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Abstract: A generally applicable criterion for all mechanism mobility has been an active domain in mechanism theory lasting more than 
150 years. It is stated that the Modified Grübler-Kutzbach criterion for mobility has been successfully used to solve the mobility of 
many more kinds of mechanisms, but never before has anyone proven the applicability and generality of the Modified Grübler-Kutzbach 
criterion in theory. In order to fill the gap, the applicability and generality of the Modified Grübler-Kutzbach Criterion of mechanism 
mobility is systematically demonstrated. Firstly, the mobility research background and the Modified Grübler-Kutzbach criterion are 
introduced. Secondly, some new definitions, such as half local freedom, non-common constraint space of a mechanism and common 
motion space of a mechanism, etc, are given to demonstrate the correctness and broad applicability of the Modified Grübler-Kutzbach 
criterion. Thirdly, the general applicability of the Modified Grübler-Kutzbach criterion is demonstrated based on screw theory. The 
mobilities of the classical DELASSUS mechanisms and a modern planar parallel mechanism, are determined through the Modified 
Grübler-Kutzbach criterion, which are as examples to show the practical application of the Modified Grübler-Kutzbach criterion. 
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1  Introduction∗

 
 

The mobility analysis of mechanisms has a long history 
more than 150 years that can be traced to the initial studies of 
the works of CHEBYCHEV in 1854[1] and the works of 
GRÜBLER in 1883[2]. From then on, it has being remained 
attractive[3–5]. Clearly, the most significant development of the 
mobility analysis is that of the Kutzbach-Grübler Criterion[6–7]. 
However, it has been found that the real mobilities of some 
mechanisms are not consistent with the calculated results 
through the Kutzbach-Grübler criterion[3, 7–8]. 

In 1997, HUANG, et al[7], prooposed the definition of 
common constraint of mechanism, pointed out that a 
common constraint of a mechanism is a screw reciprocal to 
all the motion screws of the mechanism screw system, and 
defined the order of mechanisms. In 2002, he also brought 
up the concept of the redundant constraint from the limbs 
of parallel mechanisms, which constitute the constraint 
screw principle of mobility analysis, thus the idea of 
modified Grübler-Kutzbach criterion was proposed[9]. 
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Using the Modified Grübler-Kutzbach criterion, scholars 
have solved the mobilities of some modern parallel 
mechanisms[7, 10–12] comprised of CARRICATO’s, CPM, 
DELTA, etc, and the mobilities of some classical 
mechanisms[7–8, 9–12], such as BENNETT, GOLDBERG, 
BRICARD, HERVE, SARRUS and MYARD mechanism, 
were also solved. 

The Modified Grübler-Kutzbach criterion has no 
connection with the dependency[3] of the non-linear closure 
equations of a mechanism and is only based on the simplest 
part of the screw theory. Besides, using the criterion it is 
quite easily to judge the mobility to be instantaneous or of 
full-cycle. In 2005, DAI, et al[13], further theoretically 
elucidated the principle. In 2006, HUANG, et al, concluded 
eight rules[12] to help people to hold the method. In 2011, 
LIU, et al[14], analyzed the mobility of ALTMANN 
linkages by this method. Up to now, the theoretical 
demonstration of the generality of the Modified 
Grübler-Kutzbach criterion has not been given. 

This paper focuses on the demonstration of the generality 
and practicality of the Modified Grübler-Kutzbach criterion. 
Section 2 introduces some fundamental concepts, the 
screw theory and the reciprocal screw theory for the 
Modified Grübler-Kutzbach Criterion, and demonstrates 
the general validity of the Modified Grübler-Kutzbach 
criterion in theory. Section 3 shows the generality of the 
Modified Grübler-Kutzbach Criterion through practical 
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examples of single loop overconstrained DELASSUS 
linkages and the multi-loop parallel planar mechanism. 
Section 4 elaborates the practicality of the implementation 
of the Modified Grübler-Kutzbach Criterion. Section 5 
presents conclusions. 

 
2  Demonstrate the General Validity of the 

Modified Grübler-Kutzbach Criterion 
 

2.1  Screw 
On the basis of the screw theory[6, 15–16], each joint axis 

with connection one in a linkage or a mechanism can be 
regarded as a spiral joint axis generally, this axis can be 
expressed as a screw like 

 
0 T( ; )$ S S ,                  (1) 

 
where T( )l m nS  is the unit vector along the 
direction of the joint axis; 

 
0 T( )h p q rS S r S    ,          (2) 

 
0S represents the location and the pitch of the screw axis. h 

is the pitch of the screw $, 0( ) / ( )h  S S S S  , and r is  
the position vector of any point on the screw axis. 

