 Robustness behaviors of ADMM-SpaRe-ℓp ( p = 0, 0.6, 1 ) 
with respect to different noise levels: (a) REs, (b) PREs, (c) LAi s (The 
shadow area around each curve denotes ±3 standard deviation 
range of 100 trials)
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an overall enhancement in algorithm efficiency [34, 39, 
44]. Presetting K  makes an adaptive threshold instead 
of a fixed one. Note that in applications the parameter 
K  can be decided exactly based on the physical prior, or 
can be set as an upper-bound estimate of the sparsity 
under discussion via simulation/experimentation stud-
ies [35]. In this contribution, K  is selected by minimiz-
ing MC-GSURE MSE.

3.4  Parameter Setting
There are three parameters including 0 ≤ p ≤ 1 , ρ > 0 , 
K > 0 to be determined in Algorithm  1. Firstly, taking 
sparsity as a prior can bring strong constraints and then 
reduce the degrees of freedom of the IFI model, which 
makes it feasible to tackle the under-determined case. 
Generally speaking, setting 0 ≤ p ≤ 1 makes sparse solu-
tions accessible for IFI, but ℓ1 regularization often pro-
duces biased estimates. Numerous studies point out that 
when p < 1 , the non-convex ℓp regularization can pro-
mote sparser and more accurate results than the convex 
ℓ1 regularization, but the optimal p is usually different 
in different applications [28]. For example, ℓ2/3 performs 
better than ℓ1/2 in image deconvolution [42]. There-
fore, the optimal p is studied by investigating different 
p s in a fine division between 0 and 1 in the following 
experiments.

Secondly, for the sake of improving convergence, the 
penalty parameter ρ is adjusted using residual balancing 
strategy [45], i.e.,

where r
(k) = f̃

(k) − z
(k) and s

(k)=− ρ(z
(k+1) − z

(k)
) 

are the primal and dual residuals in the kth iteration of 
ADMM-SpaRe, respectively.

(26)ρ
(k+1) =
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,

ρ
(k), otherwise,

For a better choice of K  in practice, a practical and reli-
able thought is based on minimizing MSE. However, the 
identification MSE can not be known in practice. MC-
GSURE is used to estimate MSE availably. Due to a rank-
deficient model dealt with in the under-determined IFI 
case, generalized SURE to get an unbiased estimate of 
MSE is defined as [36],
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Figure 8 Strain responses with 50% noise level of (a) strain gage 
#1 and (b) strain gage #9

Figure 9 IFI results of ADMM-SpaRe-ℓp ( p = 0, 0.6, 1 ) under 50% 
noise level: (a) ℓ0 regularization, (b) ℓ0.6 regularization, (c) ℓ1 
regularization (The exact impact force is illustrated at location #0)
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where P is a projection matrix P := H
T
(HH

T
)
−1

H , 
hK (u) returns the identification results of Eq. (6) using 
K-sparsity, u = 1

σ 2H
T
x ( σ is the standard deviation of 

noise) represents the sufficient statistic for the model, 
f̂ML = H

T
(HH

T
)
−1

x is the maximum likelihood estima-
tion, and the divergence divu(PhK (u)) is approximated by 
the MC method as [46]:

where b is a Gaussian vector with zero mean and unit 
standard deviation, and δ is a small positive parameter. 
Thus far, an overall flowchart of the proposed ADMM-
SpaRe algorithm for IFI is given in Figure 1.

4  Experimental Validation
In this section, a series of laboratory experiments are 
implemented on a composite panel to verify the effec-
tiveness and investigate the performance of the pro-
posed ADMM-SpaRe method for IFI tasks. Impact 
forces are identified utilizing only structural responses, 
and impact events can be localized and reconstructed 
concurrently based on an under-determined sensor 
configuration. The optimal sparsity value K  is investi-
gated by calculating MC-GSURE MSE. A representa-
tive p is chosen for IFI through experimental study. The 
robustness of ADMM-SpaRe to noise interference is 
also examined.

4.1  Experimental Setup
An aircraft skin-like composite laminated plate, which 
is fabricated by T700/QY8911 carbon fiber reinforced 
pre-impregnated unidirectional layers and clamped 
at both ends, is limned in Figure  2, with the size of 
400× 300× 6 mm and the lay-up: [+45/0/− 45/90]6s . 

