
Kong et al. 
Chinese Journal of Mechanical Engineering           (2024) 37:71  
https://doi.org/10.1186/s10033-024-01055-z

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

Review on Lithium-ion Battery PHM 
from the Perspective of Key PHM Steps
Jinzhen Kong1, Jie Liu2, Jingzhe Zhu2, Xi Zhang2, Kwok‑Leung Tsui3, Zhike Peng2,4 and Dong Wang2*   

Abstract 

Prognostics and health management (PHM) has gotten considerable attention in the background of Industry 4.0. 
Battery PHM contributes to the reliable and safe operation of electric devices. Nevertheless, relevant reviews are still 
continuously updated over time. In this paper, we browsed extensive literature related to battery PHM from 2018 
to 2023 and summarized advances in battery PHM field, including battery testing and public datasets, fault diagnosis 
and prediction methods, health status estimation and health management methods. The last topic includes state 
of health estimation methods, remaining useful life prediction methods and predictive maintenance methods. Each 
of these categories is introduced and discussed in details. Based on this survey, we accordingly discuss challenges 
left to battery PHM, and provide future research opportunities. This research systematically reviews recent research 
about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers 
and practitioners.

Keywords Lithium‑ion batteries, Prognostics and health management, Remaining useful life, State of health, 
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1 Introduction
Technological advances and developments of engineer-
ing industry bring more elaborate and complex devices 
in the Fourth Industrial Revolution, also known as 
Industry 4.0. Reliability and safety become particularly 
important during operation. However, traditional fault 
diagnosis and maintenance strategies can not satisfy 
needs for new-generation equipment. Exploring a pre-
cise, efficient, intelligent reliability technology is urgently 
required [1]. Therefore, prognostics and health manage-
ment (PHM) came into existence in 1990s, and rapidly 

gained extensive attention from various countries [2]. 
PHM gradually developed to be systematical and norma-
tive, from built-in testing (BIT) to advanced comprehen-
sive diagnosis systems. Nowadays, PHM mainly contains 
health monitoring and health management, including 
health state detection, remaining life prediction, mainte-
nance optimization [3, 4].

The objectives of PHM are maintaining normal opera-
tion, reducing failures and maintenance costs, improving 
production efficiency, etc. To achieve the aforementioned 
goals, pivotal steps of PHM are: (1) Data acquisition; (2) 
signal processing; (3) condition monitoring; (4) health 
assessment; (5) failure prediction; (6) support and main-
tenance decision [5]. The first step is the most fundamen-
tal one, information held in data can help researchers 
construct models and better understand states of devices. 
Data types are varied, such as vibration signals, sound 
waves, velocity, temperature, voltage. Signal processing 
technique is capable of digging for useful messages hid-
den in noisy data. As for different signal features, signal 
processing methods are different. Based on requirements, 
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the latter four steps can be selected. Many researchers 
have proposed corresponding estimation or prediction 
methods [6–8]. It is noted that understanding the mecha-
nism of devices is quite useful in PHM research. Accord-
ing to several processes, we can see that PHM gets 
involved in many areas, such as sensor systems, failure 
mechanisms and algorithm designs. The implementation 
of PHM is a complicated course.

Difficulties of making PHM come true are from many 
aspects. Firstly, it is related to integrated subjects so that 
multi-source supports are needed. Some steps of PHM 
are tightly linked, researchers in different areas need 
close cooperation and share their specialized knowledge. 
Next, data acquisition is a tough task in a development 
phase of PHM. Obviously, data are valuable and neces-
sary for model training and method verification, espe-
cially failure data and aging data. Collecting operating 
data or experimental data is highly time-consuming and 
money-consuming. The era of big data also sets a great 
demand on quantity and quality of data. Then, from the-
oretical algorithms to onboard applications, there is a 
long way to go. Real situations are more complicated and 
uncertain than determined laboratory testing environ-
ments, whether a designed PHM system can adapt a real 
environment should be discussed.

Despite of these difficulties, some PHM systems have 
been worldwide launched. PHM has been involved in 
many fields, such as spacecraft, helicopter, aero-engine, 
wind turbine, electric power, petrochemicals, etc. Nowa-
days, PHM has risen to new heights with a development 
of artificial intelligence (AI) and sensor techniques. In 
the military field, a set of PHM systems were deployed 
on F-35 fighter and practice proved strengths of PHM 
in reducing maintenance costs. Besides, reusable launch 
vehicle (RLV), F-22, EF-2000, etc., also applied PHM 
related techniques [9]. Integrated vehicle health manage-
ment (IVHM) [10] center was founded by the Cranfield 
University and known enterprises like Boeing, etc. It was 
devoted to integrating a framework to assess current 
or upcoming system states and better manage system 
health.

Battery PHM [11] is an emerging topic as battery 
becomes mainstream energy storage components in dec-
ades. Batteries are widely used in modern equipment 
due to high-energy density, environmental friendliness 
and light weight, especially lithium-ion batteries. There 
are quantities of electronic devices such as smartphones, 
electric vehicles (EV), unmanned aerial vehicles, and 
energy storage systems. As a driven power, batteries are 
the most significant components in electronic equip-
ment, thus battery health conditions directly determine 
whether devices properly operate. Battery-driven elec-
tronic equipment tends to be complicated because it is 

related to electrochemistry, electricity, and even mechan-
ics. Similarly, battery PHM includes health state estima-
tion and prediction, fault diagnosis, battery maintenance, 
etc. Firstly, state of health (SOH) and remaining useful 
life (RUL) are two highly concerned themes of battery 
health states [12] in the recent literature. SOH represents 
relative discharge capacity compared to rated capacity. In 
addition, battery fault diagnosis has received wider atten-
tion with frequent occurrences of EV accidents, such as 
thermal management [13, 14], voltage fault [15], internal 
short circuit detection [16]. Accurate battery fault diag-
nosis occupies an important place for ensuring safety 
and reliable operation of battery and electronic equip-
ment. Unluckily, battery maintenance gets less attention 
than former themes. Battery swapping and replacement 
strategies are fundamental [17]. There still remains much 
space to explore, such as predictive maintenance [18].

Several useful and attractive review papers were pub-
lished within the scope of battery PHM [19]. However, 
three main research gaps remain in existing review 
works:

(1) Most review works just focus on SOH and RUL of 
batteries, but neglect fault diagnosis and health manage-
ment, which are incomplete and limited for battery PHM.

(2) Related literatures are dated because of rapid 
advances in battery PHM in recent years.

(3) Little review papers collected existing public data-
sets and characteristics which can provide much con-
venience for newcomers and ones who need method 
verification of related fields.

With the aforementioned gaps in existing battery PHM 
review papers, we systematically investigated the latest 
research to present valuable views. The main contribu-
tions of this work are as follows:

(1) Summarize recent six-year from 2018 to 2023 litera-
ture of battery PHM to track the progress of this field.

(2) Analyze advantages and limitations of different 
types of approaches proposed by scholars at home and 
abroad, and provide some suggestions for battery PHM 
methods.

(3) Review battery PHM from the perspective of key 
PHM steps, including fault diagnosis and health manage-
ment so as to fill in previous research gaps.

(4) Collect public datasets published by known insti-
tutions and universities, and analyze characteristics of 
datasets for offering convenience for researchers.

(5) Challenges and prospects of battery PHM in the 
future are discussed.

The remaining part of this paper is organized in the fol-
lowing way. Firstly, battery testing methods and public 
datasets of batteries are introduced in Section  2, which 
is the basis of battery PHM. Next, two important com-
ponents of battery PHM are introduced. Section 3 gives 
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a brief overview of battery fault diagnosis and prediction. 
Section 4 introduces battery health states estimation and 
prediction methods. Finally, Section 5 provides a discus-
sion on challenges and future research opportunities of 
battery PHM. The purpose of a final section is to draw 
conclusions.

2  Battery Testing and Public Datasets
This section explains main purposes and ways of battery 
testing, and then common public datasets released by 
various institutions are summarized for reference.