 
2.2  Reciprocal screw 

If there is a screw T( ; )l m n p q r$  and another 
screw T( ; )l m n p q r$       , the mutual moment 
of the two screws is  

 
lp mq nr pl qm rn$ $             .      (3) 

 
If the mutual moment is zero, the screw $ is called the 

inverse or reciprocal screw of the screw $. On the contrary, 
the screw $ is the inverse screw of the screw $ too. They 
are reciprocal to each other. An inverse screw of a motion 
screw is a constraint permitting the existence of the motion 
screw. If $ expresses a movement, then $ is a constraint 
permitting the existence of the movement. 

 
2.3  Terms relative to the Modified Grübler-Kutzbach 

criterion 
Several important concepts must be proposed here in 

order to prove the generality of the Modified Grübler- 
Kutzbach criterion. 

(1) Motion screw 
A pair in a mechanism can be equated as one or more 

than one pair with connection one. Each equivalent pair 
with connection one in a mechanism can be expressed as a 
screw, which is called a motion screw of the mechanism. 

(2) Motion screw system 
All of the motion screws of a mechanism constitute a 

screw system defined as the motion screw system of the 
mechanism, the screw system is 

 
T{ ( ; ) , ( 1, 2, , )}i i i i i i i il m n p q r i N  $ $ ϕ , 

(4) 
 

where N is the total number of the joints after being 
replaced by the joints with connection one. 

The biggest number of the rank of the system is six. The 
real rank of the screw system is named as mr , the rank can 
be obtained from Ref. [7], and it is equal to the maximal 
number of the independent screws in the screw system. 

(3) Constraint screw 
If a screw is reciprocal to any a motion screw of a 

mechanism, this screw is called a constraint screw of the 
mechanism. 

(4) Constraint screw system 
All of the constraint screws of a mechanism constitute 

the constraint screw system of the mechanism. The real 
number of the rank of the constraint screw system is named 
as cr , and c m6r r  . 

(5) Constraint space of a mechanism 
A space spanned by all independent constraint screws of 

a mechanism is called the constraint space of the 
mechanism. The rank of the mechanism is cr . 

(6) Common constraint screw 
The inverse screws of a motion screw are constraints to 

the motion screw. If a screw is reciprocal to all the motion 
screws of a mechanism, this screw is called a common 
constraint screw of the mechanism[7]. All the screws 
reciprocal to every motion screw of a mechanism are called 
the common constraint screws. λ is the maximal number of 
the independent common constraints and also named as 
common constraint factor. If there are w1 common 
constraint screws in sum in a mechanism, then µ = w1  λ, 
here, µ  is the number of the excessive common constraints 
of the mechanism. 

(7) Common constraint screw system of a mechanism 
If a screw system consists of all the common constraint 

screws of a mechanism, it is named as the common 
constraint screw system of the mechanism. The rank of the 
system is λ as defined above. 

(8) Common constraint space of a mechanism 
If a space is spanned by all the independent common 

constraint screws of a mechanism, it is named as the 
common constraint space of the mechanism. The dimension 
of the space is λ. 

(9) Common motion screw of a mechanism 
If a screw is reciprocal to all the common constraint 

screws of a mechanism, this screw is called a common 
motion screw of the mechanism. All the screws reciprocal 
to every constraint screw of a mechanism are called the 
common motion screws. The maximum number of the 
independent common motion screws is d and obviously in 
three-dimensional space it is 

 
6d λ  .                 (5) 

 
(10) Common motion screw system of a mechanism 
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All the common motion screws of a mechanism constitute 
a screw system; this is called a common motion screw system 
of the mechanism. The rank of the system is d. 

(11) Common motion space of a mechanism 
If a space is spanned by all the independent common 

motion screws of a mechanism, it is named as the common 
motion space of the mechanism. The dimension of the 
space is d called the order of the mechanism[7]. 

(12) Non-common constraint screw 
If a screw is reciprocal to one or more than one but not 

all of the motion screws of a mechanism, it is called the 
non-common constraint screw of the mechanism. k is the 
maximal number of the independent non-common 
constraints and also named as non-common constraint 
factor, v is the number of the excessive non-common 
constraints[9]. If a mechanism has w2 non-common 
constraint screws in sum, then 

 
2v w k  .                (6) 

 
(13) Non-common constraint screw system 
If a screw system is spanned by all the non-common 

constraint screws of a mechanism, it is named as the 
non-common constraint screw system. The rank of the 
system is k . 

