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Abstract 

At present, the active control of gear vibration mostly relies on existing algorithms. In order to achieve effective 
vibration reduction of the gear system, particularly during the vibration process, this paper proposes a multi-channel 
VSMFxLMS algorithm based on the FxLMS algorithm. This novel approach takes into account the time-varying nature 
of the vibration signal during gear vibration. Adaptive filter power coefficients are updated in a skip-tongue variable-
step manner using momentum factors. Firstly, the paper establishes the dynamics model of the gear system and ana-
lyzes the nonlinear dynamic characteristics of the system. It then examines the vibration damping effect of the FxLMS 
algorithm and analyzes its performance under different gear system motion states, considering different step lengths 
and momentum factors. Lastly, the proposed VSMFxLMS algorithm is compared with the FxLMS algorithm, high-
lighting the superiority of the former. Overall, this research highlights the potential of a multi-channel VSMFxLMS 
algorithm in reducing vibrations in gear systems. The study optimizes the performance of gear systems while using 
advanced control strategies.
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1  Introduction
Gears play a vital role in the transmission system and are 
widely used for their numerous benefits. However, gear 
vibration is a common issue that affects their optimal 
operation. The vibrations generated during gear opera-
tion can result in excessive wear and damage, undermin-
ing the performance and reliability of the gear system. 
The causes of gear vibration are multifaceted and can 
be due to unbalanced loads, design or manufacturing 
errors, or improper gear alignment. Managing gear vibra-
tion is crucial for enhancing gear system’s performance, 

durability, and efficiency. By implementing appropriate 
measures, gear systems can be optimized for better per-
formance and long-term reliability.

To effectively control vibrations, Richards et al.[1] sug-
gested a passive approach based on gear mesh contact, 
whereby a periodic structural component was imple-
mented to attenuate the transmitted vibrations as well 
as the excitation forces. Hui et al. [2] developed a mesh 
stiffness model for profile shifted gears with addendum 
and tooth profile modifications to reduce vibrations. Xiao 
et  al. [3–5] developed an energy dissipation model to 
minimize the vibration of mechanical systems under cen-
trifugal loads, particularly in harsh conditions. The model 
utilized powder materials for their damping properties, 
with their size found to significantly impact the vibration 
characteristics. The study revealed that properly selected 
powder damping materials could effectively dampen 
vibrations and reduce the negative effects of mechanical 
jarring. A meshing stiffness model was proposed by Yu 
et al. [6] to study the influence of the addendum modifi-
cation on the dynamic response of the gear system. Wei 

*Correspondence:
Min Chen
chenmin@uestc.edu.cn
1 School of Aeronautics and Astronautics, University of Electronic Science 
and technology of China, Chengdu 611731, China
2 Yangtze Delta Region Institute, University of Electronic Science 
and Technology of China, Huzhou 313000, China
3 School of Mechanical Engineering, Bejing Institute of Technology, 
Beijing 100081, China
4 College of Mechanical and Vehicle Engineering, Chongqing University, 
Chongqing 400044, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-024-01112-7&domain=pdf
http://orcid.org/0000-0001-6688-6594


Page 2 of 15Geng et al. Chinese Journal of Mechanical Engineering          (2024) 37:115 

et  al. [7] analyzed the dynamic behavior of a planetary 
gear system with a flexible structure. And they [8] devel-
oped a model for tooth modification which aimed at 
reducing vibration. The model determined optimal values 
of the tooth modification parameters to minimize vibra-
tion amplitude. Ref. [9] introduces a mechanical model 
for a vibration isolation system consisting of an Integral 
elastic ring squeeze film damper and elastic damping 
supports for gear systems. Samani et  al. [10] analyzed 
the nonlinear vibration of a spiral bevel gear pair with a 
new model of tooth modification. Wang [11] proposed a 
multi-objective modification optimal design method for 
helical gears, aimed at reducing vibration and noise. A 
novel type of cylindrical spur gear is proposed by Jiang 
and Liu [12], which utilizes elastic isolation to reduce 
vibration. The gear system consists of three parts—the 
gear body, elastic isolation layer, and involute tooth shape 
body. Chen et al. [13] proposed a high-order phasing gear 
to reduce the fluctuation of mesh stiffness and thus con-
trol the vibration of the gear system.