2.1  Battery Testing and Data Acquisition
From battery design to production, large amounts of 
tests are needed. First of all, before batteries are commer-
cially rolled out, battery enterprises need to obtain bat-
tery performance parameters including capacity, nominal 
voltage, internal resistance, temperature characteristic, 
energy density, etc., through massive battery tests. If 
performance can not meet a designed expectation or 
contain product defects, batches of batteries should be 
redesigned or reproduced to improve product quality. 
Besides, for application clients, battery tests are essential 
to ensure battery functionality and satisfy full life cycle 
application requirements. This kind of battery tests con-
centrate on cycle performance assessment and useful life 
prediction, etc. Also, official supervision departments 
supervise battery industry and further set standards of 
commercial batteries with the help of specific battery 

testing results. In academic circles, researchers conduct 
specific accelerated tests or explore experiments on bat-
teries for serving their research.

In order to save time and resources, battery is usually 
conducted by using accelerated cycle aging test that aims 
to increase a test stress such as increasing battery charge 
and discharge rate or temperature, consistent charge 
and discharge cycle. The accelerated cycle aging test 
can shorten a test period without changing battery fail-
ure mechanism and failure distribution [20], which can 
improve test efficiency and reduce test cost.

The most famous battery testing platforms are from the 
Arbin Instruments company, which is a leader in the bat-
tery testing area. Arbin’s Laboratory Battery Testing has 
a wide series range, from cell, module to pack levels of all 
sizes. Charging/discharging cycle tests, electrochemical 
experiments, electrochemical impedance spectroscopy 
(EIS) tests and real-world simulations can be realized 
using a different type of equipment.

Contents of battery tests are abundant. According to 
the work of Xiong [21], battery performance tests contain 
three main directions: General electrical performance 
testing, AC impedance testing, and residual life test-
ing. Considering academic and industrial requirements, 
referring to national standards about requirements and 
test methods for batteries, we thoroughly summarize 
battery testing in Figure  1. One can select appropriate 
battery testing based on one’s requirements. In battery 

Figure 1 Review of battery testing methods
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testing, many quantities can be measured, including cur-
rent, voltage, capacity, EIS, etc.

For battery PHM, much attention is paid to capacity 
testing and life cycle testing [22]. Battery performance is 
tested under various conditions, such as different tem-
peratures and discharge rates. Experimental charge/dis-
charge policies contain constant current (CC), constant 
current-constant voltage (CC-CV), federal urban driv-
ing schedule (FUDS), China typical city driving cycle 
(CTCDC), and urban dynamometer driving schedule 
(UDDS). As for fault diagnosis, some fault simulation 
experiments are conducted so that fault data can be 
obtained. Generally, artificial faults are made to simu-
late real abnormal cases, for instance, thermal runaway, 
short circuit, external stress, etc. In research, accelerated 
life test (ALT) is a convenient approach to obtain degra-
dation information before end of life (EOL). ALT means 
that batteries are continuously operated at high stresses 
or high rates to save time. Commonly, a failure threshold 
is set to 80% of an initial capacity.

Many kinds of battery tests have been conducted in 
academic and industrial areas, however, existing battery 
tests for battery PHM are not enough. There are some 
suggestions and perspectives on battery testing of battery 
PHM:

(1) In reality, lots of factors will influence testing 
results, such as operation conditions, environmental fac-
tors, user behaviors. Those factors are coupled with each 
other. How to accurately simulate complex real cases 
remains a question.

(2) While the ALT can accelerate test processes and 
provide convenience, however, whether results of ALT 
can represent real situations is doubtful. How to transfer 
ALT results to real circumstances is a valuable topic.

(3) Some battery tests are destructive, which are costly 
and inconvenient. Nondestructive testing and advanced 
sensors that can explore an internal situation of batteries 
are potential directions for battery PHM.

2.2  Public Datasets Collection and Analysis
There are many academic and industrial institutions pub-
licly providing battery testing datasets, such as the center 
for advanced life cycle engineering (CALCE) and NASA 
Ames prognostics center of excellence (NASA Ames 
PCoE). Those datasets provide convenience for research-
ers in the battery PHM field. In order to facilitate scholars 
to conduct in-depth research, this paper sorts out some 
existing public datasets for scholars’ reference, illustrated 
in Table 1.

The internal aging mechanism of rechargeable bat-
teries is complex, and many environmental factors 
affect their degradation, so it is difficult to estimate and 
predict the health status of batteries [57]. At the same 

time, data that can support the research is also lim-
ited. Although this paper has sorted out some existing 
public data that can be used for research, there are still 
many deficiencies in the current era of big data:

(1) Research on battery health prediction under dif-
ferent operating conditions is insufficient. The perfor-
mance degradation of rechargeable batteries is affected 
by operating conditions and environments of equip-
ment. Degradation characteristics of rechargeable 
batteries may be different under different operating 
conditions. For example, aging trends of 25 ℃ and 40 ℃ 
at discharge rates of 1 C and 3 C are different. Existing 
health status estimation and prediction methods usu-
ally assume that working conditions are constant and 
fixed. Although this simplification reduces the com-
plexity of aging modeling and prediction, it will affect 
the accuracy of estimation and prediction results, and 
cause large prediction errors in practical applications.

(2) Research on battery pack health prediction is still 
in its infancy. Most existing studies aimed at cell health 
prediction, and there are many algorithms and certain 
applications. In practice, battery cells are connected 
in series or parallel to form battery packs (pack level). 
States of battery packs are more complex than those 
of single batteries, involving mutual coupling between 
cells and other problems such as inconsistency of cells, 
electrical imbalance and temperature gradient. Its 
health status is not just a simple superposition between 
monomers, but also important for equipment to pre-
dict the health status of a battery pack. However, there 
is still a large gap in the research on the health status 
prediction of a battery pack.

(3) Most existing prediction methods remain in a theo-
retical stage and cannot be packaged into vehicle battery 
management systems (BMSs). Although most validity 
and accuracy of existing methods have been verified in 
experimental data, few actual cases are encapsulated into 
BMSs. In addition, how to verify the accuracy of predic-
tion results after encapsulation into BMSs remains to be 
discussed. Most existing methods are not adaptable and 
they are only used for a certain battery or a certain oper-
ating environment.

(4) Inadequate battery aging data sets. In the research 
process, the lack of battery aging data under multiple 
working conditions and scales, the lack of battery pack 
data and the lack of battery actual operation data, etc., 
have also caused some difficulties in the research on bat-
tery health condition prediction. Extreme temperature 
conditions will influence battery aging. More battery 
datasets at high or low temperatures are needed. Most 
existing studies use data collected in laboratory, however, 
there are few studies on data in practical applications. 
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Table 1 Battery public datasets information collection

Institutions Battery specification 
and data quantity

Charge/discharge 
policy

Other environmental 
conditions

Characteristics Relative works

Stanford University & MIT
[23, 24]

240 phosphate (LFP)/
graphite cells
Type: A123 
(ANR26650M1A)
Nominal capacity of 1.1 
A·h
Nominal voltage of 3.3 V

Charge by multi‑step 
CC‑CV protocols
Discharge at 4 C

Test in a temperature 
chamber set to 30 °C

Use 224 multi‑step, 
ten‑minute fast‑charging 
protocols
Can be used in fast 
charging research

[25–29]

124 phosphate (LFP)/
graphite cells
Type: A123 
(ANR26650M1A)
Nominal capacity of 1.1 
A·h
Nominal voltage of 3.3 V

Charge by CC‑CV 
protocols
Discharge at 4 C

Test in a temperature 
chamber set to 30 °C

Charged with a one‑step 
or two‑step fast‑charg‑
ing policy
Can be used in fast 
charging research

CALCE [30] Type: INR 18650‑20R
Phosphate (LNMC)/
graphite cell
Nominal capacity 
of 2000 mA·h

Low current OCV test
(e.g., C/20, C/25)
Incremental OCV test
Dynamic profile test