(27)

E
(

∥

∥P(hK (u)− f)
∥

∥

2
)

= �Pf�2 +
∥

∥PhK (u)
∥

∥

2 + 2divu(PhK (u))− 2hTK (u)f̂ML,

(28)divu(PhK (u)) ≈ b
T
P
hK (u + δb)− hK (u)

δ
,

Firstly, as shown in Figure  2(a), impact forces are pro-
duced by an instrumented hammer with a force trans-
ducer (PCB 086C03, sensitivity 2.25  mV/N), and the 
vibration data (i.e., strain responses) are measured by ten 
stain gages (PCB 740B02). Only two strain gages (strain 
gage 1 and strain gage 9, with sensitivity 52.2  mV/g and 
48.6 mV/g, separately) are utilized here for IFI. Figure 2(b) 
visualizes the spatial arrangement of the key points on the 
laminate: nine uniformly distributed points are monitored 
as potential impact locations; ten strain gages are equally 
mounted on both sides of the monitoring area. All of 
these points fall on the grid with size of 50× 50 mm.

Secondly, the data including impact forces and strain 
responses are recorded by LMS Test.Lab system syn-
chronously with a sampling frequency of 10240  Hz. 
Thirdly, the transfer matrix H is constructed experi-
mentally, which is briefly divided into two steps: (i) The 
IRF hij(t) between the output location i and input loca-
tion j can be gained by means of inverse fast Fourier 
transform (IFFT) of the frequency response function 
(FRF) hij(w) which can be acquired by impact testing 
via the LMS modal testing module; (ii) The block Toe-
plitz-like matrix H in Eq. (5) is assembled according to 
Eq. (4). The analyzed data length N  of each discrete IRF 
is 512, making each submatrix in Eq. (4) have a dimen-
sion of 512. Herein, only two strain gages are employed 
to monitor the nine potential impact positions, result-
ing in a quite under-determined system with the trans-
fer matrix H ∈ ℜ1024×4608 . Finally, all experimental 
analyses are conducted under MATLAB 2018b and on 
a personal computer equipped with Intel(R) Core(TM) 
i5-8400, 24 GB RAM.

To evaluate the performance of ADMM-SpaRe quan-
titatively, several accuracy assessment indicators are 
defined. Note that the impact force measured by the force 
transducer attached on the hammer is taken as reference 
in the experiments. Firstly, the global relative error (RE) 
between the identified force vector f̃  and the referenced 
one f  is calculated as:

and then, the RE at each location i can be computed as:

Next, the peak relative error (PRE) at the impact loca-
tion i , assessing the reconstruction quality of the impact 
amplitude which matters much for IFI, is expressed as:

(29)RE(%) =

∥

∥

∥
f̃ − f

∥

∥

∥

2

�f�2
× 100%,

(30)REi(%) =

∥

∥

∥
f̃i − fi

∥

∥

∥

2

�fi�2
× 100%.
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Figure 10 Strain responses in the single-impact case from (a) strain 
gage #1 and (b) strain gage #9
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Figure 11 Experimental results of IFI in the single-impact case: (a1–a3) The objective function values during the iteration using ℓ0.6 regularization, 
ℓ0 regularization and ℓ1 regularization, (b1–b3) Localization results of ℓ0.6 regularization, ℓ0 regularization and ℓ1 regularization, (c1–c3) Time history 
on the impact point #4 via ℓ0.6 regularization, ℓ0 regularization and ℓ1 regularization
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Finally, an indicator LAi at the impact location i , evalu-
ating the localization accuracy (LA), is represented as:

In this work, it is assumed that one impact force is 
exerted on one of the potential impact locations dur-
ing the observation period. Theoretically, LAi should be 
one for the actual impact position, and be zero for non-
impact locations.