With the advancement of computer technology, active 
vibration damping technology has become increasingly 
prevalent in gear systems. Active vibration damping 
technology offers numerous benefits, including improved 
gear operation, reduced noise levels, increased reliability, 
and reduced maintenance costs. In order to reduce tor-
sional vibrations, Gill-Jeong [14] added a unidirectional 
clutch in the gear transmission system. Gao et  al. [15] 
considered online identification and filtering functions 
in the Filtered-x Least Mean Square (FxLMS) algorithm. 
The results show that the method is more effective in 
damping vibration than the traditional FxLMS algorithm, 
but the response time is somewhat prolonged. Spada 
and Nicoletti [16] discussed the application of Udwadia-
Kalaba methodology in active vibration control. To miti-
gate the negative impact of meshing stiffness, Dogruer 
and Pirsoltan [17] proposed a nonlinear controller that 
modifies the torque applied to the driving gear. Sun et al. 
[18] developed a built-in active vibration control struc-
ture for multistage gearboxes based on modal results 
from finite element solutions. Wang et al. [19] presented 
an adaptive fuzzy proportion integration differentiation 
control algorithm to reduce the vibration, and analyzed 
the effect of vibration frequency control via experiment. 
Based on FxLMS algorithm, Philipp et al. [20] proposed 
a novel PENSE algorithm to reduce the vibration of the 
gear transmission system. Based on the PID control-
ler, Sheng et  al. [21] studied the effect of controller on 
the vibration reduction of a semi-direct gear system. A 
novel lattice recursive least square (NLRLS) algorithm 
was suggested by Luo et al. [22], which has a fast conver-
gence speed and is sensitive to frequency changes. A sur-
face-active modification method proposed by Peng and 

Zhou [23] is proposed to decrease the vibration of the 
face gear drive. The results showed that the vibration is 
reduced after the optimization. A novel active vibration 
suppression structure for a multistage gear system with a 
built-in piezoelectric actuator has been designed to gen-
erate active control force. An active controller has been 
designed and implemented utilizing the FxLMS adap-
tive algorithm [24]. Majumder and Tiwari [25] proposed 
a method of using active magnetic bearings to suppress 
vibrations in gear systems, and conducted experimen-
tal verification. Olanipekun et  al. [26] proposed active 
control of force and power through a rotating frame to 
reduce gear system vibration.

Active vibration damping technology provides an effec-
tive means of reducing vibration in gear systems. It offers 
numerous benefits and can be particularly useful in chal-
lenging operating environments. Currently, there is rela-
tively less research on active damping of gear systems 
compared to research on passive damping. Moreover, 
the application of algorithms is not extensively explored, 
and the optimization effect of existing algorithms is lim-
ited. Active vibration reduction optimization algorithms 
often do not prioritize the effectiveness of damping and 
the speed of convergence. To address this issue, this 
paper proposes a multi-channel Variable step size FxLMS 
algorithm with momentum (VSMFxLMS) algorithm 
based on the FxLMS algorithm. This algorithm involves 
updating the adaptive filter power coefficients using a 
skip-tongue line variable-step method and momentum 
factors. The results of the study demonstrate that this 
algorithm can effectively suppress while maintaining the 
convergence speed gear vibration when compared to the 
FxLMS algorithm.

2 � Methodology
2.1 � The Meshing Force and Friction
The meshing force of the gear pair can be expressed as

where kmi and cmi respectively denote the meshing 
stiffness and damping of the ith tooth pair, which are 
obtained in Ref. [27]; Y is the dynamic transmission error, 
which can be expressed as

where subscripts 1 and 2 denote the driving gear and 
driven gear, respectively; y denotes the vibration displace-
ment in y direction; θ is the angular vibration displace-
ment of the driving gear and driven gear, respectively; rb 
is the radius of the basic circle; e(t) is the static transmis-
sion error.

The gear backlash function can be represented as

(1)Fmi = kmif (Y )+ 0.5cmiẎ (i = 1, 2),

(2)Y = y1 − y2 + θ1rb1 + θ2rb2 − e(t),
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where the total gear backlash is 2bh.
The friction force is given as

where λi and μi respectively denote the directional coef-
ficient and friction coefficient of the tooth surface, which 
can be calculated by Ref. [27].

The friction arms of the gear pair can be derived as

where L1i and L2i respectively denote friction arms 
between ith tooth pair; a represents the center distance 
of the gear pair; w is the angular velocity; ti is the mesh-
ing time of the ith tooth pair; ra2 is the addendum circle 
of the driving gear.