Test at various tempera‑
tures (0 ℃, 25 ℃, 45 ℃)

Can be used in the SOC 
estimation of Li‑ion
Include dynamic tests 
(e.g., FUDS)

[31–33]

phosphate (LFP)/graph‑
ite cell
Type: A123 
(ANR26650M1A)
Nominal capacity 
of 2230 mA·h

Low current OCV test
Dynamic profile test

Temperature rang‑
ing from 0 °C to 50 °C 
with interval of 10 °C

Can be used to study 
the effect of tempera‑
ture to OCV‑SOC
Test under DST 
and FUDS

[33, 34]

15  LiCoO2/graphite cells 
(CS2)
Nominal capacity 
of 1100 mA·h

Charge by CC‑CV 
protocols
Discharged at a constant 
current

Test in an Arbin LBT200 
equipment

Can be used in RUL 
prediction research

[30, 35–37]

12  LiCoO2/graphite cells 
(CX2)
Nominal capacity 
of 1350 mA·h

Charge by CC‑CV 
protocols
Discharged at a constant 
current

Test in an Arbin LBT200 
equipment

Can be used in RUL 
prediction research

[30, 35, 38]

NASA Ames PCoE [39] About 40 18650 Li‑ion 
cells
Nominal capacity of 1.1 
A·h
Nominal voltage of 3.3 V

Charge by CC‑CV 
protocols
Discharge at a constant 
current

Test at room tempera‑
ture

Include EIS tests sweep‑
ing from 0.1 Hz to 5 kHz

[40–45]

About 28 18650 Li‑ion 
cells
Nominal capacity of 1.1 
A·h
Nominal voltage of 3.3 V

Random walk (RW) 
discharging (current 
loads ranging from 0.5 
A to 5 A)
7 various experimental 
settings

Test at various tempera‑
tures (25 ℃, or 40 ℃)

Extend research 
under random walk 
discharging policy

[45–47]

Oxford University [28] 12 NCR18650BD (NCA/
graphite) cells
Nominal capacity of 3 
A·h

Charge by CC‑CV proto‑
cols (C/2, C/4)

Test at room tempera‑
ture (24 ℃)

Combination of cycle 
cyclic and calendar 
aging
Test under joint loads
Include EIS tests

[48]

8 kokam (SLPB533459H4) 
Li‑ion pouch cells
Nominal capacity of 740 
mA·h

Charge by CC‑CV 
protocols
Cells discharge at urban 
Artemis profiles

Test in a thermal cham‑
ber at 40 ℃

Long‑term aging tests [49–51]
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Although there are some publicly available data sets to 
researchers, there are still large data gaps.

3  Battery Fault Diagnosis and Prediction
After obtaining battery data by testing, battery states 
can be monitored, and the aim of this monitoring is to 
timely detect battery faults and further predict potential 
faults to ensure normal operation of systems. In this sec-
tion, classification of battery faults is firstly introduced in 
Section 3.1, and aiming at these different types of battery 
faults, battery fault diagnosis and prediction methods are 
briefly reviewed in Section 3.2.

3.1  Classification of Battery Faults
Multiple battery faults affect battery usage safety [58], 
such as overcharge fault, accelerated degradation, con-
nection fault. In this section, battery faults are briefly 
divided into three categories: (1) External battery faults; 
(2) internal battery faults; (3) battery thermal runaway. 
Classification of battery faults is shown in Figure 2.

3.1.1  External Battery Faults
External battery faults may influence normal abilities 
of BMS and even cause internal battery cell-level faults. 
This kind of faults are mainly caused by abnormal opera-
tion of electronic components outside batteries.

External battery faults include: (1) Sensor faults, con-
taining current, voltage and temperature sensor faults; 
(2) heating and cooling system faults; (3) controller area 
network (CAN) communication faults and electric relay 
faults; (4) cell connection faults such as contact oxidation 
and looseness.

3.1.2  Internal Battery Faults
Compared with an external failure of a battery, the 
inducement of internal faults of the battery is more dif-
ficult to judge because the battery internal reaction pro-
cess during operation is unclear.

The main causes of battery internal faults include: (1) 
Defects in manufacturing process; (2) overcharge and 
over-discharge; (3) overheating; (4) internal short circuit 
and micro short circuit; (5) accelerated degradation.

3.1.3  Battery Thermal Runaway
Thermal runaway (TR) is the most serious type of bat-
tery faults, which directly threatens the life safety of 
users. TR is usually induced by battery electrical faults 
and battery internal faults. Many scholars have been 
donated to TR mechanisms and some side reactions have 
been modeled when a battery is thermally out of control. 
In addition, the process of thermal runaway is usually 
accompanied by spontaneous heat production and side 
reactions, mainly including (1) SEI decomposition; (2) 
anode electrolyte; (3) cathode decomposition; (4) electro-
lyte decomposition; (5) short circuit and so on. The main 
cases of the TR can be divided into 3 types: (1) Mechani-
cal abuse; (2) electrical abuse; (3) thermal abuse. Detailed 
classifications are illustrated in Figure 2.

3.2  Battery Fault Diagnosis and Prediction Methods
Based on analysis of battery faults classifications in Sec-
tion 3.1, this section mainly introduces battery fault diag-
nosis and prediction methods. Fault diagnosis algorithms 
can be divided into: (1) Model and experiment based 
methods; (2) data-driven methods. Details can be found 
in Figure 3. Data-driven methods are popular nowadays 
due to their flexibility and simplicity, while model and 

Table 1 (continued)

Institutions Battery specification 
and data quantity

Charge/discharge 
policy

Other environmental 
conditions

Characteristics Relative works

Mendeley 18650 PF Li‑ion battery 
(panasonic)
Nominal capacity of 2.9 
A·h

Charge by CC‑CV 
protocols

Test at 5 temperatures
(−20 ℃~25 ℃)

HPPC, drive cycles, 
and EIS tests

[52–54]

4 cylindrical lithium‑ion 
cell types: 18650‑HB6 
(LG),
NCR18650B (panasonic), 
IFR18650 (ShenZhen),
IMR18650 (Efest).

Charge by CC‑CV 
protocols
Constant power dis‑
charge

Test at constant tem‑
perature
(25±0.5 ℃)

Can be used in studying 
correlation between dis‑
charge duration and dis‑
charge power

[55]

Cavendish Laboratory 12  LiCoO2/ graphite cells
(Eunicell LR2032)
Nominal capacity of 45 
mA·h

Charge by CC‑CV 
protocols
Discharge at 2 C‑rate

Test at constant tem‑
peratures
(25 ℃, 35 ℃, 45 ℃)

Test EIS and charge‑dis‑
charge cycles at different 
temperatures and SOC 
points

[56]
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experiment based methods have higher requirements for 
physical knowledge. If enough data are available, data-
driven methods are fine choices for effectively realizing 
battery fault diagnosis. However, battery fault data are 

difficult to obtain sometimes, model and experiment 
based methods can deal with the situation in which there 
lacks battery data.

Figure 2 Classification of battery faults

Figure 3 Battery fault diagnosis and prediction methods
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3.2.1  Model and Experiment Based Fault Diagnosis Methods
Model-based fault diagnosis methods are conducted 
based on mechanism models to describe electrical and 
thermal characteristics of a battery in the process of 
use, such as electrochemical models, thermal models 
and thermoelectric coupling models. Usually, based on 
the prior knowledge of a model structure, state estima-
tion and parameter identification methods are used to 
observe a key state and parameter information of a bat-
tery from battery data. These observed values are used to 
conclude whether a battery has failed.

