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Abstract: A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method. However, 
extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are 
established with a proper method and the solving approach is appropriate. In order to obtain a kinematic solution of the spherical 
Stephenson-III six-bar mechanism, spherical analytical theory is employed to construct the constraint equations. Firstly, the mechanism 
is divided into a four-bar loop and a two-bar unit. On the basis of the decomposition, vectors of the mechanism nodes are derived 
according to spherical analytical theory and the principle of coordinate transformation. Secondly, the structural constraint equations are 
constructed by applying cosine formula of spherical triangles to the top platform of the mechanism. Thirdly, the constraint equations are 
solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics 
respectively. By the aid of computer symbolic systems, Mathematica and Maple, symbolic closed-form solution of forward and inverse 
displacement analysis of spherical Stephenson-III six-bar mechanism are obtained. Finally, numerical examples of forward and inverse 
analysis are presented to illustrate the proposed approach. The results indicate that the constraint equations established with the proposed 
method are much simpler than those reported by previous literature, and can be readily eliminated and solved. 
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1  Introduction∗ 
 

Spherical mechanisms are a type of special mechanism 
in which the rotation axes of all the links intersect in a 
signal point located at the center of the mechanism. In 
recent years, due to their particular characteristics, more 
and more attention has been paid to parallel spherical 
mechanisms by researchers. For example, a spherical 
five-bar mechanism has been applied to an orienting 
device[1]. CHEN, et al, designed scanning apparatus with a 
four-degrees-of-freedom hybrid spherical mechanism[2]. 
Based on a spherical six-bar mechanism, a gearless robotic 
Pitch-roll wrist has been proposed by HERNANDEZ, et 
al[3]. VALASEK, et al[4], reported a redundantly actuated 
parallel spherical mechanism as a new concept of agile 
telescope by using a three times overactuated structure.  

The classic spherical mechanisms, spherical four-bar 
linkage and the three-degrees-of-freedom spherical parallel 
mechanisms, have been investigated by researchers[5–10]. 
Numerous advances have been made in establishing and 
solving the constraint equations of these mechanisms[7–10]. 
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The configurations and Grashof’ s condition of spherical 
four-bar linkage have been discussed and presented by 
MURRAY and LAROCHELLE[5]. RUTH and 
McCARTHY developed a computer-aided design software 
system for spherical four-bar linkages based on Burmester’ 
s planar theory[6]. It has been studied that the analytical 
synthesis of function generation of spherical four-bar 
linkage for five precision points by RASIM, et al[7]. A 
polynomial approximation method has been presented to 
determine design parameters. The position equation has 
been constructed by using triangular relations. LEE, et al[8], 
explored the motion generation of adjustable spherical 
four-bar linkage. Based on the input-output (I/O) equation 
of spherical four-bar linkages, BAI, et al[9], researched the 
forward-displacement analysis of spherical parallel robots 
by deposing the closed-loop kinematic chain of a spherical 
parallel robots into four-bar spherical chains. ENFERADI, 
et al[10], investigated the forward position problem of a 
spherical star-triangle parallel manipulator by utilizing a 
spherical configuration. Constraint equations of the 
mechanism have been constructed by equivalent angle- 
axis representation and solved Bezout’ s method which 
leads to a closed-form solution with a polynomial of 
degree 8. ZHANG, et al[11], presented a three-spherical 
kinematic chain based parallel mechanism. The 
constraint of the mechanism has been constructed by 
means of a virtual symmetric plane based on the three 



 
 
 

LIU Yanfang, et al: Kinematic Solution of Spherical Stephenson-III Six-bar Mechanism 

 

·852· 

virtual centers of the spherical chains. The singularity of 
the mechanism is identified related to the constraint 
configuration based on Grassmann line geometry and the 
dependency of the constraint screw system. The design 
parameters avoiding the platform singularity have been 
presented.  

Some work have been conducted by researchers on 
planar six-bar mechanisms, including Stephenson I, II, and 
III, Watt, etc[6, 12–16]. KIM, et al[12], explored the design 
problem for six-bar linkages that generate a specific 
coupler point trajectory. An approach has been proposed by 
MARIAPPAN and KRISHNAMURTY[13] to design a 
Stephenson III six-bar linkage that generates a path for a 
press mechanism by using an optimization procedure. SOH 
and McCARTHY[14] introduced an approach to synthesize 
planar six-bar linkages including the Watt I and Stephenson 
I, II, and III with Denavit–Hartenberg convention. TING 
and DOU[15] presented a method to identify the effects of 
both loops on the rotatability of any Stephenson six-bar 
linkage and developed algorithms to identify its branch 
condition. The proposed method is based on the rotatability 
of the common joints between the two loops and no coupler 
curve is used. By converting a Watt six-bar linkage to an 
equivalent simple Stephenson linkage using the stretch and 
rotation of a four-bar loop, TING, et al[16], examined the 
stretch rotation and complete mobility identification of 
Watt six-bar chains.  