4.2  Sparsity Estimation via MC‑GSURE
As aforementioned, once K  is set, adaptive regularization 
parameters are updated automatically at each iteration 
according to Eq. (25). K  is actually determined by the 
sparse physical priori of the impact forces, and requires 
no adjustment regardless of changes in the noise level of 
the measurement. Next, how to choose the optimal K  
and why K-sparsity is used instead of a fixed � are respec-
tively stated through experimental studies. Without loss 
of generality, p is equal to 1/2 and the true impact force 
acts on #1. 31 different values are allocated to K  and � 
in a range of 0.01− 1 (in increments of 0.033) and 2− 60 
(in increments of 2) respectively. For MC-GSURE MSE 
computing, the noise level of the measurement can be 
obtained by the well-known mean absolute derivative 
(MAD) rule [47]. For the MC process in Eq. (28), δ is set 
to 10−5 and an average of five independent realizations 

(31)PREi(%) =

∥

∥

∥
f̃pi − fpi

∥

∥

∥

2
∥

∥fpi

∥

∥

2

× 100%.

(32)LAi =

∥

∥

∥
f̃i

∥

∥

∥

2
nf
∑

i=1

∥

∥

∥
f̃i

∥

∥

∥

2

.

are taken. Then the optimal � and K  are both found by 
minimizing MSE, as shown in Figure 3.

From Figure 3(a1) and (a2), firstly, pretty accurate esti-
mates of MSE can be acquired by MC-GSURE. Secondly, 
for K-sparsity, the optimal K = 10 is obtained, exactly 
matching with the sparsity of the true impact force. From 
Figure  3(b1), when K  is larger than the real sparsity, a 
wide range of overestimations of K  can lead to stable and 
high-accuracy solutions, and when K = 60 , six times the 
real K  , the accurate identification accuracy can be real-
ized with RE less than 10%. Looking into Figure  3(b2), 
the fixed strategy is not comparable to the K-sparsity 
strategy with lower accuracy. According to the current 
division of � , there is a small adjustment range and con-
sequent results are unstable. What is noteworthy is that 
once K  is set, regularization parameters are updated 
automatically without considering noise levels. However, 
when the fixed � strategy is used, the optimal � needs to 
be adjusted continually according to the corresponding 
noise level [43]. As a result, the K-sparsity strategy based 
on MC-GSURE is employed in the following experimen-
tal study.

4.3  The Optimal Selection for p
Regrading ℓp regularization, the optimal p varies in dif-
ferent application areas [28, 48]. Thus, the optimal p for 
IFI is investigated. The impact forces applied at nine dif-
ferent locations in Figure 2(b) are individually identified 
by ADMM-SpaRe with p ranging from 0 to 1 at the inter-
val of 0.1. Then, the box-plots in Figure 4 give the identi-
fied results indicated by REs, PREs, and LAi s, and each 
box visually shows the identification accuracy of all nine 
monitored positions under each p value. The box-plots 
say that ADMM-SpaRe possesses good identification 
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Figure 12 Strain responses in the double-impact case from (a) strain gage #1 and (b) strain gage #9
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accuracy and stability when p = 0.4 − 0.6 . To be specific, 
when setting p = 0.4, 0.5 and 0.6, induced REs and PREs 
are less than 20% and 10% respectively, and LAi s are 

more than 0.9, which are hard to be guaranteed by other 
p settings, especially when p = 0 or 1.

Moreover, when p = 0.6 , ADMM-SpaRe achieves 
the highest identification accuracy. An exemplary 
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Figure 13 Experimental results of IFI in the double-impact case: (a1–a3) The objective function values during the iteration using ℓ0.6 regularization, 
ℓ0 regularization and ℓ1 regularization, (b1–b3) Localization results of ℓ0.6 regularization, ℓ0 regularization and ℓ1 regularization, (c1–c3) Time history 
on the impact point #4 via ℓ0.6 regularization, ℓ0 regularization and ℓ1 regularization
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description can be found in Figure  5, where the impact 
force is applied on #7 and the results are estimated by 
ℓp (p = 0, 0.4, 0.5, 0.6, 1) regularization. It shows that the 
false forces identified by ℓ0 and ℓ1 regularization occur 
on the non-impact positions #1, #4 and #9, and along 

comes the poor reconstruction accuracy on the exact 
impact position #7 with REiℓ0 = 36.5% , REiℓ1 = 42.4% , 
PREiℓ0 = 19.4% , and PREiℓ1 = 29.5% . But the estima-
tions from ℓ0.4 , ℓ0.5 and ℓ0.6 regularization can avoid 
these problems, and the indicators with respect to 
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reconstruction accuracy on position #7 are, respec-
tively, REiℓ0.4 = 13.7% , REiℓ0.5 = 12.9% , REiℓ0.6 = 12.4% , 
PREiℓ0.4 = 4.5% , PREiℓ0.5 = 5.3% , and PREiℓ0.6 = 4.4% , 
and ℓ0.6 regularization achieves the highest identifica-
tion accuracy. Therefore, p = 0.6 can be taken as the pre-
ferred presentative of ℓp regularization for IFI because of 
its high and stable identification accuracy.