(1) Battery voltage characterization models

Nowadays, the research on lithium-ion battery mod-
eling in a normal state is much more extensive. Equiva-
lent circuit modeling [59], fractional-order modeling 
[60], electrochemical modeling [61], and their simplifica-
tion, on-line and off-line parameter estimation have been 
widely studied. Wei et al. [62] analyzed some critical val-
ues of voltage and temperature when a real vehicle ther-
mal runaway occurs, and traces a cause. In Ref. [63], SOC 
and ohmic resistance of a battery were estimated by using 
extended Kalman filter (EKF) and recursive least squares 
with a forgetting factor, and a fault level of internal short 
circuit was determined by combining the voltage and 
temperature of a battery. Based on current and volt-
age data, Refs. [64, 65] carried out parameter identifica-
tion and state estimation for a battery system model (an 
electrochemical model and an equivalent circuit model), 
and judged whether a battery failed through the analysis 
of time-varying parameters. Liu et  al. [66] used EKF to 
detect and isolate sensor faults.

(2) Heat generation and TR models

In addition to using models to describe battery volt-
age performance, a heat generation model of lithium-ion 
batteries was also very important because it is needed to 
compute a temperature rise of a battery under abnormal 
conditions. A thermal model was divided into lumped 
model [67], 1-D model [68], 2-D model [69], 3-D model 
[70]. The accuracy of models gradually increases. The 
heat generated by a battery is mainly composed of ohmic 
heat, polarization heat, reaction heat, contact resist-
ance heat and side reaction heat. The aforementioned 
heat generation is calculated through an electrochemi-
cal model, then they are input into a battery transformer 
equation to obtain a battery temperature rise. Some 
changes of electrochemical parameters were obtained by 
the Arrhenius equation, and an electrochemical equation 
was introduced to realize the coupling of electrochemical 
model and thermal model [71].

Meanwhile, some models can evaluate the possibility of 
side effects and TR of a battery based on battery use and 
heat generation processes. In Ref. [72], electrochemical 
characteristics and thermal characteristics of a battery 
were coupled, and a prediction model of thermal runa-
way in a high-temperature environment was established 
for high-capacity lithium-ion battery. In Ref. [73], based 
on an electrochemical thermal coupling relationship, a 
prediction model of thermal runaway caused by short 
circuits in lithium-ion battery was established. Mean-
while, the boundary of TR was determined according to 
different heat source intensities and durations, which was 
distinguished from a safety zone. Feng et  al. [74] estab-
lished a lithium-ion battery TR prediction model and 
described temperature and voltages changes of lithium-
ion cells during thermal runaway for heat abuse.

(3) Experiment based methods

In addition to model-based methods, experiments are 
an important part in battery fault diagnosis. In the indus-
try area, some basic battery safety tests such as heat-
ing, acupuncture, collision were conducted in order to 
achieve abnormal data such as voltage, gas and expansion 
force [75, 76]. Chen et al. [77] used experiment data of an 
external short circuit fault of battery cells based on ran-
dom forest algorithm, meanwhile, the leakage of a bat-
tery was analyzed. The experimental method studied the 
performance of current and voltage under specific fault 
conditions, and can usually get good conclusions, but it is 
not exactly same as an actual fault.

3.2.2  Data‑Driven Fault Diagnosis Methods
Data-driven fault diagnosis methods use data to detect 
abnormal states of battery. This kind of methods depend 
on a large amount of data. For example, voltage anomaly 
usually indicates deeper internal faults, such as internal 
short circuit and structural faults, which can be ana-
lyzed by data-driven methods including real data analysis 
methods, statistical methods, machine learning methods.

(1) Real data analysis methods

This kind of methods rely on battery data measured by 
sensors. In a lithium-ion battery pack, temperature sen-
sor, voltage sensor, and current sensor can collect cell 
information and these data are uploaded to BMS. Due to 
limitation of fault labels and data quality, methods based 
on real data usually focus on the setting of thresholds and 
heuristic rules of voltage and temperature representation.

Gao et al. [62] analyzed a thermal runaway process of 
a battery and some key time nodes of a thermal runa-
way instance, such as an abnormal starting point of 
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voltage and temperature. In addition to setting of basic 
thresholds, Sun et al. [78] online estimated temperature 
of lithium-ion battery using Kalman filter (KF) based on 
real data. Xia et al. [79] extended a way of battery faults 
diagnosis to external short circuit. Hinton et  al. [80] 
proposed a novel fault diagnosis method using feature 
fusion and manifold learning for dimensionality reduc-
tion, and finally identified abnormal signal features based 
on a clustering-based outliners point detection method. 
Kang et al. [81] proposed a multi-fault diagnostic method 
using voltage measurements and topology technology, 
and diagnosed various faults including short circuit, 
sensor faults, etc. Li et  al. [82] adopted a circuit faults 
detection approach based on weighted Pearson correla-
tion coefficient and considered forgetting factor to avoid 
misdiagnosis.

(2) Statistical methods

Apart from directly diagnosing faults according to 
real data, statistical methods can be used to analyze the 
abnormal representation of a battery, so as to realize fault 
diagnosis of the battery. Inconsistent temperature [83] 
and abnormal aging state of battery cells will usually lead 
to inconsistent voltage of cells. The method based on sta-
tistics has a good ability to detect the inconsistency of 
each characteristic quantity of each monomer of a bat-
tery pack.

Zhang et  al. [84] explored various entropy algorithms 
to diagnose a battery real-scenario fault, and designed 
a multi-level diagnosis strategy for actual vehicle fault 
diagnosis. Wang et  al. [85] proposed a voltage anomaly 
detection method based on a modified Shannon entropy, 
and compared the similarities and differences between 
Shannon entropy and sample entropy in fault diagnosis. 
Wu et  al. [86] combined Hausdorff distance and modi-
fied Z-score to conduct online fault detection and loca-
tion for battery pack. Xia et al. [87] used a sliding window 
to directly calculate the correlation coefficient between 
fixed-length segment voltages to analyze the inconsist-
ency between voltage values.

(3) Machine learning methods

Machine learning methods are more and more 
attracted and popular these years. When having bat-
tery sensor sequences and faults, it seems to be the most 
direct and effective way to use machine learning meth-
ods to establish a discrimination model to find fault 
information. However, machine learning methods face 
with problems of lacking data, unreliable labels and poor 
generation performance under an actual using scenarios, 
which need to be solved.

Many scholars try to use machine learning methods 
to automatically capture characteristics of battery faults 
and TR. Xie et al. [88] constructed a novel convolutional 
neural network (CNN)-based diagnostic framework for 
series battery packs to realize fault type inference and 
fault grade evaluation. Signal imaging techniques were 
used to analyze detailed system states. Li et al. [89] pro-
posed a density-based spatial clustering of applications 
with noise (DBSCAN) based method to analyze 2D fault 
features. The effectiveness of the algorithm was veri-
fied and tested on real vehicle data. In addition to clus-
tering-based methods, a symbolism-based method such 
as fuzzy logic can effectively identify faults [90]. With 
the help of neural networks, a normal working mode of 
a battery was easy to learn. Hong et al. [91] used a long 
short-term memory (LSTM) model to predict voltage in 
a few steps as a normal battery output, which was com-
pared with real voltage. Then, a threshold-based rule was 
proposed to assert battery faults. With a development of 
deep learning, a meta-learning method was proposed in 
Ref. [92], which learned the similarity of battery observ-
able data before TR including current, voltage, tem-
perature and so on. It should be noted that through an 
ablation experiment, thermal imaging makes a great con-
tribution to the accuracy of the model. Thus, due to cost 
reasons, this method can not be applied to real vehicles.

For battery fault diagnosis, more efforts should be put 
in fault pre-detection and warn in advance. Fault pre-
detection is significant for ensuring the safety of battery 
system and users. Tense diagnosis strategies are needed 
at any situations for security.

4  Battery Health Status Estimation and Health 
Management

With an increase of usage time, battery will gradually 
degrade and aging. Different from battery faults, battery 
degradation is a slow and long-term process so health 
states should be estimated during using. In this section, 
we firstly review popular SOH and RUL methods based 
on the latest literature; then a brief summary of predic-
tive maintenance progress is given.