The spherical six-bar mechanism is a special type of 
multi-bar mechanism. Comparative research in the analysis 
and synthesis of six-bar mechanisms has been conducted by 
MAKHSUDYAN, et al regarding spherical and planar 
mechanisms[17]. The comparison was carried out by 
studying three generalized non-dimensional indexes: 
velocity, acceleration and dynamic power. The results show 
that spherical linkages have better properties than planar 
linkages. A synthesis approach has been proposed by 
YANG and XU for spherical six-bar path generation 
mechanisms, in which the mechanism is divided into 
several link groups[18]. The synthesis equations of two link 
groups for the spherical mechanisms have been established 
and the constraint conditions and objective functions 
presented as well. ZHANG, et al[19], proposed a method for 
optimal trajectory synthesis of an adjustable spherical 
Stephenson-III six-bar mechanism. The multi-task 
synthesis equations were derived and the optimization 
model of mechanism synthesis was established based on 
the virus evolutionary genetic algorithm to obtain 
comprehensive results. SANCISI, et al[20], presented a 
validation approach to a one degree-of-freedom spherical 
model for kinematic analysis of the human ankle joint. 
GREGORIO[21] researched the analytical method for the 
singularity analysis, and exhaustive enumeration of the 
singularity conditions in single-DOF spherical mechanisms 
by exploiting the properties of instantaneous pole axes. The 
exhaustive enumeration of the geometric conditions which 
occur for all the singularity types is given, and a general 

analytical method based on this enumeration is carried out 
for implementing the singularity analysis. 

Kinematics analysis is one of the fundamental problems 
of spatial mechanism analysis. Establishing constraint 
equations is the first step to analyze, synthesize and 
evaluate a spatial mechanism. Analytical and numerical 
methods can be used to solve the displacement analysis 
problem of a mechanism. By using an analytical method, a 
closed-form solution of displacement analysis can be 
obtained for some mechanisms with simple structures, 
which is helpful for carrying out performance analysis and 
configuration design intuitively. However, it is difficult to 
obtain closed-form symbolic solutions for both forward and 
inverse displacement analysis of parallel spatial 
mechanisms and the inverse solution of serial mechanisms 
unless the constraint equations are established with an 
appropriate method and solved in a proper way. ZHAO, et 
al[22], examined the generation of closed-form inverse 
kinematics for reconfigurable robots by means of the screw 
and product-of-exponentials formula.  

A number of studies have been carried out relating to 
kinematics of spherical mechanisms. For example, 
WAMPLER[23] addressed the displacement analysis of 
spherical mechanism having three or fewer loops by using 
rotation matrices or quaternion, including the classical 
pentad mechanism which has eight solutions. The solutions 
were obtained by using modified Sylvester’ s elimination 
and numerical calculation via standard eigenvalue routines. 
BAKER[24] presented the displacement-closure equations of 
the unspecialized double-Hooke’ s-joint linkage with focus 
on the general relationship between input and output shaft 
angles. A set of geometric constraint equations of the 6R 
double-centered overconstrained mechanisms has been 
constructed by CUI and DAI[25]. The axis constraint 
equation of the 6R double-centered overconstrained 
mechanisms was obtained after applying the Sylvester’ s 
dialytic elimination method. The input-output equation of a 
spherical Stephenson-III six-bar mechanism has been 
reported by HERNANDEZ[3] and the dimensional synthesis 
of the mechanism was conducted. However, the power of 
the input-output equation is on the high side which means 
that there are some extraneous roots. BOMBIN, et al[26], 
presented an approach to deal with the computation of the 
direct kinematics of parallel spherical mechanisms using 
Bernstein polynomials. The direct kinematics of parallel 
spherical mechanisms with l legs was converted to solving 
systems of l–1 second-order multinomials. KONG and 
GOSSELIN[27] investigated the forward displacement 
analysis(FDA) of a quadratic spherical parallel manipulator: 
the Agile Eye. An alternative formulation of the kinematic 
equations of the Agile Eye was presented and the 
singularity analysis of the Agile Eye was examined. 
RODRIGUEZ and RUGGIU[28] explored the forward 
displacement problem(FDP) of several common spherical 
parallel manipulators(SPMs). Quaternion algebra was 
employed to express the FDP as a system of equations and 
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the Dixon determinant procedure to construct univariate 
polynomials whose roots can be found either numerically 
or analytically. The solutions of the system were obtained 
analytically by a symbolic method exploiting symmetries. 
Ref. [29] reports the forward kinematics of a 3-DOF 
spherical parallel manipulator. An algebraic solution was 
presented by using a transformational matrix to construct 
the geometric constraint equations. The mechanism is with 
a simple geometric structure, so its forward kinematic 
solution can be reached easily in a univariate quartic 
polynomial equation. HUANG and YAO[30] studied the 
kinematics of a generalized 3-DOF spherical parallel 
manipulator, of which each leg consists of two rotating bars 
respectively. The inverse kinematic solution of the 
mechanism was obtained by using spherical analytical 
theory in concise form. The forward kinematics of the 
mechanism was also reached in a closed-form solution. 