4.4  Robustness to Noise Interference
Low noise levels are involved in laboratory experiments 
indeed. In order to reveal the robustness of ADMM-
SpaRe-ℓ0.6 regularization to noise interference, a noise 
model is taken into consideration as follows:

where x and x̃ ∈ ℜN denote the original measured sig-
nals and signals with additive noise, β is the noise level, 
respectively, σ signifies the standard deviation of the 
measured data, and randn(N , 1) generates values from 
a normal distribution with zero mean and unit stand-
ard deviation. In this study case, the real impact force 
is exerted on location #9 and the strain responses are 
still collected by sensors #1 and #9 to ensure generality. 
Subsequently, β accounts for different noise levels, vary-
ing from 0 to 50% in 2% increments. IFI is realized using 
ADMM-SpaRe-ℓ0.6 , and the outcomes of ℓ0 and ℓ1 regu-
larization are also considered for comparison, solved by 
the well-known hard and soft thresholding formulas, 
respectively. To eliminate the randomness, 100 inde-
pendent realizations are performed for different methods 
under each noise level. Figure 6 shows the average values 
of indicators including RE, PREi , and LAi.

As described in Figure  6, ℓ0.6 obtains the best robust-
ness behavior over ℓ0 and ℓ1 . In particular, despite the 
increase of noise, ℓ0.6 regularization can achieve high 
performances under 50% noise level, keeping the REs less 
than 10%, the PREs less than 5%, and the LAi s more than 

(33)x̃ = x + βσ randn(N , 1),

0.95. Looking into the results of ℓ1 regularization, large 
identification errors appear under each noise level, infe-
rior to ℓ0.6 regularization. Besides, reasonable identifi-
cation results can be acquired through ℓ0 regularization 
under low noise level, i.e., under less than 15%, as dis-
played in Figure 6, while identification precision rapidly 
declines as the noise level rises up.

To better observe the robustness to noise, the indicators 
representing the identification accuracy of ℓp (0 ≤ p ≤ 1) 
regularization are displayed in Figure  7 under the 50% 
noise level after 100 independent realizations. It can be 
discovered that ℓ0.6 regularization gains the highest iden-
tification accuracy, while the accuracy decreases with 
ps away from 0.6. The noisy signals under the 50% noise 
level are shown in Figure 8. Correspondingly, detailed IFI 
results of ℓp ( p = 0, 0.6, 1 ), covering force time history 
and impact localization, are illustrated in Figure 9. It can 
be found visually that spurious forces appear on the non-
impact positions, especially in the results produced by ℓ0 
and ℓ1 regularization, and by contrast, ℓ0.6 regularization 
can perform better to alleviate this problem. In short, it is 
justified that ℓ0.6 regularization is more powerful than ℓ0 
and ℓ1 regularization, and ℓ0 regularization is competitive 
to ℓ1 regularization under relatively low noise level.

4.5  IFI Results and Discussion
In this case, for the sake of generality, impact forces gen-
erated by the impact hammer with a steel hammer cap 
are applied to a randomly selected location #4 from nine 
potential locations as displayed in Figure  2(b). Also, 
the responses are collected by strain gage #1 and #9, as 
shown in Figure 10. As previously mentioned, the noise 
levels are low in experimental scenarios. IFI is accom-
plished by the proposed ADMM-SpaRe-ℓp method with 
p = 0.6 , and additionally the results produced by ℓ0 and 
ℓ1 regularization are taken as comparisons.