(14) Non-common constraint space of a mechanism 
If a space is spanned by all the independent non-common 

constraint screws of a mechanism, it is called the non- 
common constraint space of the mechanism. The dimension 
of the space is k . 

 
2.4  Grübler-Kutzbach criterion 

The generally accepted theory of the degrees of 
freedom(DOF) of mechanisms is the Kutzbach-Grübler 
criterion[2, 6–7, 16–17]. There are mainly three forms of the 
Kutzbach-Grübler formula, the first form applicable to the 
planar and spherical mechanisms is 

 

1

3( 1)
g

i
i

M n g f


    ,            (7) 

 
where n is the number of the total members of the 
mechanism, g is the number of the total kinematic pairs, fi 
is the DOF of the ith kinematic pair. 

The second form is applicable for the spatial 
mechanisms: 

1

6( 1)
g

i
i

M n g f


    .            (8) 

 
The third version of the criterion given by HUNT[6] and 

employed by TSAI[17] is  
 

1

( 1)
g

i
i

M d n g f


    ,           (9) 

where d is the dimension of the motion space of all 
members of a mechanism, d is 3 for the planar and 
spherical mechanisms, d is 6 for the spatial mechanisms, 
and d is called as the dimension of the common motion 
space of the mechanism in this paper. But there was not a 
introduction in detail about how to calculate d 
systematically until HUANG gave the definition about the 
common constraint of a mechanism in 1997, then he 
presented the Modified Grübler-Kutzbach criterion. 

 
2.5  Modified Grübler-Kutzbach criterion 

The Modified Grübler-Kutzbach criterion is given[7, 9] as 

 

1

( 1)
g

i
i

M d n g f ν ξ


      ,         (10) 

 
where ν is the parallel-redundant-constraint factor or the 
number of the excessive non-common constraints, and can 
be obtained from Eq. (6). ξ is the degrees of partial 
freedom or half partial freedom of links, which does not 
affect the motion of the other links or only affect the 
motion of the one-side links, d is the order of the 
mechanism and can be obtained from Eq. (5) or 

 
              rank( )d ϕ ,                 (11) 

 
where ϕ  can be gotten based on Eq. (4). In a multi-loop 
parallel mechanism, it is difficult to directly caculate the 
rank of the kinematic screw systemϕ  for there exist quite 
a few kinematic pairs, whereas Eq. (5) often makes the 
caculation easy and feasible. In single-loop mechanisms 
and serial chains, the order of a mechanism can be directly 
obtained from Eq. (11) generally. 

 
2.6  Demonstration of the general validity of the  

Modified Grübler-Kutzbach criterion  
If there are n rigid bodies in the three-dimensional space, 

because there are six independent motion screws for each 
rigid body under the case of no constraints, the dimension 
of the common motion space of the n rigid bodies is six. 
Then, six independent coordinates are needed in order to 
describe the direction and location of a body in the 
three-dimensional space. So the sum of the degrees of 
freedom of the n bodies is 6n. If one of the n bodies is 
selected as a referring body, the number of the degrees of 
freedom of the system is 6(n 1). Whereas if the n bodies 
are exerted by λ independent common constraint screws, 
the dimension of the common motion space of the n bodies 
is d and d  6 λ. Thus, the number of the degrees of 

freedom of one of the n rigid bodies is d. The sum of the 
degrees of freedom of the n bodies is dn. If one of the n 
bodies is selected as a referring body, the degrees of 
freedom of the system is d(n 1). If the n bodies constitute 
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a mechanism with g joints, assuming bi binds are formed by 

the ith joint, the sum of the binds in the mechanism is
1

g

i
i

b

 , 

and 1 2
1

g

i
i

b w w


  (refer to the common constraint screw, 

the non-common constraint screw in section 2.3), the 
number of the effective constraints is kλ ; there is if  

number of degrees of freedom in the ith joint, and 
6i ib f  under the case of no common constraints. If we 

considering the common constraint space with rank λ and 
the common motion space with rank d, it is easy to get 

 
2i iw d f  ,               (12) 

 
where 2iw represents the number of non-common constraint 
screws arisen from the ith joint, and we have 