In this paper, analytical methods are used to obtain a 
closed-form input-output equation of the spherical 
Stephenson-III six-bar mechanism. The displacement 
analysis constraint equations have been derived by utilizing 
spherical analytical theory[31]. Bezout’ s elimination method 
and Sylvester’ s resultant elimination method[32–33] are 
applied to solve the constraint equations, and implemented 
using the computer symbolic systems, Mathematica and 
Maple respectively. 

This paper is organized as follows: The constraint 
equations of the spherical Stephenson-III six-bar 
mechanism are derived in section 2. Based on the 
established constraint equations, forward and inverse 
displacement analyses are conducted in section 3. 
Discussions and conclusion are presented at the end of the 
paper. 

 
2  Constraint Equations 

 
As shown in Fig. 1, a spherical Stephenson-III six-bar 

mechanism can be decomposed into a spherical four-bar 
linkage and a spherical two-bar unit. Assuming that 0A  is 
the input reference point and 0C  is the output reference 
point, therefore, 1θ and 5θ are the input and output angles, 
respectively. The reference coordinate systems are set 
according to the mechanism’ s structural characteristics as 
shown in Fig. 1. Point O is the global center. The X-axis of 
the original coordinate system O-XYZ is perpendicular to 
the plane 12( , )O α ; Z-axis coincides with the axis 0OB  and 
Y-axis is in the plane 12( , )O α  in Cartesian coordinates. 
The coordinate system of a four-bar mechanism is assumed 
to coincide with the original coordinate system. The 

1X -axis of the coordinate system 1 1 1-O X Y Z  of the 
spherical two-bar unit is perpendicular to the plane 12( , )O α ; 

1Z -axis coincides with the axis 0OC ; and 1Y  is following 
Cartesian coordinates. Denoting sini iS θ ; cosi iC θ ; 

isinij jS α ; cosij ijC α , where ijα  is the spherical 

central angle between points i and j. The transformation 
matrix rotating around the X-axis and Z-axis can be 
expressed as follows: 

 

 
1 0 0

, 0

0
ij ij ij

ij ij

X C S

S C

αR

            

,           (1) 

 

 

0

, 0

0 0 1

i i

i i i

C S

Z S CθR

            

.            (2) 

 
Fig. 1.  Coordinate systems of the mechanism 

 
The coordinate system 1 1 1-O X Y Z  can be transferred to 

the original coordinate system O-XYZ by rotating 25α  
clockwise with respect to the X-axis. Thus, the 
transformation matrix is written as follows: 

 

 25 25 25

25 25

1 0 0

, 0

0

X C S

S C

αR

           

.          (3) 

 
According to Ref. [31], vector BV  in coordinate system 

O-XYZ can be obtained by the loop equation of the 
spherical polygon of the spherical four-bar linkage: 
 

 T, ,B B B Bx y zV    ,               (4) 
 
where  

4 41 1Bx X C Y S  ,   

4 4 412 1 1 12 ( )By C X S Y C S Z   , 

4 4 412 1 1 12 ( ) Bz S X S Y C C Z   ; 
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4X , 4Y , and 4Z  are defined as in Ref. [31], 4 34 4X S S , 

4 41 34 41 34 4( )Y S C C S C  , 4 41 34 41 34 4Z C C S S C  .  
Similarly, vector AV  in O-XYZ can be expressed as 

follows: 
 

 T, ,A A A Ax y zV ,              (5) 
 
where 41 1Ax S S , 41 1 12 41 12Ay S C C C S  ,  

41Az S 1 12 41 12C S C C . 
Vector 

0BV  in O-XYZ is denoted as follows: 

 

 
0

T0, 0, 1BV    .                 (6) 
 
According coordinate transformation theory, vector 

DV in 1 1 1-O X Y Z , denoting as 
1DV , is written as follows: 

 

 
1

T
5 56 6 67( , ) ( , ) ( , ) ( , ) 0, 0, 1D z x z xθ α θ αV R R R R   . 