(3)fmi(Y ) =







Y − bh, Y > bh,

0, −bh ≤ Y ≤ bh,

Y + bh, Y < −bh,

(4)Ffi = µi�iFmi , (i = 1, 2),

(5)
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L11 = a sin α −
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r2a2 − r2b2 + rb1ω1t1,

L12 = a sin α −
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r2a2 − r2b2 + rb1ω1t2,

L21 =

�

r2a2 − r2b2 − rb1ω1t1,

L22 =

�

r2a2 − r2b2 − rb1ω1t2,

2.2 � The Nonlinear Dynamic Model
The lumped massed model of the gear transmission sys-
tem is shown in Figure 1. It is a simplified bending-tor-
sional coupling model with eight degrees of freedom. The 
parameters of the gear transmission system are marked 
in Figure 1.

The dynamic model of the gear transmission system 
is given in Eq. (6). In Eq. (6), subscripts m and T respec-
tively denote the motor and load; I and m respectively 
denote the moment of inertia and mass; x is the vibration 
displacement in x direction; kr and cr represent the sup-
porting stiffness and supporting damping, respectively; T 
is the torque.

The non-dimensional time τ used in the analysis can 
be defined as τ = wnt, where wn is the natural frequency 

(6)
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Imθ̈m = Tm − kθ1(θm − θ1)− cθ1(θ̇m − θ̇1),

m1ẍ1 + cr1xẋ1 + kr1xf1bm(x1) = −(Ff 1 + Ff 2),

m1ÿ1 + cr1yẏ1 + kr1yf1bm(y1) = − (Fm1 + Fm2),

I1θ̈1 = −(Fm1 + Fm2) · rb1 − (Ff 1L11 + Ff 2L12)

+ kθ1(θm − θ1)+ cθ1(θ̇m − θ̇1),

m2ẍ2 + cr2xẋ2 + kr2xf2bm(x2) = Ff 1 + Ff 2,

m2ÿ2 + cr2yẏ2 + kr2yf2bm(y2) = Fm1 + Fm2,

I2θ̈2 = −(Fm1 + Fm2) · rb2 − (Ff 1L21 + Ff 2L22)

− kθ2(θ2 − θT )− cθ2(θ̇2 − θ̇T ),

IT θ̈T = −TT + kθ2(θ2 − θT )+ cθ2(θ̇2 − θ̇T ).
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Figure 1  Dynamic model of the gear transmission system
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of the gear pair. The natural frequency can be calculated 
using the expression wn = (kn / meq)1/2, in which meq is 
the equivalent mass of the gear pair and kn is the average 
value of the meshing stiffness. To facilitate the calcula-
tions, a nominal displacement scale, bc, is also introduced. 
Using these parameters, the non-dimensional parameters 
can be determined as follows:

ηm1=kθ1/Imwn
2, ξm1=cθ1/Imwn, ξr1x=cr1x/m1wn, ξr1y=cr1y/ 

m1wn, ξ1=ξ2=cm/m1wn, ξ3=ξ4=cmrb1/I1wn, ηr1x=kr1x/m1wn
2,  

ηr1y=kr1y/m1wn
2, η1=km1/m1wn

2, η2=km2/m1wn
2, η3=km1rb1/ 

I1wn
2, η4=km2rb1/I1wn

2, ηm2=kθ1/I1wn
2, ξm2=cθ1/I1wn, η5=km

1/m2wn
2, η6=km2/m2wn

2, ξ5=ξ6=cm/m2wn, η7=km1rb2/I2wn
2, 

η8=km2rb2/I2wn
2, ξ7=ξ8=cmrb2/I2wn, ξr2x=cr2x/m2wn, ξr2y= 

cr2y/m2wn, ηr2x=kr2x/m2wn
2, ηr2y=kr2y/m2wn

2, ηm3=kθ2/ 
I2wn

2, ξm3=cθ2/I2wn, ηm4=kθ2/ITwn
2, ξm4=cθ2/ITwn, f1=Tm/ 

Imbcwn
2, f2=TT/ITbcwn

2.
Therefore, Eq. (6) can be expressed as

where q is the dimensionless vibration displacement (or 
angular vibration displacement), subscripts 0–7 corre-
spond to Im-IT, respectively. The gear backlash function 
presented in Eq. (3) can be expressed as follows.

The parameters are shown in Table 1.