4.1  State of Health Estimation Methods
SOH and RUL are the most important metrics for evalu-
ating batteries in PHM. For SOH, it is used to represent a 
health degradation degree of a battery during its service 
period. It is usually evaluated by an internal resistance 
of a battery or discharge capacity. It reflects the health 
state of the battery and its ability to output power. RUL 
is used to represent remaining useful life or the number 
of charge-discharge cycles until a battery reaches a pre-
set threshold by system manufacturers or users. RUL 
prediction is a necessary condition to ensure the safe 
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and reliable operation of a battery system [93]. In order 
to prevent premature performance degradation and cata-
strophic failures, continuous monitoring and control are 
required during battery life. Therefore, accurate predic-
tion of battery SOH and RUL is required to ensure the 
safe operation of a battery system and its energy supply 
equipment.

4.1.1  Data‑Driven Methods
SOH is used to represent aging degradation of a battery 
and many characterization methods can represent it. For 
example, the capacity, resistance, and power of batteries 
can be used as the characterization parameters of SOH 
[94]. The ratio of the current maximum available capacity 
to the nominal capacity of a battery can be used to repre-
sent SOH.

where Qcurrent represents the currently available battery 
capacity. Qnominal is the nominal capacity, it is measured 
under standard conditions and it is determined once a 
battery is produced.

There are a variety of SOH estimation methods accord-
ing to different classification standards [95, 96]. A rela-
tively comprehensive classification method is introduced 

(1)SOHQ =

Qcurrent

Qnominal

,

here. SOH estimation methods can be mainly divided 
into three categories. Direct estimation methods based 
on experimental measurement data, indirect estima-
tion methods based on models and other methods. Each 
category can be subdivided into many sub-categories 
according to different characteristics of methods. Such as 
indirect estimation methods based on models including 
physics-based methods, data-based methods, and hybrid 
methods. SOH classification of estimation methods is 
shown in Figure 4.

Direct SOH estimation methods based on experimental 
measurement data are mainly carried out in laboratory 
environments. Directly using capacity tests, impedance 
tests, or other testing methods to obtain battery SOH. 
The following details several classical direct estimation 
methods.

(1) Ampere-hour integral method

Ampere-hour integral method (AH), also be known 
as the Coulomb counting method, is a basic traditional 
method. It calculates the integral of discharge current 
against time to determine the total discharge power of 
the battery under the condition of complete discharge, 
and then the ratio of it to the nominal capacity of a bat-
tery can be expressed as SOH. This method is often used 

Figure 4 Classification of SOH estimation methods
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to estimate the SOC. Zhang et al. [97] proposed a data-
driven Coulomb counting method. They converted a 
traditional IC curve into a SOC based IC curve based on 
incremental capacity analysis (ICA). After correcting an 
initial SOC error, four voltage values were selected as an 
input of a Gaussian process regression (GPR) model to 
achieve actual capacity estimation.

(2) Open-circuit-voltage (OCV) estimation methods

OCV estimation methods obtain the relationship 
between SOH and OCV through a large number of labo-
ratory tests. Zhang et al. [98] proposed a new non-exper-
imental relationship reconstruction method between 
OCV and SOC/SOE. An OCV-SOC curve was obtained 
without an additional battery test, and then SOC can be 
estimated based on OCV. Based on the new relationship, 
the error of the estimation of SOC results by an EKF was 
effectively reduced. Knap et  al. [99] proposed a method 
for SOC estimation based on an untracked Kalman filter 
(UKF), which comprehensively considered the wide and 
rapidly changing temperature and other conditions. The 
OCV parameters of a battery were obtained by an online 
parameter identification method, and measured values of 
current and temperature were used for SOC estimation 
of a battery.

(3) Electrochemical impedance spectroscopy (EIS) based 
methods

EIS based estimation methods use a wide spectrum 
to estimate SOH, and EIS can also be used to estimate 
the parameters of an equivalent circuit model to esti-
mate remaining capacity of a battery [100]. However, EIS 
measurement requires a long test time and a stable test 
environment, so there are difficulties in practical appli-
cations. Destructive methods refer to the use of X-ray, 
scanning electron microscope, or other technologies to 
observe changes in an internal microstructure of a bat-
tery under different aging mechanisms from the per-
spective of microscopic mechanisms, to research battery 
aging mechanisms and battery SOH [101]. This method 
can intuitively observe internal changes caused by bat-
tery aging. However, this method is only applicable to 
aging mechanism research under laboratory conditions 
because a battery needs to be disassembled and damaged.

To sum up, although most direct estimation methods 
based on experimental measurement data are difficult to 
implement in a complex environment of practical appli-
cations, the rich information obtained and relatively 
accurate SOH estimation results can provide theoreti-
cal supports and accuracy verification for model-based 
methods.

Indirect estimation methods based on models can 
be further divided into physical-based model methods, 
data-based methods, and other methods.

4.1.2  Physical Model Based Methods

(1) Electrochemical model estimation methods

Electrochemical model (EM) estimation methods con-
sider complex chemical processes inside a battery [102]. 
Physical-based models can accurately describe degrada-
tion mechanisms, providing the degradation of knowl-
edge without a large number of historical data. Model 
parameters are chemical and physical significance and 
then researchers can get accurate estimation results usu-
ally in the electrolyte conductivity and electrode poros-
ity as indicators of estimating SOH. However, due to a 
large number of electrochemical parameters and partial 
differential equations involved in an EM model, it is dif-
ficult to solve and computational complexity is high. 
Therefore, simplifying an EM model is necessary to meet 
the requirements of online estimation and reduce com-
putational pressure. A widely used simplified model is a 
pseudo-two-dimensional (P2D) model [103], a single-
particle model (SPM) [104], etc. The higher the simplifi-
cation degree is, the lower computational complexity is, 
but corresponding accuracy will also be reduced.

(2) Equivalent circuit model estimation methods

Equivalent circuit model (ECM) estimation methods 
[105] is a circuit model composed of electronic compo-
nents such as resistor, capacitance, and constant voltage 
source, which can be used to describe external character-
istics of a battery. ECM consists of resistance ( R0 ), voltage 
source ( U ), resistor capacitance circuits, etc. A schematic 
diagram of an ECM is shown in Figure  5. According to 
the number of resistor capacitance circuits (RC), it can 
be divided into a Rint model (RC = 0), a Thevenin model 
(RC = 1), a dual-polarization model (RC = 2), etc. Accord-
ing to a ECM model, the corresponding equation of state 
can be derived, and its parameters can be identified to 
provide further analysis [106]. The calculation of an ECM 
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Figure 5 Schematic diagram of ECM
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is relatively small, and it has been applied to SOH esti-
mation. Wang et  al. [107] used an ECM to characterize 
an aging phenomenon of batteries under constant voltage 
charging conditions, proposed a new health indicator, 
and used this indicator to estimate SOH online. Through 
correlation analysis and performance evaluation, the 
adaptability and effectiveness of this method were veri-
fied for health state assessment of lithium-ion batteries. 
However, it required some empirical parameters, and this 
model lacked a physical explanation. Parameters cannot 
be automatically updated and the accuracy is low.

Although physical-based model methods do not need 
a lot of historical data in a modeling process, the closer 
the model is to a real battery system, the more accurate 
the estimation results will be, and the higher the com-
plexity will be, and the more calculation will be required. 
The challenges of this approach lie in trade-offs between 
computational complexity and model accuracy, as well as 
adaptability to environments.

(3) Data-based model methods

Data-based model methods are using battery data in 
the process of history and operation, etc., to analyze and 
extract useful information for the degradation of battery 
and estimate health state. This kind of method does not 
need an internal complex degradation mechanism of 
batteries for precise modeling and professional electro-
chemical knowledge, only needs data. Mainstream meth-
ods can be specifically divided into two categories. One is 
based on statistical model methods, the other is based on 
machine learning methods more popular in recent years.