 
Therefore, DV  in O-XYZ can be expressed as follows: 
 

125( , )D DX αV R V .             (7) 

 
Applying the cosine formula of spherical triangles to the 

platform ABD of the spherical Stephenson-III six-bar 
mechanism, the structural constraint equations can be 
obtained as follows: 

 

0

73

34 73 34 73

23

cos ,
cos cos sin sin cos ,
cos .

B D

A D

B B

α
α α α α δ
α

    

V V
V V
V V







   (8) 

 
Eq. (8) is the constraint equation set of the mechanism, 

which involve variables 1θ , 4θ , 5θ  and 6θ . While the 
input angle 1θ  is given, Eq. (8) can be solved. 

 
3  Displacement Analysis 

 
3.1  Forward displacement analysis 

5θ  is taken as the output angle of the mechanism. 
Forward displacement analysis of the spherical Stephenson- 
III six-bar mechanism is defined as that to solve Eq. (8) to 
obtain the value of output angle 5θ  when the input angle 

1θ is given. 
Denoting tan( 2)i itθ   , the following equation can be 

obtained: 
 

  2 2 2(1 ) (1 );  2 (1 )i i i i i iC t t S t t        (i 1, 4, 5, 6).   
  (9) 

 
Substituting Eq. (9) into Eq. (7), according to 

trigonometric transformation and by the aid of symbolic 

software Mathematica[34], Eq. (7) can be expressed as 
follows: 

 
2

11 6 11 6 11
2

22 6 22 6 22
2

33 4 33 4 33

0,

0,

0,

a t b t c

a t b t c

a t b t c

         

           (10) 

 
where  

2
11 1 5 2 5 3a a t a t a   , 2

11 4 5 5 5 6b a t a t a   , 
2

11 7 5 8 5 9c a t a t a   , 2
22 1 5 2 5 3 a b t b t b   , 

2
22 4 5 5 5 6 b b t b t b   , 2

22 7 5 8 5 9 c b t b t b   , 
 

ia  and ( 1, 2, , 9)ib i      are expressions of 4t  and the 
structural parameters of the mechanism, 33 33 33, ,a b c   are 
the expressions of the structural parameters of the 
mechanism. 

4t  is obtained by solving the third equation in Eq. (10): 
 

2
33 33 33 33

4
33

( ) 4
2

b b a c
t

a
  

 .          (11) 

 
The Bezout’ s elimination method is traditionally used 

for reducing a set of polynomials of multiple variables into 
a polynomial of only one variable. Appling Bezout’ s 
elimination method to the first two equations of Eq. (9) and 
eliminating 6t , the following equation is obtained: 

 
2

11 22 22 11 11 22 22 11 11 22 22 11( ) ( )( ) 0 .a c a c a b a b b c b c       . 
(12) 

 
Eq. (12) can be expressed in a univariate quartic 

polynomial equation as follows: 
 

8 7 6 5 4
1 5 2 5 3 5 4 5 5 5d t d t d t d t d t      

3 2
6 5 7 5 8 5 9 0,d t d t d t d              (13) 

 
where d1, , d9 are expressions about 4t 4 4( , )C S . 

Substituting the two solutions of 4t  obtained from Eq. 
(11) into Eq. (13), sixteen solutions of 5t  are derived, 
which are the forward displacement solutions of the 
spherical Stephenson-III six-bar mechanism. 

Substituting solutions of 4t  and 5t  into the first and 
second equations of Eq. (10), 6t  is obtained: 

 
22 11 11 22

6
11 22 22 11

a c a ct
a b a b





.              (14) 

 
After that, with Eq. (9), 4θ , 5θ  and 6θ  can be 

calculated. 
 

3.2  Numerical example of forward displacement 
    analysis 

The structural parameters of the spherical Stephenson-III 
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six-bar mechanism are given as α12135°; α2385°; 
α3470°; α4185°; α25135°; α5685°; α6775°; α7390°, 
and the input angle is set as 1 60θ   . After computing 
coefficients in Eq. (10) and Eq. (13) with the given 
structural parameters and the value of input angle, 4t  and 

5t  are obtained, as listed in Table 1. 
 