2.3 � Active Control Algorithm for the Gear System
Based on the vibration characteristics of gear transmis-
sion systems, there are two main types of active vibration 
control: controlling torsional vibration and controlling 
bending vibration. Actuators are arranged in the circum-
ferential and radial directions, respectively, to generate 
control forces that suppress the internal excitation of the 
gear train, resulting in reduced vibration and noise of the 
entire system. In this paper, the structure illustrated in 
Figure 2 is adopted, which utilizes an actuator that exerts 
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q̈0 = f1 − ηm1(q0 − q3)− ξm1(q̇0 − q̇3),

q̈1 = −(µ1�1η1 + µ2�2η2)fm(q)− (µ1�1 + µ2�2)ξ1q̇ − ξr1xq̇1 − ηr1xq1,

q̈2 = −(ηm1 + ηm2)fm(q)− ξm1q̇ − ξr1yq̇0 − ηr1xq0,

q̈3 = −(ηm3 + ηm4)fm(q)− ξm3q̇ − (µ1�1L11ηm3 + µ2�2L12ηm4)fm(q)/rbp

− (µ1�1L11 + µ2�2L12)ξm3q̇/rbp + ηm2(q0 − q3)+ ξm2(q̇0 − q̇3),

q̈4 = (µ1�1ηm5 + µ2�2ηm6)fm(q)+ (µ1�1 + µ2�2)ξm5q̇ − ξr2xq̇4 − ηr2xq4,

q̈5 = (ηm5 + ηm6)fm(q)+ ξm5q̇ − ξr2yq̇4 − ηr2xq4,

q̈6 = −(ηm7 + ηm8)fm(q)− ξm7q̇ − (µ1�1L21ηm7 + µ2�2L22ηm8)fm(q)/rbg

− (µ1�1L21 + µ2�2L22)ξm7q̇/rbg − ηm3(q6 − q7)− ξm3(q̇6 − q̇7),

q̈7 = −f2 + ηm4(q6 − q7)+ ξm4(q̇6 − q̇7),

(8)fm(q) =
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q − (bm +
dw
2
)/bc,

0,

q + (bm +
dw
2
)/bc,

q > (bm +
dw
2
)/bc,

(bm +
dw
2
)/bc ≤ q ≤ (bm +

dw
2
)/bc,

q < (bm +
dw
2
)/bc,

control force on the shaft through additional bearings 
to suppress bending vibration of the shaft. This not only 
decreases internal excitation between the gears, but also 
effectively mitigates the vibration transmitted to the gear-
box. This approach employs a simpler radial arrangement 
of the actuator, which is easier to implement in engineer-

ing compared to the circumferential arrangement.

2.3.1 � Design of Multi‑channel VSMFxLMS Algorithm
In this paper, we present a multi-channel VSMFxLMS 

algorithm as an extension to the traditional FxLMS 
algorithm. This algorithm is applied in parallel with 
an adaptive filter using the FxLMS algorithm to per-
form active damping of the gear system. Based on this, 
a multi-channel VSMFxLMS algorithm is developed. 
Figure  3 depicts the structure of this multi-channel 
VSMFxLMS active damping algorithm, and its single 
channel includes an active vibration reduction sys-
tem based on the trap FxLMS algorithm and another 
based on the FxLMS algorithm. It is worth noting that 
while the active vibration reduction system based on 
the trap FxLMS algorithm does not require a reference 

Table 1  Parameters of the gear pair

Driving gear Driven gear

Number of teeth 27 55

Modulus (mm) 2.5

Pressure angle (°) 20

Mass (kg) 0.584 2.007

Rotational inertia (kg/m2) 0.00043 0.005487

Contact ratio 1.7002
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vibration signal for acquisition, the FxLMS algorithm 
still requires the input of a reference vibration signal.

In Figure 3, xni(k) and xn(i+1)(k) are the reference sig-
nals used in the notch LMS algorithm, and their expres-
sions are as follows:

where m is the number of filter bands.
In Figure 3, Shj(z) represents filter coefficients obtained 

after modeling the j-th secondary channel. It is used by 

(9)
{

xni(k) = A sin(2πfit),

xn(i+1)(k) = A cos(2πfit),
i = 1, 2, · · · ,m,

both the FxLMS algorithm and the multiband notch 
LMS algorithm, with each using a different adaptive fil-
ter Wb(k) and Wn(k), respectively; q2’ is the vibration 
displacement after algorithm optimization. The adaptive 
filter order used by the FxLMS algorithm will be deter-
mined based on the specific situation, while the adaptive 
filter order used by the multiband notch FxLMS algo-
rithm is fixed at 2i. The higher the filter order used by the 
FxLMS algorithm, the better the noise reduction effect, 
but also correspondingly increased computational com-
plexity. Therefore, the selection of the filter order should 
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Figure 2  The active control structure of the gear transmission system
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Figure 3  Diagram of multi-channel VSMFxLMS algorithm
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consider the noise reduction performance and hardware 
computing speed.

ybj(k) and ynj(k) represent the outputs of the FxLMS and 
multiband notch LMS algorithms, respectively, for the j-
th channel. Their expressions are as follows:

The vibration displacement after algorithm optimiza-
tion can be expressed as:

where, yj(k)=ybj(k)+ynj(k).
The update formula for filter coefficients of the FxLMS 

algorithm in the j-th channel of a multichannel vibration 
reduction system is:

where, xbw(k)=ybj(k)×Sh(z).
The update formula for filter coefficients of the multi-

band notch LMS algorithms in the j-th channel is:

where, xniw(k)=xni(k)×Sh(z), xn(i+1)w(k)=xn(i+1)(k)×Sh(z).