(4) Statistical methods

Using statistical models, based on existing battery 
data characteristics, one can choose different meth-
ods to model battery degradation. Borrowing from an 
established model to estimate battery health. A rela-
tively simple method is using known data to establish an 
experience aging model. Usually, it can be expressed as 
the function of cycles or time, and then with the aid of 
an experience model, for example, polynomial, exponen-
tial, power function which are empirical models com-
monly used to fit later unknown data. This method is 
small in computation and easy to operate, but it is highly 
dependent on experimental results, and the accuracy of 
the estimate is low, which cannot adapt to the influence 
of environmental changes and other emergencies. There-
fore, this kind of method is often used in combination 
with filtering updating methods that will be introduced 
later. In addition, stochastic models based on a Markov 
process, a Gamma process, a Wiener process also found 

some applications in battery health state prediction. 
Qualitative is inevitable due to uncertainty in working 
environments, so stochastic models can well character-
ize a random degradation process. However, different 
random models are suitable to different data characteris-
tics, so corresponding random models should be selected 
by data. Dai et al. [108] used a Markov chain and neural 
networks to estimate SOH. Wang et  al. [109] obtained 
an estimation result with good robustness and accuracy 
with the help of an improved Brownian motion model.

(5) Machine learning based methods

With an improvement in computing levels and the 
rise of artificial intelligence, methods based on machine 
learning have attracted more and more attention [110]. 
Machine learning methods have good dynamic accuracy 
and strong learning ability. Strong nonlinear problems 
can also get a good effect. Steps can generally be summed 
up in machine learning methods to data preprocessing, 
feature extraction, model parameters estimation, output, 
etc. Feature extraction is the most critical step which will 
directly limit the accuracy of estimation results. In addi-
tion, the quality of training data and the consistency of 
test data with training data will also affect the accuracy 
of estimation results. The increasing development and 
popularity of big data platforms help machine learning 
to solve the problem of large data demands [111, 112]. 
Mature machine learning methods include artificial neu-
ral networks (ANNs), support vector machine (SVM), 
random forest (RF), etc. Some methods can give a con-
fidence interval of estimation results, such as Gaussian 
process regression (GRP), dynamic Bayesian network 
(DBN), correlation vector machine (RVM). Zhang et  al. 
[56] reduced the dimension of EIS spectrum data to low-
dimensional features and used it as an input of a GPR 
model to predict battery health state and RUL at different 
temperatures. However, due to the difficulty in obtaining 
an EIS spectrum, this method is difficult to be applied to 
practical engineering.

(6) Filtering based methods

Methods based on adaptive filtering are often used in 
combination with an empirical model method or equiv-
alent circuit model method, which can adaptively adjust 
model parameters based on new data and reduce model 
estimation errors. It mainly includes KF correlation 
methods and particle filter (PF) correlation methods 
[113–115]. Many researchers have proposed new adap-
tive filtering methods to improve estimation effects. For 
example, Li et al. [116] proposed a method based on the 
combination of a mixed Gaussian process model and 
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PF, which can be used to estimate SOH under uncer-
tain conditions. Wang et al. [117] introduced a spheri-
cal volume particle filter (SCPF) to solve a state-space 
model. This method was widely used because of its 
more adaptive features. However, a main problem is 
that it requires a lot of training with experimental data 
to get the current capacity of a battery.

(7) Other methods

In recent years, researchers in this field have pro-
posed a variety of new methods for different problems, 
which have obtained good estimation results, such as 
sample entropy-based methods.

The differential analysis (DA) method is mainly real-
ized by differentiating a thermodynamic curve of elec-
tric power obtained by a constant current charge and 
discharge of batteries. This kind of method is widely 
used in the study of battery behavior in a laboratory 
environment. ICA method through a small current rate 
(C/25) of a battery charge and discharge corresponding 
dV/dQ-V analysis method. A differential voltage analy-
sis (DVA) method was used to analyze a dQ/dV-Q rela-
tionship [95]. The peak value of the curve can be used 
to characterize the electrochemical process of a battery 
during operation. For example, an IC peak corresponds 
to different phase transition processes on the battery 
electrode, and a DV peak corresponds to the occur-
rence of the reaction in a single-phase solution region, 
so SOH estimation can be derived from the relationship 
between different cycle times and peak information 
(such as peak position and peak amplitude) [118]. Dif-
ferential thermal voltammetry (DTV) estimates battery 
SOH through voltage, temperature, and other infor-
mation [119]. Jiang et  al. [118]. extracted the height 
characteristics of peak and valleys of curves under dif-
ferent cycles based on IC curves, and studied the func-
tional relationship between characteristics and battery 
SOH, then made an estimation. Li et al. [42] proposed 
a Bayesian nonparametric method for SOH estimation 
of lithium batteries by extracting a health index that is 
highly correlated with capacity from a partial charging 
IC curve. Li et  al. [120] proposed an ICA-based SOH 
estimation method for NMC lithium-ion battery, which 
can estimate a battery state with high precision under 
different cycle depths. Although ICA or DVA methods 
can accurately describe the reaction of physical and 
chemical processes. However, this method requires 
complete discharge under the condition of constant 
and small current to ensure that a peak value can be 
detected, and temperature will affect the accuracy of 
estimation, which requires smooth filtering and diffi-
cult operations.

Sample entropy can be used to quantify time series 
characteristics and complexity, so it can be used to char-
acterize battery capacity loss. Li et al. [121] combined PF 
with sample entropy calculated by battery surface tem-
perature to estimate capacity attenuation with a small 
error. Feng et  al. [122] calculated battery capacity using 
an algorithm based on a probability density function and 
charge-discharge data and explored the equivalence of 
this method with ICA/DVA.

Accurate SOH estimation is the basis of RUL predic-
tion, and SOH estimation accuracy directly affects RUL 
prediction accuracy. RUL prediction is more difficult 
than SOH estimation because future conditions are 
uncertain.

4.2  Remaining Useful Life Prediction Methods
RUL of Li-ion batteries can be defined as the difference 
between the end of a life point and a predicted starting 
point α [123], and the EOL can be calculated from Eq. (2) 
to be related to the pre-set failure threshold. Generally, 
failure occurs when the set capacity reaches 80% of its 
initial value.

Research on RUL prediction of equipment has made 
great progress in the past decade. Generally speaking, 
existing RUL methods can be divided into three cat-
egories which are model-based methods, data-driven 
methods, and hybrid methods. Figure 6 shows the clas-
sification of existing Li-ion battery RUL prediction 
methods.

Model-based methods refer to prediction of battery 
RUL based on aging mechanisms, material properties, 
the load of a battery, and other factors [124]. This method 
is highly dependent on the precision of modeling and the 
precision of model parameters. Due to the rapid develop-
ment of industrial technology and increasing complexity 
and uncertainty of equipment, the difficulty of mecha-
nism modeling has also increased. It is difficult to obtain 
an accurate mechanism model. Therefore, data-driven 
methods have gradually become a main research method 
[125]. A hybrid method combines different methods or 
models to predict RUL of Li-ion batteries. Its purpose 
lies in accurately estimating RUL of Li-ion batteries. A 
fusion method generally includes two kinds. One is com-
bining model-based methods with data-driven meth-
ods. Another is the integration of different data-driven 
methods.

4.2.1  Data‑Driven Methods for RUL Prediction
Data-driven methods use statistical theory or machine 
learning technology to establish a mathematical model 
and estimate parameters with the help of measured 

(2)RUL = EOL− α.
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data. With battery RUL or related quantity as a learn-
ing target to train a model, and learn parameters [126]. 
There are many common data-driven methods, such as 
ANNs, SVM, GRP, PF, KF, stochastic process like Wiener 
process.

(1) Neural networks (NN) based methods

Neural networks are a research algorithm in the 
field of artificial intelligence. It is a typical opera-
tion model of a nonlinear method. It is connected by 
a large number of nodes, and each node represents 
an output function. The principle of neural networks 
applied to RUL prediction of lithium-ion batteries is 
to take corresponding external data of lithium-ion bat-
teries such as battery capacity, as training samples, 
establish a simple model and input new data to get 
predicted values of RUL of lithium-ion batteries. And 
self-learning and repeated training and modification 
to obtain a final output. The neural network methods 
can estimate remaining service life of all kinds of bat-
teries. In the applications of neural networks, there is 
no need to establish a separate mathematical model, 
nor to consider the chemical reaction of batteries. 
Only a good neural network model can be established 
based on appropriate samples to complete estimation. 
Meanwhile, with an increase of sample data, estimation 
accuracy will also be improved. Wu et al. [127] defined 
RUL by analyzing a terminal voltage curve of a bat-
tery at different cycles during charging. They proposed 
a feedforward neural network (FFNN) to simulate the 
relationship between RUL and charge curve and used 
importance sampling (IS) for FFNN input selection. 