Table 1.  Solutions of forward displacement analysis 

Variable t4 
Variable t5 

Real root Imaginary root 

−0.288 823 

−0.600 069 i 
0.296 822 i 
0.897 892 −i 

23.948 −i 

1.624 46 

−3.033 83 i 
−0.598 56 i 
0.642 809 −i 
0.924 906 −i 

 
Substituting 4t  and the real roots of 5t  into Eq. (9) 

respectively, the solutions of joint angle 4θ  and the output 
angle 5θ  of the spherical Stephenson-III six-bar are 
obtained and presented in Table 2. 

 
Table 2.  Forward solutions 

Joint angle θ4(°) Output angle θ5(°) 

−32.22 

−61.93 

33.06 

83.84 

175.22 

116.77 

−143.51 

−61.81 

65.47 

85.53 

 
With the results of the forward displacement analysis, 

configurations of the mechanism were calculated. Of the 
eight real solutions, two solutions meet the mechanism’ s 
configuration requirement, which is shown in Fig. 2. The 
other solutions will cause interference between the links. 

 
3.3  Inverse displacement analysis 

Inverse displacement analysis is defined as a process 
whereby the input angle 1θ  of the mechanism is 
determined by solving the displacement constraint 
equations when the output angle 5θ  of the mechanism is 
given. 

Denoting tan( 2)  ( 1, 4, 6),i it iθ       Eq. (8) can be 
transformed into Eq. (15) with trigonometric 
transformation: 

 

 

2
1 6 2 6 3
2

1 6 2 6 3

2 2 2
1 1 2 4 3 1 4 4 1 5

 0,

 0,

 0,

M t M t M

L t L t L

n t n t n t t n t n

           

    (15) 

where  
 

2 2 2 2 2
1 0 1 4 3 1 4 6 1 4 7 1 4 8 4

2 2
9 1 4 10 4 11 1 12 1 13

 

,

M m t t m t t m t t m t t m t

m t t m t m t m t m     

     

   
 

2 2 2 2
2 1 1 4 3 1 4 4 1 4 14 1 4 15

2 2
16 4 17 4 18 1 19 1

  

,

M m t t m t t m t t m t t m

m t m t m t m t     

     

  
 

2 2 2 2 2
3 2 1 5 1 20 1 4 21 1 4 22 4

2
23 1 4 24 1 4 25 4 26 , 

M m t m t m t t m t t m t

m t t m t t m t m     

     

  
 

2
1 1 1 2 1 3L l t l t l   , 

2
2 4 1 5 1 6 L l t l t l   , 

2
3 7 1 8 1 9L l t l t l   , 

 
l1 , , l9, m0 , , m26, and n1 , , n5 are all of expressions 
about the structural parameters of the mechanism. 

 

 
Fig. 2.  Configurations of forward solutions 

 
Eq. (15) can be solved with Sylvester’ s resultant 

elimination method by the aid of computer symbolic 
systems Mathematica and Maple. The solving process is as 
follows. 

Step 1. Eliminating 6t  with the first two equations of 
Eq. (15), Eq. (16) is obtained: 
 

4 3 2
0 4 1 4 2 4 3 4 4 0p t p t p t p t p     ,      (16) 

 
where p0 , , p4 are all polynomials with the highest degree 
of 8

1t . 
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Step 2. Eliminating 4t  with Eq. (16) and the third 
equation of Eq. (15) by resultant elimination, an equation 
with the 24th-degree of 1t  is obtained as follows: 

 
24 23 22 2

0 6 1 1 2 1 22 1 23 1 24 0,k t k t k t k t k t k        (17) 
 

where k0, , k24 are all of expressions about the structural 
parameters of the mechanism. 

Step 3. Solving Eq. (17) to discover reverse displacement 
solutions of the mechanism, Eq. (17) has twenty-four 
solutions in total. After 1t  is obtained, substituting 1t  
into the second and the third equations of Eq. (15), the 
solutions of 4t  and 6t  will be obtained as follows: 

 

     
 

2 2
3 1 4 3 1 4 1 1 2 5

4 2
1 1 2

4

2

n t n n t n n t n n
t

n t n

     



,  (18) 

 
1 3 3 1

6
2 1 1 2

L M L M
t

L M L M





.             (19) 

 
Furthermore, configurations of the inverse displacement 

analysis of mechanism can be calculated. 
Coefficients a, b, d in Eqs. (10)−(13) are shown in the 

appendix. Coefficients l, m, n, p, k in Eqs. (15)−(17) are too 
complex to present in this paper, which can be requested 
through email: yuanzhang198621@163.com. 