 

2 2
1 1

( )
g g

i i
i i

w w d f k v
 

      .       (13) 

 
There are only k independent constraint screws among 

the w2 non-common constraint screws in sum, and k is 
 

1

( )
g

i
i

k d f v


   .             (14) 

 
In the common motion space, the number of the degrees 

of freedom of a mechanism composed of n members is  
 

1

( 1) ( 1) ( )
g

i
i

M d n k d n d f v


        .   (15) 

 
If the number of the degrees of the partial or half partial 

freedom(see section 3.2)ξ is subtracted, then  
 

1

( 1) ( )
g

i
i

M d n d f v ξ


      ,        (16) 

 

1

( 1)
g

i
i

M d n g f ν ξ


      .         (17) 

  
This is a global criterion of the degrees of freedom of 

mechanisms, and is called the Modified Grübler-Kutzbach 
Criterion. 

 
3  Application Examples of the Modified 

 Grübler-Kutzbach Criterion 
 

Here the mobility of two kinds of mechanisms is 
analyzed using the Modified Grübler-Kutzbach Criterion, 
the first is the classical DELASSUS mechanisms, the 
second is a modern planar parallel mechanisms. 

The definition of mobility and the number of inputs or 
motors should be introduced in order to distinguish the 

number of inputs from mobility before beginning the 
mobility analysis. 

(1) The number of inputs 
The number of motors or inputs of a mechanism 

represents the number of different finite displacements in 
the joints needed to define the configuration of the 
mechanism. 

(2) Mobility 
Mobility M or the degree of freedom represents the 

number of independent coordinates needed to define the 
location and the direction, namely the pose of a kinematic 
chain or a mechanism. 

Generally, the degree of freedom of a mechanism is 
equal to the number of the inputs or motors. But sometimes, 
they are not equal, and this case only emerges in this kind 
of mechanism within which the inputs are dependent of 
each other. 

 
3.1  Single-loop overconstrained Delassus linkages 

The research on overconstrained mechanisms can be 
dated back to 1853 when the first overconstrained 
mechanism was presented by SARRUS[18]. After that time, 
much more attention has been paid for the study on 
overconstrained mechanisms and many overconstrained 
mechanisms have been obtained. Among the 
overconstrained linkages, DELASSUS linkages are four- 
bar linkages. The research about the mobility of 
DELASSUS linkages is important significance after the 
mobility of BENNETT, DELTA, SARRUS, BRICARD, 
HERVE, MYARD and GOLDENBERG had been solved 
by applying the Modified Grübler-Kutzbach criterion, and 
it is one of the main targets in this section. 

The DELASSUS linkage[19] consists of a derivation of all 
four bar linkages in 13 different forms, whose joints are 
lower pairs with connectivity one[20–21]. Here we research 
the mobility of all the 13 DELASSUS linkages, shown in 
Fig. 1. The characteristic parameters of the 13 DELASSUS 
linkages are shown in Table 1.  

Considering the first one in Table 1, a reference 
coordinate system o-xyz being introduced, assuming the 
z-axis coincides with the axis of the first screw joint, 
then, T(0 0 1; ) , ( 1, 2, 3, 4 )i i i iy x h i  $ , here hi 
is the pitch of the ith joint, (xi , yi) are the coordinates of the 
point in the axis of the ith joint. If all the hi are equal to 
each other, and hi=h≠0, then for the linkage, using Eq. (3), 
all the common reciprocal screws can be obtained 

T
1r (0 0 0; 1 0 0 ),$ T

2r (0 0 0; 0 1 0 ),$
T

3r (0 0 1; 0 0 )h $ . 
Based on Eq. (5), 3λ  and 6 3 3d    . Here, there 

are three common-constraints and two independent 
non-common constraints, so 0ν based on Eq. (6), and 
there is no partial freedom and half partial freedom in this 
mechanism, so 0ξ  . Then use the Modified Grübler- 
Kutzbach Criterion, 
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1

( 1) 3(4 4 1) 4 1.
g

i
i

M d n g f ν ξ


            

 

 
 

Fig. 1.  DELASSUS mechanism including thirteen 

 classic linkages 

If hi=0 (i=1, 2, 3, 4), all the common reciprocal screws 
are  

T
1r (0 0 0; 1 0 0 )$  , 

T
2r (0 0 0; 0 1 0 )$  , 

T
3r (0 0 1; 0 0 0 )$  . 