2.3.2 � Convergence Speed and Steady‑State Error 
Optimization of the VSMFxLMS Algorithm

In FxLMS algorithm, the step size has an important 
impact on the final noise reduction effect of the algo-
rithm. Generally, for the FxLMS algorithm, the larger 
the step size during iteration, the faster the convergence 
speed, but the steady-state error will also be larger; 
the smaller the step size during iteration, the smaller 
the steady-state error, but the convergence speed will 
decrease accordingly. The convergence speed and steady-
state error of the algorithm have a certain trade-off rela-
tionship when the step size is fixed, both of which have 
an impact on the final noise reduction effect: the faster 
the convergence speed of the algorithm, the correspond-
ing stability will be improved to a certain extent, which 
is manifested in the fact that the algorithm can quickly 
return to the steady-state when the reference microphone 
receives certain interference and significant outliers; 
the smaller the steady-state error of the algorithm, the 
smaller the residual noise and the lower the sound pres-
sure level. Using variable step size can effectively improve 

(10)
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ybj(k) = qT2 (k)Wbj(k),

ynj(k) =

m
�

i=1

(xni(k)wnji(k)+ xn(i+1)(k)wnj(i+1)(k)).

(11)q′2(k) = q2(k)− yj(k) ∗ Sj(z),

(12)wbj(k + 1) = wbj(k)− 2µq′2(k)xbw(k),

(13)

{

wnji(k + 1) = wnji(k)− 2µq′2(k)xniw(k),

wnj(i+1)(k + 1) = wnj(i+1)(k)− 2µq′2(k)xn(i+1)w(k),

the performance of the FxLMS algorithm. Therefore, it 
is necessary to use appropriate means to modify the step 
size of the algorithm.

Considering that the computational cost of the algo-
rithm should not be too high, we choose to control the 
step size based on the variation of the versiera function 
to reduce the computational complexity. Based on the 
standard versiera function, the error q2’(n) is used as the 
input variable, and the iteration step size is as follows:

The constants α and β are both greater than 0. α has a 
more significant effect on the speed of step size change, 
while β has a larger influence on the upper limit of the 
step size. Since only the error signal at one moment is 
used, it means that the effectiveness of this step size opti-
mization method will rely heavily on the accuracy of the 
error sensor. If the error sensor is disturbed by exter-
nal factors at a certain moment, it will have a certain 
impact on the performance of the algorithm. At the same 
time, the farther away the error signal from the current 
moment, the lower its timeliness, and it should have a 
smaller impact on the step size at the current moment. 
To improve the stability of the step size optimization 
method and enhance the timeliness of the algorithm, the 
following formula is proposed as

The variable step size method proposed in this paper 
no longer uses the value of a single error signal, but pro-
cesses the error signal in blocks, using the sum of squared 
error signals within a period of time as the basis for step 
size change. At the same time, considering that the closer 
the moment is to the current moment, the greater the 
weight of the error signal in the step size change, the 
value of l/L in the formula is used as the weight of the 
error signal at that moment, which improves the effec-
tiveness of the step size optimization method.

Since α and β are both fixed values, the step size change 
is relatively inflexible. Therefore, this paper introduces a 
momentum factor to further accelerate the convergence 
of the algorithm [28]. The multi-frequency notch filter 
FxLMS algorithm takes the instantaneous squared error 
J(n)=q2’2(n) as the objective function, and uses the steep-
est descent method to derive the iteration formula. After 
introducing the momentum factor, the objective function 
becomes:

(14)µ(n) = β(1−
1

1+ αq′2
2
(n)

).