 
3.4  Numerical example of inverse displacement  

analysis 
The structural parameters of the mechanism are set in the 

same way as those in the numerical example of forward 
displacement analysis. The output parameter of the 
mechanism is set as θ5−143.51° (t5−3.033 83). Substituting 
t5 and all the structural parameters into Eq. (17), 
twenty-four solutions of t1 which are the solutions of the 
inverse displacement analysis have been obtained, and 
shown in Table 3. 

 
Table 3.  Solutions of inverse displacement analysis (t1) 

 Parameter t1 

Real root 
−0.006 395 0.577 353 

1.459 67 1.925 87 

Imaginary 
root 

0.263 218+0.531 167i 0.263 218−0.531 167i 
0.076 878+0.356 91i 0.076 878+0.356 91i 
0.002 612+1.003 03i 0.002 612−1.003 03i 
−1.006 17+2.114 76i −1.006 17−2.114 76i 
−1.343 723+1.091 6i −1.343 723−1.091 6i 
−1.509 42+1.211 36i −1.509 42−1.211 36i 
−0.735 87+0.929 349i −0.735 87+0.929 349i 
0.003 017+0.997 41i 0.003 017+0.997 41i 
−0.003 059+1.002 59i −0.003 059+1.002 59i 
−0.002 57+0.996 961i −0.002 57−0.996 961i 

 
With the four real roots in Table 3, the values of the input 

angle θ1 of the mechanism have been calculated by the aid 

of trigonometric transformation. The solutions are listed in 
Table 4. 

 
Table 4.  Inverse solutions of input angle (θ1) 

θ1 −139.88° 60.00° 111.17° 125.12° 
 
The corresponding mechanism configurations of the 

inverse solutions are presented in Fig. 3 except the first 
solution in Table 3. The mechanism configuration of the 
first solution in Table 3 will result in interference between 
bars B0B and A0A. The configuration shown in Fig. 3(a) is 
the same as the forward result shown in Fig. 2(a). 

 

 
Fig. 3.  Configurations of inverse solutions 

 
 

4  Discussion 
 
Compared with the results presented in Ref. [3], the 

constraint equations constructed in this paper are 
polynomials with the highest order about 2 2 2

1 4 6t t t  which is 
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lower than the highest order of the constraint equation 
polynomials, 4 4 4

1 4 6t t t , presented in Ref. [3]. Therefore, the 
constraint equations established in this paper are much 
simpler, and can be readily eliminated and solved. They 
also reduce the number of extraneous roots, which is the 
main contribution of this paper. 

 
5  Conclusions 

 
(1) A symbolic kinematic solution of the spherical 

Stephenson-III six-bar mechanism is obtained by dividing 
the mechanism into a spherical four-bar mechanism and a 
spherical two-bar unit according to the structural 
characteristics of the mechanism.  

(2) The constraint equations of the mechanism are 
constructed by utilizing spherical analytic geometry and 
coordinate transformation theory and solved by Bezout’ s 
elimination method and Sylvester’ s resultant elimination 
method. The solving process is implemented by using the 
computer symbolic systems Mathematica and Maple 
respectively. 

(3) Numerical examples are presented as an illustration 
to validate the proposed approach. The mechanism 
configurations of the forward and inverse solutions are also 
presented. 
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Appendix 
 

Coefficients a, b, d in Eq. (10)–(13) are as follows: 
 

1 12 25 34 41 56 67 73 34 41 56 67 12 25

1 25 4 41 56 67 12 34 1 12 4 41 56 67 25 34

25 56 67 1 12 34 4 12 56 67 1 25 34 4

1 25 34 56 67 12 41 1 12 34 56 67 25 41

a C C C C C C C C C C C S S
C C C C C C S S C C C C C C S S
C C C S S S S C C C S S S S
C C C C C S S C C C C C S S

   

 

 

 

    

    

    
 

12 25 4 56 67 34 41 4 56 67 12 25 34 41

25 34 41 67 12 56 12 34 41 67 25 56

1 12 25 4 41 67 34 56 1 4 41 67 12 25 34 56

12 25 67 1 34 4 56 67 1 12 25 34 4 56

1 12 25 34 67 41 56 1 34 67 12 2

C C C C C S S C C C S S S S
C C C C S S C C C C S S
C C C C C C S S C C C C S S S S
C C C S S S S C S S S S S S
C C C C C S S C C C S S

 

 

 

 

 5 41 56S S 

 