Figure  11 shows the identification results of the three 
regularization methods, containing convergence curves, 
localization and time history reconstruction results. As 
described in Figure  11(a1), (a2) and (a3), after 273, 290 
and 392 iterations, three regularization methods, i.e., 
p = 0 , 0.6, 1, solved by ADMM-SpaRe converge to their 
approximate minimizers, consuming 22.9 s, 24.8 s and 
30.6 s respectively. ℓ0.6 converges faster than the other 
two methods, and also owns a higher solution accu-
racy with REℓ0.6 = 9.7% , besides, REℓ0 = 11.5% and 
REℓ1 = 12.5% here. Further, from Figure 11(b1), (b2) and 
(b3), three regularization methods all have relatively high 
localization accuracy with LAi s more than 0.9, respec-
tively, LAiℓ0.6 = 0.94 , LAiℓ0 = 0.93 , LAiℓ1 = 0.97 . Despite 
that ℓ1 regularization can result in high localization 
accuracy, ℓ1 regularization likely causes biased estima-
tions, underestimating the amplitude of impact forces. 

Table 1 ADMM-SpaRe algorithm pseudo code
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These are not hard to be found from the local analysis 
of identification results as exhibited in Figure  11(c1), 
(c2) and (c3), in detail, PREiℓ0.6 = 3.1% , PREiℓ0 = 4.1% , 
PREiℓ1 = 7.0% , and REiℓ0.6 = 3.1% , REiℓ0 = 4.1% , 
REiℓ1 = 7.0% . But the profiles of identified impact forces 

from three regularization methods solved by ADMM-
SpaRe all match closely with that of the referenced one. 
On the whole, ℓ0.6 regularization outperforms the other 
two regularization methods for IFI tasks . 

(a1) (b1)

(a2) (b2)

(a3) (b3)

0 0.01 0.02 0.03 0.04 0.05

Time(s)

0

20

40

60

80

100

F
o
rc
e(
N
)

l
0.6

-regularization(# 4)

Real force Reconstructed force

0.01 0.011 0.012

0

30

60

90

0 0.01 0.02 0.03 0.04 0.05

Time(s)

0

20

40

60

80

100

F
o
rc
e(
N
)

l
0
-regularization(# 4)

Real force Reconstructed force

0.01 0.011 0.012

0

30

60

90

0 0.01 0.02 0.03 0.04 0.05

Time(s)

0

20

40

60

80

100

F
o
rc
e(
N
)

l
1
-regularization(# 4)

Real force Reconstructed force

0.01 0.011 0.012

0

30

60

90

Figure 15 IFI experimental results of plastic hammer cap impact: (a1–a3) Localization results of ℓ0.6 regularization, ℓ0 regularization and ℓ1 
regularization, (b1–b3) Time history on the impact point #4 via ℓ0.6 regularization, ℓ0 regularization and ℓ1 regularization



Page 17 of 19Wang et al. Chinese Journal of Mechanical Engineering           (2024) 37:63  

In experimental tests, an interesting phenomenon 
that cannot be ignored is that double-impact sometimes 
occurs. In this case,the double-impact produced by the 
impact hammer on ♯4 is identified using the same three 
regularization methods. Figure  12 illustrates the strain 
responses gathered by strain gages ♯1 and ♯9 separately, 
and it is hard to tell whether a double-impact occurs. On 
this occasion, ℓ0.6 regularization still retains the highest 
identification accuracy with REℓ0.6 = 16.9% , compared 
to REℓ0 = 18.7% for ℓ0 regularization. Notably, ℓ1 regu-
larization performs unsatisfyingly with REℓ1 = 60.1% . 
Then, from Figure  13(b1), ℓ0.6 regularization is able 
to fully realize the localization with LAiℓ0.6 = 1 . How-
ever, as can be seen from Figure 13(b2) and (b3), ℓ0 and 
ℓ1 regularization fail to do so due to spurious forces 
appearing at the unloading positions, with LAiℓ0 = 0.89 
and LAiℓ1 = 0.87 . Through local analysis of the identi-
fied results, it can be discovered that the time history of 
impact forces can be well-recovered by ℓ0.6 regularization 
with REiℓ0.6 = 16.9% , and next comes ℓ0 regularization 
with REiℓ0 = 17.1% . While ℓ1 regularization fails with 
REiℓ1 = 59.5% . Overall, the ℓ0.6 regularization method 
solved by ADMMSpaRe is more powerful than the other 
two methods, and ℓ0 regularization is comparable to ℓ0.6 
regularization in this case, but ℓ1 regularization cannot 
manage to realize the identification under this double-
impact circumstance.