(15)
µ(m) = β(1−

1

1+ α
L
∑

l=1

l
Lq

′2
2
(l)

).
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where q2’(j) represents the error at time j, and ηi is the 
momentum factor, where -1<η<1. The iteration formula 
under the momentum factor is as follows:

where, μi=μm. Therefore, the gradient expression at time 
n can be obtained as:

Therefore, the following equation can be derived as

Similarly, we can obtain

which can be rewritten as

The weight coefficient update formula of the algo-
rithm is

(16)J (n) =

n
∑

j=1

η
n−j
i q′22 (j),

(17)

(18)

(19)


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wi(n+ 1) = wi(n)+ µiq
′
2(n)xiw(n)

+ µi

n−1
�

j=1

η
n−j
i q′2(j)xiw(j),

wi+1(n+ 1) = wi+1(n)+ µiq
′
2(n)x(i+1)w(n)

+ µi

n−1
�

j=1

η
n−j
i q′2(j)x(i+1)w(j).

(20)
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wi(n) = wi(n− 1)+
µi

ηi
[

n−1
�

j=1

η
n−j
i q′2(j)xiw(j)],

wi+1(n) = wi+1(n− 1)+
µi

ηi
[

n−1
�

j=1

η
n−j
i q′2(j)x(i+1)w(j)],

(21)
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ηi(wi(n)− wi(n− 1)) = µi[

n−1
�

j=1

η
n−j
i q′2(j)xiw(j)],

ηi(wi+1(n)− wi+1(n− 1)) = µi[

n−1
�

j=1

η
n−j
i q′2(j)x(i+1)w(j)].

The introduction of the momentum factor means that 
when the weight coefficient changes are large at the cur-
rent moment, the correction amount of the weight coef-
ficients at the current moment increases. This can help 
the algorithm achieve faster convergence speed in the 
initial stage and accelerate the gradient descent process 
when the error signal undergoes sudden changes. The 
introduction of the momentum factor expands the range 
of the algorithm’s step size, reducing the sensitivity of the 
step size to the aggregation degree of the reference sig-
nal autocorrelation matrix’s eigenvalues, which helps the 
algorithm better converge. Compared with other variable 
step size algorithms, the introduction of the momentum 
factor does not bring too much computation, and the 
upper and lower bounds of the momentum factor are 
determined, which can effectively improve the conver-
gence speed and tracking performance of the system.

3 � Numerical Results and Discussion
This paper aims to enhance the effectiveness of the 
algorithm and highlight the nonlinear vibration charac-
teristics of gear systems. To achieve this goal, we have 
reduced both the mesh damping and support damp-
ing beyond the existing theoretical basis. The modified 
damping of the gear system is demonstrated in Figure 4, 
which presents the bifurcation diagram.

From Figure 4, it is shown that the diagram reveals the 
presence of periodic motion in the low frequency band of 
the gear, whereas chaotic or quasi periodic motions occur 
in the middle and high frequencies. Meanwhile, the spec-
trum waterfall diagram illustrates that the gears exhibit 
varying motion states based on the excitation frequency. 
The analysis is performed for different motion states.

3.1 � Analysis of Vibration Reduction Effect of the FxLMS 
Algorithm

When the excitation frequency is 0.52, the system is in 
a period-1 motion. As shown in Figure  5, after conver-
gence, the time domain of the system displays vibration 
stability and exhibits a clearly periodic behavior accord-
ing to the local magnification diagram. Additionally, the 
FFT spectrum of the system indicates peak frequencies 
at 1, 2, and 3, corroborating that the system is experienc-
ing a periodic motion. The effect of vibration reduction is 
presented in Figure 5. When FxLMS algorithm is applied 
for the gear transmission system and the step size is set to 
1×10-3. It is evident that the FxLMS algorithm effectively 
reduces vibrations in the time domain waveform while 

(22)



















wi(n+ 1) = wi(n)− 2µiq
′
2(n)xiw(n)

+ ηi[wi(n)− wi(n− 1)],

wi+1(n+ 1) = wi+1(n)− 2µiq
′
2(n)x(i+1)w(n)

+ ηi[wi+1(n)− wi+1(n− 1)].
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also significantly shortening the convergence time. The 
peak in the FFT spectrum is also greatly reduced, and 
there are no other sidebands present. These results dem-
onstrate that for periodic vibration, the FxLMS algorithm 
can effectively reduce vibrations and increase the stability 
of the gear system during vibration.

When the step size is set to 1×10-6, the time domain 
and FFT spectrum of the gear system are shown in Fig-
ure 6. In the time domain, it is apparent that the FxLMS 
algorithm causes a shift in the vibration signal relative to 
the original signal during the start-up process, and the 
damping effect becomes less noticeable once the vibra-
tion stabilizes. In the FFT spectrum, a certain decrease 
in the peak value of the vibration signal can be observed 
when the FxLMS algorithm is applied. The results indi-
cate that the algorithm has a slight reduction effect for a 
step size of 1×10-6, but the reduction effect is markedly 
reduced compared to that for a step size of 1×10-3.