 

By the same way, we can get M=1.  
The mobility of all the 13 DELASSUS linkages is 

researched by using the Modified Grübler-Kutzbach 
Criterion here, the similar analyzing process of each 
DELASSUS linkage  is omitted considering the length of 
the paper, the data are listed in Table 1. This work is a new 
progress in the mobility research of the classic mechanisms 
or the single-loop overconstraint linkages using the 
Modified Grübler-Kutzbach Criterion. 
 
3.2  Multi-loop parallel planar linkage 

The mobility of the modern parallel mechanisms has been 
well resolved with the Modified Grübler-Kutzbach criterion  
[7, 9–12]. However, a new planar parallel manipulator[22] is found 
with special nature. 

The planar parallel manipulator contains three branches, 
each of them with same structure, shown in Fig. 2. The 
moving platform is D1D2D3, the fixed platform is the part 
with joints Aij(i, j=1, 2, 3). All the joints are rotating pairs 
with parallel axes. 

 

 

Fig. 2.  Planar parallel mechanism 
 
According to the Modified Grübler-Kutzbach Criterion, 

in the mechanism, the number of bodies is n=17; the 
number of the joints g=21. A reference coordinate system 
o-xyz being introduced, assuming the z-axis is parallel with 
the axes of these rotation joints, then 

T(0 0 1; 0)i i iy x$    ( 1, 2, ,21)i  . So, d=3 is 
the order of the motion of the manipulator, furthermore, 
there is no non-common constraints in this mechanism, 
so 0ν , according to Eq. (16), the mobility is 

 

1

( 1)

3(17 21 1) 21 6 .

g

i
i

M d n g f ν ξ

ξ ξ


      

     

  
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Table 1.  Degree of freedom of parallel-screw linkages 

Serial 
No. Type Condition 

 
Rank 

d 

Total 
No. of  
part  

n 

Total 
No. of  
pair  

g 

Total No. of 
pair mobility 

1

g

i
i

f

  

Mobility 
of 

linkage 
M 

Figure 

1 H-H-H-H- All axes parallel, pitches equal 
0ih   3 4 4 4 1 Fig.1(a) 

 0ih   3 4 4 4 1 

2 H-H-H-P- Screw axes parallel, pitches equal, prism 
normal to screws 

0ih   3 4 4 4 1 
Fig.1(b) 

0ih   3 4 4 4 1 

3 H-H-P-P- Screw axes parallel, pitches equal, prism 
normal to screws 

0ih   3 4 4 4 1 
Fig.1(c) 

0ih   3 4 4 4 1 

4 H-P-H-P- Screw axes parallel, pitches equal, prism 
normal to screws 

0ih   3 4 4 4 1 
Fig.1(d) 

0ih   3 4 4 4 1 

5 R-R-R-R- Spherical linkage-axes intersect in a single point 3 4 4 4 1 Fig.1(e) 

6 P-P-P-P- Spatial slider linkage 3 4 4 4 1 Fig.1(f) Planar slider linkage. 2 4 4 4 2 

7 H-H-H-H- Screws form two parallel, coaxial pairs 
0ih   3 4 4 4 1 

Fig.1(g) 
0ih   3 4 4 4 1 

8 H-H-P-P- Screws are coaxial and parallel to same 
plane as prisms 

0ih   2 4 4 4 2 
Fig.1(h) 

0ih   2 4 4 4 2 

9 H-H-H-H- 

Screws are parallel and the common 
normals form a quadrilateral with two pairs 
of equal sides. Equal sides are adjacent. 

1 3 2 4( ) / 2h h h h   , where 1h , 3h  are 
the pitches of the screws lying in the 
symmetry plane of the quadrilateral, 2h , 

4h  are the pitches of the remaining screws 

0ih   3 4 4 4 1 

Fig.1(i) 
0ih   3 4 4 4 1 

10 H-H-H-H- 
The same as before, but the normals form a 
parallelogram. 1 3 2 4h h h h   , numbering the axes 
in the usual manner 

3 4 4 4 1 Fig.1(i) 

11 H-H-H-H- 

The same as before, but the normals form a crossed 
parallelogram. Pitches obey relationships 1 3h h , 

2 4h h  
3 4 4 4 1 Fig.1(i) 

12 H-P-H-P- 
The screws are parallel and have equal pitch. The 
directions of the prisms are symmetric with respect to 
the plane containing the screw axes 