Finally, an accurate estimate of RUL was obtained. 
Zhang et  al. [128] used a LSTM recursive neural net-
work (RNN) to learn the long-term dependence 
between degradation capability of lithium-ion batteries. 
RUL can be predicted earlier than traditional methods.

(2) Support vector machine (SVM) based methods

SVM was first proposed in 1995 and then applied to 
many systems. It is a method based on statistical theory, 
especially suitable for solving the remaining service life 
and small sample problems of nonlinear systems. It can 
also be generalized with the function fitting problem of 
machine learning. Its advantage lies in that it only needs 
less training data, and support vectors obtained by SVM 
training directly determines the amount of computa-
tion, which weakens a dimensionality problem to a cer-
tain extent, and it is also widely used in the prediction 
of lithium-ion battery degradation. Patil et al. [129] ana-
lyzed the cycle data of lithium-ion batteries under dif-
ferent operating conditions and extracted key features 
from voltage and temperature curves to construct clas-
sification and regression models for RUL. Classification 
models provided rough estimates, support vector regres-
sion (SVR) models to predict accurate RUL as a bat-
tery neared the EOL. Al-dulaimi et  al. [130] took a rise 
of terminal voltage and a variation of voltage derivative 
(DV) in a battery charging process as training variables 
of a SVM algorithm to determine battery RUL. Then, 
SVM was used to establish a battery degradation model 
and predict actual cycles of a battery. Results showed that 
compared with a NN method, the proposed model has 
higher accuracy and less computation time.

Figure 6 Classification of RUL prediction methods
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(3) Gaussian process regression (GPR) based methods

GPR is a nonlinear regression probability method. 
Based on statistical learning theory and a Bayesian 
framework, Gaussian process regression gives the esti-
mation of a posterior distribution by limiting a prior dis-
tribution of available training data and then obtains an 
uncertainty expression of prediction results suitable for 
the small sample and high-dimension regression prob-
lems. Moreover, it has the characteristics of self-adaptive 
and easy realization of hyperparameters. Jia et  al. [131] 
constructed battery health indicators to represent bat-
tery capacity degradation from voltage, current, and tem-
perature curves during charging and discharging. SOH 
prediction is carried out by combining a GPR method 
with probability prediction, and an input of prediction is 
obtained by grey correlation processing of some indexes. 
RUL is estimated by its mapping relationship with SOH.

(4) Filtering algorithms based methods

There are many random filtering algorithms [132], such 
as particle filter and Kalman filter particle filter meth-
ods in non-linear non-Gaussian predicted estimates 
often cited, its principle is based on the Bayesian theory 
according to known data to predict future, but its limit 
noise that must be Gaussian noise but will be able to 
make the uncertainty of prediction results express that 
predicted results of a probability distribution. Therefore, 
many scholars used this method to predict the life of a 
lithium-ion cell. KF algorithms are an autoregressive pro-
cessing algorithm based on optimization. Its core is to 
minimize the state variance estimation of a system and 
calculate an estimated value of a state through the basic 
equation of a system. The advantage of this process is 
that it can use computers to calculate data in real-time. 
At the same time, this algorithm can be used for nonlin-
ear systems with a wide range of applications. Qiu et al. 
[133] used a multi-scale hybrid Kalman filter (MHKF) 
consisting of a backward smoothing square root cuba-
ture Kalman filter (BS-SRCKF) and an EKF to jointly esti-
mate SOC and SOH. An improved Cuckoo search (ICS) 
algorithm was combined with a standard PF. Finally, the 
RUL prediction was realized based on joint estimation 
information.

(5) Stochastic process based methods

Wiener process is also a common stochastic method in 
reliability modeling, which is suitable for a degradation 
process with Gaussian noise and a bidirectional change 
with time. It is also called a Brownian process. Using 
the Wiener process to model a degradation process has 

a certain mathematical solution advantage [134]. Using 
a Wiener process to model a failure time distribution 
can be analytically expressed, called the inverse Gauss-
ian distribution. Wang et al. [135] proposed a prediction 
method based on multi-implicit nonlinear drift Brownian 
motion and applied it to prediction of rechargeable bat-
tery RUL. Wu et al. [136] proposed an online prediction 
method based on a gamma process model, established 
battery PDF and reliability curve, and obtained a confi-
dence interval of 0.95 to reveal a predicted RUL statisti-
cal profile, taking into account uncertainties arising from 
random charge-discharge cycles.

(6) Other methods

Other data-driven methods are also briefly described 
here. Severson et  al. [24] developed an RUL prediction 
model using early cyclic discharge voltage data gener-
ated from a battery under the condition of rapid charg-
ing which did not show capacity degradation and used a 
machine learning algorithm to accurately predict RUL. 
Ma et  al. [137] proposed an algorithm based on a joint 
neural network and pseudo-nearest neighbor method 
and verified the effect of the algorithm by predicting 
RUL of batteries with different nominal capacities. Ng 
et al. [138] proposed a method for RUL prediction of lith-
ium-ion batteries under different operating conditions 
based on a naive Bayes method and gave an uncertainty 
measurement of prediction results, which showed good 
robustness. The data-driven methods have stronger flex-
ibility and applicability. It does not require professional 
knowledge of an internal reaction mechanism of a bat-
tery system but needs high-quality battery data as a basis 
for model training.

4.2.2  Model‑Based Methods for RUL Prediction
Model-based methods usually construct a physical deg-
radation model or experiential model to describe a bat-
tery under relevant characteristics, and then RUL can 
be obtained by extrapolation methods. The steps of the 
model-based methods can be summarized as the follow-
ing. Firstly, according to the characteristics of historical 
data to select an appropriate model (such as electrochem-
ical model, equivalent circuit model, or half-empirical 
model). Secondly, a selected model can be transformed 
into a state-space equation by a filtering algorithm (KF, 
PF, etc.). Thirdly, get initialized parameters and then esti-
mate and update state variables by using historical data. 
Finally, extrapolating a measurement equation to get an 
updated model and predict RUL of Li-ion batteries. Qiu 
et al. [133] embedded an improved cuckoo search (ICS) 
algorithm into a standard PF to improve the performance 
of the algorithm. Zhou et  al. [139] used a KF algorithm 
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and fuzzy logic (FL) to estimate capacity and control 
observation noise with the help of cloud platform data 
of electric vehicles and established an Arrhenius empiri-
cal model to predict RUL of a battery pack. Downey et al. 
[140] realized online RUL prediction by using a nonlin-
ear least squares method with dynamic bounds. Gener-
ally speaking, this method was a model established for a 
specific system. The model-based methods do not have 
generality and modeling process is complicated, requir-
ing certain professional knowledge.

4.2.3  Fusion Methods for RUL Prediction
Fusion methods usually combine model-based and 
data-driven approaches. There have been many stud-
ies using fusion models to predict the RUL, Xing et  al. 
[30] proposed a model combining an empirical expo-
nent and polynomial regression and used a PF method 
to update model parameters and then obtain RUL pre-
diction results with higher accuracy. Chang et  al. [36] 
proposed a fusion method based on the idea of error 
correction, which combined a completely set empirical 
mode decomposition (CEEMD) algorithm and a relative 
vector machine (RVM) algorithm and could accurately 
predict RUL of batteries with different calibration capaci-
ties and discharge currents. Jiao et  al. [141] proposed a 
battery RUL prediction algorithm based on conditional 
variational autoencoder (CVAE) and PF, which obtained 
a better RUL prediction effect and smaller prediction 
uncertainty than PF. Xue et al. [142] proposed an integra-
tion algorithm combining an adaptive unscented Kalman 
filter (AUKF) and support vector regression (GA-SVR) 
optimized by a genetic algorithm, which improved accu-
racy of RUL prediction. This method can integrate advan-
tages of two methods and obtain a better prediction 
effect than a single model. However, the type selection 
of sub-models and the principle of model fusion need to 
be further studied. Li et al. [116] proposed a novel inte-
grated method based on a mixture of Gaussian process 
(MGP) model and PF for SOH estimation of lithium-ion 
batteries under uncertain conditions.