25 4 67 12 34 41 56 12 4 67 25 34 41 56

25 34 41 56 12 67 12 34 41 56 25 67

1 12 25 4 41 56 34 67 1 4 41 56 12 25 34 67

12 25 56 1 34 4 67 56 1 12 25 34 4 67

1 12 25 34 56 41 67 1 34 56 12 2

C C C S S S S C C C S S S S
C C C C S S C C C C S S
C C C C C C S S C C C C S S S S
C C C S S S S C S S S S S S
C C C C C S S C C C S S

 

 

 

 

 5 41 67S S 

 

25 4 56 12 34 41 67 12 4 56 25 34 41 67

12 25 34 41 56 67 34 41 12 25 56 67

C C C S S S S C C C S S S S
C C C C S S C C S S S S

 

 
 

1 25 4 41 12 34 56 67 1 12 4 41 25 34 56 67C C C C S S S S C C C C S S S S   

25 1 12 34 4 56 67 12 1 25 34 4 56 67

1 25 34 12 41 56 67 1 12 34 25 41 56 67

12 25 4 34 41 56 67 4 12 25 34 41 56 67 ,

C S S S S S S C S S S S S S
C C C S S S S C C C S S S S
C C C S S S S C S S S S S S

 

 



 

2 4 41 67 1 34 56 1 67 34 4 56

34 67 1 41 56 4 41 56 1 34 67

1 56 34 4 67 34 56 1 41 67

2 2
2 2
2 2 ,

a C C C S S S C C S S S
C C S S S C C C S S S
C C S S S C C S S S

    

    

  

 

  

 3 12 25 34 41 56 67 73 34 41 56 67 12 25

1 25 4 41 56 67 12 34 1 12 4 41 56 67 25 34

25 56 67 1 12 34 4 12 56 67 1 25 34 4

1 25 34 56 67 12 41 1 12 34 56 67 25 41

12 25 4 56

a C C C C C C C C C C C S S
C C C C C C S S C C C C C C S S
C C C S S S S C C C S S S S
C C C C C S S C C C C C S S
C C C C

   

 

 

 

    

    

    

    67 34 41 4 56 67 12 25 34 41C S S C C C S S S S 

 

25 34 41 67 12 56 12 34 41 67 25 56

1 12 25 4 41 67 34 56 1 4 41 67 12 25 34 56

12 25 67 1 34 4 56 67 1 12 25 34 4 56

1 12 25 34 67 41 56 1 34 67 12 25 41 56

25 4 67 12 34 41 56 12 4 67 25 3

C C C C S S C C C C S S
C C C C C C S S C C C C S S S S
C C C S S S S C S S S S S S
C C C C C S S C C C S S S S
C C C S S S S C C C S S

 

 

 

 

 4 41 56S S 

 

25 34 41 56 12 67 12 34 41 56 25 67

1 12 25 4 41 56 34 67 1 4 41 56 12 25 34 67

12 25 56 1 34 4 67 56 1 12 25 34 4 67

1 12 25 34 56 41 67 1 34 56 12 25 41 67

25 4 56 12 34 41 67 12 4 56 25 3

C C C C S S C C C C S S
C C C C C C S S C C C C S S S S
C C C S S S S C S S S S S S
C C C C C S S C C C S S S S
C C C S S S S C C C S S

 

 

 

 

 4 41 67S S 

 

12 25 34 41 56 67 34 41 12 25 56 67

1 25 4 41 12 34 56 67 1 12 4 41 25 34 56 67

25 1 12 34 4 56 67 12 1 25 34 4 56 67

1 25 34 12 41 56 67 1 12 34 25 41 56 67

12 25 4 34 41 56 67 4 12 25 34 4

C C C C S S C C S S S S
C C C C S S S S C C C C S S S S
C S S S S S S C S S S S S S
C C C S S S S C C C S S S S
C C C S S S S C S S S S

 

 

 

 

 1 56 67 ,S S

 

 4 4 41 1 34 67 1 34 4 67

34 1 41 67

( 2 2
2 ),

 

 

a C C  S S  S C  S  S S
 C  S  S S    

   

 
 

5 25 34 41 12 67 12 34 41 25 67

1 12 25 4 41 34 67 1 4 41 12 25 34 67

12 25 1 34 4 67 1 12 25 34 4 67

1 12 25 34 41 67 1 34 12 25 41 67

25 4 12 34 41 67 12 4 25 34

4 4
4 4
4 4
4 4
4 4

a C C C S S C C C S S
C C C C C S S C C C S S S S
C C S S S S S S S S S S
C C C C S S C C S S S S
C C S S S S C C S S

    

    

    

    

  

 

 

 

 41 67 ,S S

 