3 4 4 4 1 
Fig.1(j) 

13 R-R-R-R- Bennett Linkage 3 4 4 4 1 Fig.1(k) 

Note: H—Helical pair, P—Prismatic pair, R—Rotation pair 

 
Here, a new definition should be proposed. 
Half local freedom: If a part in a mechanism can receive 

the motions of its fore parts but can not transfer all the 
motions to its following-up parts, then the motions failed to 
transfer in the mechanism is called the half passive freedom. 
In Fig. 2, each sub-platform DiCi1Ci2 (i=1, 2, 3) has a half 
passive freedom for the rotation of the sub-platform 
DiCi1Ci2 (i=1, 2, 3) about the axis of joint Di can not be 
transfered to the platform D1D2D3. So, there are 3 degrees 
of half local freedom, ξ =3, M=3. 

The number of active joints in the mechanism with half 
passive freedoms equals to the sum of the degrees of 
freedom of the output part and all the half passive freedoms. 
So, six active joints have been chosen, seen in Fig. 2. In 
other words, the screws of the 6 active joints are dependent, 
only three of them are independent. Thus, the number of 
the independent active joints equals to the degrees of 
freedom of the output part. 

 
4  Conclusions 

 

(1) The general validity of the Modified Grübler- 
Kutzbach Criterion for mobility is elaborated or 
demonstrated in both theory and practice. 

(2) Some relative new terms, such as the half passive 
freedom, the non-common constraint space and the 
common motion space of a mechanism are proposed.  

(3) The mobility of the classical over-constrained single- 
loop DELASSUS mechanisms classified into thirteen types 
is determined using the Modified Grübler-Kutzbach 
Criterion.  

(4) The motion and active joints of a new planar parallel 
mechanism are obtained using the Modified G-K Criterion.  

(5) The number of the independent active joints equals to 
the degrees of freedom of the output part, but in a 
comprehensive explanation, the number of total active 
joints equals to the degrees of freedom of the output part 
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plus the degrees of the half passive freedom.  
 
 

References  
 [1] CHEBYCHEV P A. Théorie des mécanismes connus sous le nom de 

parallélogrammes, 1ére partie[C]//Mémoires présentés à ľ Académie 
impériale des sciences de Saint-Pétersbourg par divers savants, 
Saint-Pétersbourg, Russie, 1854. 

 [2] GRÜBLER M. Allgemeine Eigenschaften der Zwangläufigen 
ebenen kinematischen Ketten: I[J]. Zivilingenieur, 1883, 29: 
167–200. 

 [3] GOGU G. Mobility of mechanisms: a critical review[J]. Mechanism 
and Machine Theory, 2005, 40(9): 1 068–1 097. 

 [4] KONG X, GOSSELIN C M. Mobility analysis of parallel 
mechanisms based on screw theory and the concept of equivalent 
serial kinematic chain[C]//ASME International Design Engineering 
Technical Conferences & Computers and Information in 
Engineering Conference, Long Beach, California, USA, September 
24–28, 2005: DETC2005–85337. 

 [5] ZHAO J, ZHOU K, FENG Z. A theory of degrees of freedom for 
mechanisms[J]. Mechanism and Machine Theory, 2004, 39(6): 
621–643. 

 [6] HUNT K H. Kinematic geometry of mechanisms[M]. Oxford: 
Oxford University Press, 1978. 

 [7] HUANG Z, KONG L F, FANG Y F. Mechanism theory and control 
of parallel manipulators[M]. Beijing: China Machine Press, 1997. 

 [8] LIU J F, LI Y W, HUANG Z. Mobility of the Bennett-based 
linkages[C]//The ASME 2009 International Design Engineering 
Technical Conferences, San Diego, California, USA, August 
30–September 2, 2009: DETC2009–86243. 

 [9] HUANG Z, LI Q C. General Methodology for Type Synthesis of 
Lower-Mobility Symmetrical Parallel Manipulators and Several 
Novel Manipulators[J]. Int. J. Rob Res., 2002, 21(2): 131–146. 

[10] HUANG Z, LIU J F, ZENG D X. A General methodology for 
mobility analysis of mechanisms based on constraint screw theory[J]. 
Science in China-E, 2009, 52(5): 1 135–1 470. 

[11] HUANG Z, LIU J F, Li Q C. Unified methodology for mobility 
analysis based on screw theory[M] //WANG L, XI J., Smart Devices 
and Machines for Advanced Manufacturing London: Springer-Verlag, 
2008: 49–78. 