For battery health status estimation and health man-
agement, more advanced approaches that fuse data-
driven and model based methods are needed. Then, both 
SOH and RUL can be real-time and accurately obtained 
for battery health management.

4.3  Predictive Maintenance Methods
The above discussed topics are basics of maintenance, 
providing useful health information for maintenance. 
Generalized predictive maintenance concludes SOH and 
RUL prediction. The goals of device maintenance stand 
in decreasing costs and unnecessary servings under the 
premise of guaranteeing reliability and safety [143, 144]. 

Conventional maintenance methods tend to be passive 
and planned, lack automation and intellectualization. 
Existing scheduled maintenance and breakdown mainte-
nance are typically much dependent on human decision-
making, which causes poor efficiency and high costs.

In recent years, predictive maintenance, as known as 
condition based maintenance, has been gaining fresh 
prominence as optimal maintenance policy [145]. An 
objective function is to set as a maintenance cost so 
that to some extent, the predictive maintenance can be 
regarded as an optimization problem. Besides, the pre-
dictive maintenance allows operators to do scientific 
decision-making and give feedback on product designs. 
Many novel methods were presented to proceed with the 
predictive maintenance, especially ML based methods 
[146].

As for the battery PHM field, the predictive mainte-
nance can be beneficial to ensuring battery designed life 
and prolonging life with a low investment [147]. Also, 
related literature is scarce because it is an emerging area 
that lacks knowledge. With the virtue of a proportional 
hazards model, Hu et al. [145] presented an RUL predic-
tion approach and further derived optimal maintenance 
strategies to minimize a system cost. It was a comprehen-
sive model, not only can predict RUL but also can pro-
vide a predictive maintenance policy. Reallocation and 
replacement of battery cells can be a way of predictive 
maintenance. Sun et  al. [148] studied components that 
are in series systems and presented a maintenance pol-
icy to balance degradation degree between components 
in one system. This thought is potential in future battery 
applications.

There is still much space in the predictive maintenance. 
In battery industry, just elementary predictive mainte-
nance strategies are considered, and accuracy in real-
ity remains to be discussed [149]. The most studies only 
stay in theoretical shelf so more efforts should be made to 
apply a predictive maintenance policy to real experiences.

For predictive maintenance, there is a long way to go. 
Using advanced algorithms such as AI and uncertainty 
theory that help design predictive maintenance strategies 
are needed in the future research.

5  Challenges of Battery PHM and Future Research 
Opportunities

This section discusses some challenges and opportunities 
of battery PHM from various aspects.

5.1  Challenges and Problems for Battery PHM
Although there has been a lot of preliminary progresses 
in the research on battery PHM, there are still many chal-
lenges and problems.

Some main challenges are summarized as follows:
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(1) System-level prognosis is needed. There are few 
SOH and RUL prediction methods for battery packs, 
most methods only focus on battery cells. System deg-
radation and health status of batteries are rather crucial 
for electric devices. Healthy states of various battery cells 
in battery pack are different because of battery inconsist-
ency. System-level prognosis should consider the incon-
sistency while modeling. Besides, health states of battery 
pack are synergistic effects combining all cells, this will 
bring difficulties for prognosis.

(2) To promote practical applications of battery PHM, 
more research based on onboard data is necessary. Most 
studies are based on laboratory datasets of ALT, which 
may not fit complicated real scenarios. The reality is more 
complicated and changeable, and laboratory conditions 
cannot meet all these environments. The adaptability of 
algorithms based on laboratory data in real situations is a 
test. Thus, multiscale data should be collected for model 
development and algorithm verification. More real data 
should be collected and used for modeling.

(3) Prediction uncertainty is difficult to quantize. 
Because of sensor inaccuracy, lacking of systematic 
knowledge, and diverse environment, sources of uncer-
tainty are wide, containing model uncertainty, measure-
ment uncertainty, environmental uncertainty, etc. Many 
factors such as season, temperature, road condition, user 
behavior, may influence results. Thus, future methods 
should thoroughly consider different sources of uncer-
tainty based on uncertainty theory.

(4) The robustness of existing methods is not strong, 
which is difficult to deal with battery PHM under extreme 
environments and unknown loadings. More general and 
strong methods are needed.

(5) Health management related research is insufficient. 
Health management requires multi-faceted coordination, 
including manufacturers, users, maintenance service pro-
viders, etc. It is difficult to realize information collection 
and cooperation. According to the survey, seldom predic-
tive maintenance policies have been proposed, there still 
remains some research gaps. More theories such fuzzy 
theory will be explored to help realize battery health 
management.

5.2  Prospect of Future Research Opportunities for Battery 
PHM

With the rapid development of AI and cloud computing, 
higher requirements will be put forward in battery PHM. 
Meanwhile, development opportunities are provided in 
future research.

Future research opportunities are given as follows.
(1) With the virtue of big data cloud platform, online 

and remote battery PHM might be possible. Combining 

battery PHM with Internet of Things  (IoT), networked 
and intelligent battery PHM systems will come true.

(2) Hybrid prognosis methods and physical-informed 
data-driven methods will play a vital role in battery 
PHM in the future because of their high robustness and 
universality.

(3) Novel nondestructive inspection technology and 
advanced high-precision sensors are of increasing and 
urgent demands for battery PHM.

(4) Digital twin technology applied for battery PHM is 
worth exploring. Battery digital modeling will make bat-
tery PHM more accurate and reliable. It can further pro-
mote realizing the digital management of equipment life 
cycle, reduce operation and maintenance costs, etc.

(5) Development of edge computing will provide the 
computational ability and historical data required by 
data-driven battery PHM algorithm.

(6) Transform learning, such as domain adaptation, 
enables the algorithm to serve a variety of models and 
batteries.

6  Conclusions
With the help of new technologies such as AI, battery 
PHM has good foreground in the future. This paper sys-
tematically reviewed battery PHM from the perspective 
of main PHM steps. Extensive publications were ana-
lyzed to review a recent development of battery PHM in 
recent six years from 2018 to 2023.

The main findings are summarized as follows.
(1) Firstly, battery testing and public datasets were vital 

as a foundation of battery PHM. Various kinds of battery 
testing were summarized, including general electrical 
performance testing, life cycle testing, safety and reliabil-
ity testing. Public datasets from academic and industrial 
institutions led by NASA ProE were collected. Character-
istics and features of each dataset were analyzed in order 
to provide convenience for researchers. Although there 
were lots of experimental public datasets, more on-board 
battery datasets were of demand.

(2) Secondly, we reviewed battery diagnosis and pre-
diction methods. Battery faults can be divided into three 
categories: External battery faults, internal battery faults 
and thermal runaway. Battery diagnosis and prediction 
methods can be classified into two types: Model and 
experiment based methods and data-driven methods. 
More powerful and reliable diagnosis and prediction 
methods should be explored to minimize security risks.

(3) Thirdly, SOH estimation methods and RUL pre-
diction methods were discussed. Generally, they con-
tained data-driven methods, model based methods 
and hybrid methods. Data-driven methods developed 
fast due to the coming of big data era, so we primarily 
focused on them in this paper. Predictive maintenance 
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methods are under a development and will be a trend in 
the near future. The coming battery PHM will be more 
intelligent, automatic and self-adapting. Combining 
new technologies like AI, IoT, cloud computing, battery 
PHM will go up to a new level.
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