 
6 4 41 1 34 67 1 34 4 67 34 1 41 672 2 2 ,a C C S S S C S S S C S S S    

7 12 25 34 41 56 67 73 34 41 56 67 12 25

1 25 4 41 56 67 12 34 1 12 4 41 56 67 25 34

25 56 67 1 12 34 4 12 56 67 1 25 34 4

1 25 34 56 67 12 41 1 12 34 56 67 25 41

12 25 4 56

a C C C C C C C C C C C S S
C C C C C C S S C C C C C C S S
C C C S S S S C C C S S S S
C C C C C S S C C C C C S S
C C C C

   

 

 

 

    

    

    

    67 34 41 4 56 67 12 25 34 41C S S C C C S S S S 

 

25 34 41 67 12 56 12 34 41 67 25 56

1 12 25 4 41 67 34 56 1 4 41 67 12 25 34 56

C C C C S S C C C C S S
C C C C C C S S C C C C S S S S

 

   
12 25 67 1 34 4 56 67 1 12 25 34 4 56C C C S S S S C S S S S S S   

1 12 25 34 67 41 56 1 34 67 12 25 41 56

25 4 67 12 34 41 56 12 4 67 25 34 41 56

C C C C C S S C C C S S S S
C C C S S S S C C C S S S S

 

 
 

25 34 41 56 12 67 12 34 41 56 25 67

1 12 25 4 41 56 34 67 1 4 41 56 12 25 34 67

C C C C S S C C C C S S
C C C C C C S S C C C C S S S S

 
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12 25 56 1 34 4 67 56 1 12 25 34 4 67C C C S S S S C S S S S S S   

1 12 25 34 56 41 67 1 34 56 12 25 41 67

25 4 56 12 34 41 67 12 4 56 25 34 41 67

12 25 34 41 56 67 34 41 12 25 56 67

1 25 4 41 12 34 56 67 1 12 4 41 25 34 56 67

25 1 12 34 4 56 67 12 1 25 34

C C C C C S S C C C S S S S
C C C S S S S C C C S S S S
C C C C S S C C S S S S
C C C C S S S S C C C C S S S S
C S S S S S S C S S S S

 

 

 

 

 4 56 67

1 25 34 12 41 56 67 1 12 34 25 41 56 67

12 25 4 34 41 56 67 4 12 25 34 41 56 67 ,

S S
C C C S S S S C C C S S S S
C C C S S S S C S S S S S S



 



 

 
8 4 41 67 1 34 56 1 67 34 4 56

34 67 1 41 56 4 41 56 1 34 67

1 56 34 4 67 34 56 1 41 67

2 2
2 2
2 2 ,

a C C C S S S C C S S S
C C S S S C C C S S S
C C S S S C C S S S

    

    

  

 



 

 
9 12 25 34 41 56 67 73 34 41 56 67 12 25

1 25 4 41 56 67 12 34 1 12 4 41 56 67 25 34

25 56 67 1 12 34 4 12 56 67 1 25 34 4

1 25 34 56 67 12 41 1 12 34 56 67 25 41

12 25 4 56

a C C C C C C C C C C C S S
C C C C C C S S C C C C C C S S
C C C S S S S C C C S S S S
C C C C C S S C C C C C S S
C C C C
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 

 
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    67 34 41 4 56 67 12 25 34 41

25 34 41 67 12 56 12 34 41 67 25 56

1 12 25 4 41 67 34 56 1 4 41 67 12 25 34 56

12 25 67 1 34 4 56 67 1 12 25 34 4 56

1 12 25 34 67 41 56 1 34 67

C S S C C C S S S S
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25 4 67 12 34 41 56 12 4 67 25 34 41 56

S S S S
C C C S S S S C C C S S S S


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25 34 41 56 12 67 12 34 41 56 25 67

1 12 25 4 41 56 34 67 1 4 41 56 12 25 34 67

12 25 56 1 34 4 67 56 1 12 25 34 4 67
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25 4 56 12 34 41 67 12 4 56 25 3

C C C C S S C C C C S S
C C C C C C S S C C C C S S S S
C C C S S S S C S S S S S S
C C C C C S S C C C S S S S
C C C S S S S C C C S S
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 

 

 4 41 67S S 

 

12 25 34 41 56 67 34 41 12 25 56 67
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 
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25 41 67 12 56 12 41 67 25 56
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1
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1 25 56 67 12 41 1 12 56 67 25 41

25 41 67 12 56 12 41 67 25 56

b C C C C C C C C C C S S
C C C C S S C C C C S S
C C C S S C C C S S

    

    

   

 

 

 

1 12 25 67 41 56 1 67 12 25 41 56
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C C C C S S C S S S S
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