[12] HUANG Z, XIA P. The mobility analysis of some classical 
mechanism and recent parallel robots[C]// The ASME 2006 
International Design Engineering Technical Conferences, 
Philadelphia, Pennsylvania, USA, September 10–13, 2006: 1 304–  
1 311. 

[13] DAI J S, HUANG Z, LIPKIN H. Mobility of overconstrained 
parallel mechanisms[J]. ASME J. of Mechanical Design, 2006, 
128(1): 220–229 

[14] LIU J F, LI Y W, HUANG Z. Mobility analysis of Altmann 
overconstrained linkages by modified Grübler-Kutzbach criterion[J]. 
Chinese Journal of Mechanical Engineering, 2011, 24(4): 638–646. 

[15] BALL R. A Treatise on the theory of Screws[M]. England: Cam- 
bridge University Press, 1900. 

[16] KUTZBACH K. Einzelfragen aus dem gebiet der maschinenteile[J]. 
Zeitschrift der Verein Deutscher Ingenieur, 1933, 77: 1 168. 

[17] TSAI L W. Mechanism design: Enumeration of kinematic structures 
according to function[M]. Florida, Boca Raton: CRC Press, 2000. 

[18] SARRUS P T. Note sur la transformation des mouvements rectilignes 
alternatifs, en mouvements circulaires; et reciproquement[J]. Academie 
des sciences, comtes rendus hebdomataires des séances, 1853, 36:     
1 036-1 038. 

[19] DELASSUS Et. Les chaînes  articulées fermées  etdéformables  à  
quatre  membres[J]. Bulletin  des  sciences mathématiques, 1922, 
46: 283-304. 

[20] WALDRON K J. A study of overconstrained linkage geometry by 
solution of closure equations-Part I, method of study[J]. Mech. Mach. 
Theory, 1973, 8(1): 95-104. 

[21] WALDRON K J. A study of overconstrained linkage geometry by 
solution of closure equations-Part II, Four-bar linkages with lower 
pair joints other than screw joints[J]. Mech. Mach. Theory, 1973, 
8(2): 233-247. 

[22] CHEN G, WANG H, ZHAO Y, et al. A kind of kinematically 
redundant planar paralle manipulator for optimal output 
accuracy[C]//The ASME International Design Engineering Technical 
Conferences, San Diego, California, USA, August 30-September 2, 
2009: DETC2009–86184. 

 
Biographical notes   
LI Yanwen, born in 1966, is currently a professor at Yanshan 
University, China. She received her PhD degree from Yanshan 
University, China, in 2005. Her research interests include 
mechachonics engineering, robotics. 
Tel: +86-335-8074658; E-mail: ywl@ysu.edu.cn 
 
WANG Lumin, born in 1964, is currently an associate professor at 
Yanshan University, China. He received his master degree from 
Huadong Science and Technology University, China, in 1999. His 
research interests include chemical science and engineering. 
 
LIU Jingfang, born in 1985, is currently a lecturer at College of 
Mechanical Engineering and Applied Electronics Technology, 
Beijing University of Technology, China. She received her PhD 
degree from Yanshan University, China. Her research interests 
include theory and control in mechanisms, robotics. 
E-mail: jfliu@bjut.edu.cn 
 
HUANG Zhen, born in 1936, is currently a professor at Yanshan 
University, China. His research interests include theory and 
technology in parallel mechanisms, robotics, topological analysis 
as well as electromechanical integration. 
Tel: +86-335-8074709; E-mail: huangz@ysu.edu.cn 

 

mailto:ywl@ysu.edu.cn�
mailto:huangz@ysu.edu.cn�

	1 Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University,
	Qinhuangdao 066004, China
	3 College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology,
	Beijing 100124, China
	1  Introduction0F(
	2  Demonstrate the General Validity of the Modified Grübler-Kutzbach Criterion
	2.1  Screw
	2.2  Reciprocal screw
	2.3  Terms relative to the Modified Grübler-Kutzbach criterion
	2.4  Grübler-Kutzbach criterion
	2.5  Modified Grübler-Kutzbach criterion
	2.6  Demonstration of the general validity of the  Modified Grübler-Kutzbach criterion

	3  Application Examples of the Modified  Grübler-Kutzbach Criterion
	3.1  Single-loop overconstrained Delassus linkages

	4  Conclusions
	References
	Biographical notes