As the excitation frequency is 1.05, it is evident that 
the waveforms display consistency in the time domain, 
but the amplitude of each cycle varies and converges at 
a slower pace. Moreover, the FFT spectrum presents dis-
continuous peaks in several locations, suggesting that the 
system exhibits quasi-periodic motion. Techniques such 

as active vibration control and condition monitoring are 
often employed to identify and mitigate quasi-periodic 
motion in gear systems.

In Figure  7, it can be seen that the FxLMS algorithm 
has a significant damping effect on the quasi-periodic 
vibration state when the step size is set to 1×10-3. The 
amplitude of the waveform in the time domain is effec-
tively reduced, and there is a significant decrease in the 
peak value in the FFT spectrum. These results highlight 
the clear and noticeable damping effect of the FxLMS 
algorithm at this particular step size for the quasi-peri-
odic motion state.

As shown in Figure 8, for a step size of 1×10-6, the time 
domain shows that the starting phase still displays an off-
set, but the effect of vibration reduction improves gradu-
ally over time. In the FFT spectrum, there is a significant 
reduction in the peak at frequency 1. Comparing with 
Figure 6, it suggests that the FxLMS algorithm provides 
better damping for the quasi-periodic motion state than 
the periodic motion state at a step size of 1×10-6.

Figure  9 displays the time domain and FFT spectrum 
when the excitation frequency reaches 2.49. The time 
domain shows a waveform that is complex, and the 
motion state is irregular and unpredictable. Meanwhile, 

)b()a(

Figure 4  (a) Bifurcation diagram and (b) spectrum waterfall diagram of the gear pair with different excitation frequencies
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Figure 5  Dynamic response of the gear system at 0.52 when the step size is set to 1×10-3: (a) Time domain (b) FFT spectrum
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the continuous peaks in the FFT spectrum signify that 
the gear system is in a chaotic state at this time. Cha-
otic motion in a gear system can lead to reduced system 
efficiency, increased noise levels, and mechanical failure 
over time. Therefore, it is necessary to reduce the vibra-
tion when the gear system is in a chaotic motion state.

Based on Figure  10, it can be observed that the time 
domain diverges, indicating that the step size of 1×10-

3 is not capable of providing effective damping to the 

system under a chaotic motion state, and may even result 
in severe consequences. Consequently, this step size is 
unsuitable for the present application.

As displayed in Figure 11, when the step size is reduced 
to 1×10-6, it can be observed that the vibration in the 
time domain, based on the FxLMS algorithm for damp-
ing, no longer diverges and provides better damping. In 
the FFT spectrum, there is also a significant reduction in 
the peak value. This conclusion indicates that the FxLMS 
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Figure 6  Dynamic response of the gear system at 0.52 when the step size is set to 1×10-6: (a) Time domain (b) FFT spectrum
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Figure 7  Dynamic response of the gear system at 1.05 when the step size is set to 1×10-3: (a) Time domain, (b) FFT spectrum

(a)

0 2000 4000 6000
-6

-4

-2

0

q 2

Without FxLMS
With FxLMS

(b)

0 1 2 3

f
0

0.2

0.4

0.6

q 2

Without FxLMS
With FxLMS
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algorithm provides more prominent damping in the cha-
otic motion state of the gear system, with a step size of 
1×10-6.

The effects of different momentum factors on damp-
ing are presented in Figure 12. Dividing the time domain 
into 40 groups, Figure  12(b), (d), and (f ) illustrate the 
root mean square (RMS) values for each group. As 
shown in Figure  12, larger momentum factors generally 

result in better damping effects, especially for complex 
motion states in gear systems. However, excessively large 
momentum factors can lead to system instability and 
reduced resistance to external disturbances. Figure  13 
demonstrates that with a step size of 1×10-3, increas-
ing the momentum factor to 0.8 initially improves the 
system’s vibration reduction. However, as time passes, 
the vibrations start to disperse and the system becomes 
unstable. Therefore, selecting an appropriate momentum 
factor and step size can significantly improve the damp-
ing of gear systems.

3.2 � Analysis of Vibration Reduction Effect 
of the VSMFxLMS Algorithm

To verify the performance of the variable-step active 
damping algorithm, combining momentum factors, 
which was proposed in the paper to improve the perfor-
mance of the combined algorithm, a comparison will be 
made with the FxLMS algorithm. The comparison will 
focus on the results of both algorithms to see which algo-
rithm performs better in terms of active damping.