In order to further verify the performance of the pro-
posed method in identifying impact forces with different 
shapes, a rubber hammer cap and a plastic hammer cap 
are used on the impact hammer to impact the #4 position 
respectively (Figure 13).

In the case of rubber hammer cap, the impact force 
localization and time-history reconstruction results of 
ℓ0.6 , ℓ0 and ℓ1 regularization methods are shown in Fig-
ure 14. It can be seen from Figure 14(a1–a3) that all three 
methods can accurately localize the impact force, but the 
global identification result of ℓ0.6 regularization is most 
consistent with the spatial sparsity of the impact force, 
with REℓ0.6 = 4.0% and LAiℓ0.6 = 1.00 . The global relative 
errors and localization accuracy of the other two meth-
ods are REℓ0 = 6.8% , REℓ1 = 10.7% , and LAiℓ0 = 0.94 , 
LAiℓ1 = 0.98 , respectively. It can be observed from the 
reconstruction results Figure  14(b1–b3) that the recon-
struction accuracy of ℓ0.6 regularization is the highest, 

and the identified impact amplitude is also closest to 
the real force, with REiℓ0.6 = 4.0% and PREiℓ0.6 = 0.2% . 
In contrast, the time-history reconstruction errors of 
ℓ0 and ℓ1 regularization methods are REiℓ0 = 6.3% , 
REiℓ1 = 10.6% , PREiℓ0 = 1.6% , and PREiℓ1 = 5.4%.

In the case of plastic hammer cap, the impact force 
identification results of ℓ0.6 , ℓ0 and ℓ1 regularization 
methods are shown in Figure  15. The same conclusion 
can be drawn, that is, the impact force localization and 
reconstruction results of ℓ0.6 regularization match the 
real impact situation best. By quantifying the quality of 
the identification results of the three methods, the identi-
fication errors of these three methods can be obtained as 
listed in Table 2. Therefore, it can be concluded that ℓ0.6 
regularization can reconstruct and localize impact forces 
of different shapes with higher accuracy.  

5  Conclusions
This paper develops an ADMM-based ℓp sparse regu-
larization method termed ADMM-SpaRe to cope with 
the ill-posed IFI inverse problem. Unlike the previous 
algorithms which approximate the minimum of the 
nonconvex ℓp-minimization by optimizing the proxy 
functions. ADMM-SpaRe splits the complicated and 
variable-coupled IFI model into three easier subprob-
lems, and each subproblem can be resolved directly 
by its proximal operator with high accuracy. Then 
force reconstruction and impact localization are real-
ized simultaneously with the under-determined sensor 
configuration where merely two strain gages monitor-
ing nine potential impact locations. To tackle the regu-
larization parameter selection problem, the K -sparsity 
strategy on account of the joint space-time sparsity pri-
ori of IFI is adopted. The optimal K  can be accurately 
found by minimizing the MC-GSURE MSE. A wider 
range of K  s can be chosen to achieve accurate IFI, and 
once K  is set, regularization parameters are updated 
automatically at each iteration and require no constant 
fine-tuning, making ADMM-SpaRe an adaptive and 
robust approach. Moreover, the optimal p = 0.6 is rec-
ommended for the IFI problem through experimental 
comparative studies, which can promote sparser and 
more accurate solutions. Then, to verify the robust-
ness of ADMM-SpaRe to noise, different levels of white 
Gaussian noise are added into the measured signals. ℓ0.6 
regularization can accomplish relatively accurate IFI 
even under 50% noise level. Finally, additional impact 
scenarios including single impact and double impact, 
rubber hammer cap impact, and plastic hammer cap 
impact are investigated. It is found that ℓ0.6 regulariza-
tion adopting GST thresholding performs better than 
the ℓ0 and ℓ1 regularization conducted using classic 

Table 2 IFI result errors of plastic hammer cap impact case (%)

Error RE LAi REi PRE

ℓ0.6 5.5 1.00 5.0 1.0

ℓ0 6.6 0.98 5.9 2.5

ℓ1 10.9 0.96 10.7 3.1
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soft thresholding and hard thresholding. In addition, 
the proposed method is applicable to the impact force 
identification of different impact times and impact 
morphologies.
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