Based on the results shown in Figure  14(a), it can be 
observed that the damping effect of the VSMFxLMS 
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Figure 9  Dynamic response of the gear system at 2.49: (a) Time domain (b) FFT spectrum
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Figure 10  Time domain of the gear system at 2.49 when the step 
size is set to 1×10-3
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algorithm improves significantly. Moreover, in the FFT 
spectrum, the peak of the VSMFxLMS algorithm signifi-
cantly decreases, indicating that the damping effect of 
the VSMFxLMS algorithm is better than that of the opti-
mized FxLMS algorithm. This comparison demonstrates 
the superior performance of the proposed variable-step 
active damping algorithm with momentum factors, and 
its effectiveness in reducing peak values and improving 
damping effects. However, in Figure  14(b), the reduc-
tion effect of the VSMFxLMS algorithm is not obvious. It 
shows that the reduction effect of the VSMFxLMS algo-
rithm on the gear system is also directly related to the 
step size.

The reduction effect of different step sizes for the exci-
tation frequency of 1.05 is shown in Figure 15. Similarly 
to the excitation frequency of 0.52, the VSMFxLMS 
algorithm shows good damping effect and fast conver-
gence speed at a step size of 0.1, resulting in a signifi-
cant decrease in the amplitude of the time domain and 
the peak of the FFT spectrum. At a step size of 1×10-6, 
the damping effect of the VSMFxLMS algorithm is not as 
significant as that for the step size of 1×10-3. However, it 
can be concluded that the VSMFxLMS algorithm gener-
ally optimizes the FxLMS algorithm better for quasi-peri-
odic motion states compared to periodic motion states. 
These results suggest that the proposed variable-step 

active damping algorithm with momentum factors has 
the potential to improve damping performance for vari-
ous types of vibrations.

The optimization results for the algorithm with an 
excitation frequency of 2.49 are presented in Figure  16. 
The algorithm does not converge at a step size of 1×10-3, 
so only the optimization results at a step size of 1×10-6 
are compared. It can be observed that the convergence 
speed and amplitude of the VSMFxLMS algorithm have 
significantly improved. Additionally, the peak in the FFT 
spectrum is significantly reduced, but the sidebands 
show little change. This suggests that there is a signifi-
cant improvement in the amplitude during the gear sys-
tem vibration, but the motion state remains almost the 
same. The findings of Figures 14 and 15 also support this 
conclusion.

Overall, the proposed algorithm optimizes better when 
the gear motion state is more complex, which aligns with 
the intention of designing an optimization algorithm. 
This result indicates that the proposed algorithm has the 
potential to improve the damping performance of gear 
systems with complex vibration patterns. However, com-
pared with the FxLMS algorithm, the VSMFxLMS algo-
rithm with drive exhibits greater fluctuations when the 
error sensor signal is disturbed, and the convergence of 
the large magnitude is weaker than the FxLMS algorithm 
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after the perturbation, but when it tends to stabilize, the 
VSMFxLMS algorithm with drive has a significantly bet-
ter convergence performance than the FxLMS algorithm.

4 � Conclusions
This paper proposes a multi-channel VSMFxLMS algo-
rithm based on the FxLMS algorithm, which considers 
the momentum factor to achieve active damping in the 
gear system’s vibration process. The study analyzes the 

nonlinear dynamic response characteristics of the gear 
system and draws the following conclusions:

(1)	 The gears demonstrate different dynamic char-
acteristics at varying excitation frequencies. The 
FxLMS algorithm is effective in damping the gears. 
The damping effect at step size 1×10-3 is signifi-
cantly optimized compared to that at a step size of 
1×10-6. However, when the gear system is in chaotic 
motion, a step size of 1×10-3 leads to vibration scat-
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Figure 15  Comparison of different algorithms at excitation frequency of 1.05 when the step size is set to (a) 1×10-3 (b) 1×10-6
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tering. Therefore, choosing an appropriate step size 
is crucial for gear damping using the FxLMS algo-
rithm.

(2)	 The damping effect of the gear system is typically 
more pronounced with a larger momentum factor. 
However, if the momentum factor reaches 0.8, the 
gear system’s vibrations may become unstable or 
even scatter. Thus, both the momentum factor and 
step length must be appropriately selected simulta-
neously.

(3)	 The multi-channel active vibration reduction algo-
rithm design is optimized for steady-state error and 
convergence speed. The adaptive filter power coef-
ficient updates are performed by combining the 
momentum factor’s skip-tongue line variable step 
size. The experimental results show that the multi-
channel combination algorithm effectively reduces 
gear system vibrations when combined with the 
FxLMS algorithm.
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