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Abstract: A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method. However,
extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are
established with a proper method and the solving approach is appropriate. In order to obtain a kinematic solution of the spherical
Stephenson-III six-bar mechanism, spherical analytical theory is employed to construct the constraint equations. Firstly, the mechanism
is divided into a four-bar loop and a two-bar unit. On the basis of the decomposition, vectors of the mechanism nodes are derived
according to spherical analytical theory and the principle of coordinate transformation. Secondly, the structural constraint equations are
constructed by applying cosine formula of spherical triangles to the top platform of the mechanism. Thirdly, the constraint equations are
solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics
respectively. By the aid of computer symbolic systems, Mathematica and Maple, symbolic closed-form solution of forward and inverse
displacement analysis of spherical Stephenson-III six-bar mechanism are obtained. Finally, numerical examples of forward and inverse
analysis are presented to illustrate the proposed approach. The results indicate that the constraint equations established with the proposed

method are much simpler than those reported by previous literature, and can be readily eliminated and solved.

Key words: spherical Stephenson-I1I six-bar mechanisms, kinematic analysis, spherical analytical theory,
Bezout’ s elimination method, Sylvester’ s elimination method

The configurations and Grashof” s condition of spherical
1 Introduction four-bar linkage have been discussed and presented by
MURRAY and LAROCHELLE®. RUTH and
McCARTHY developed a computer-aided design software
system for spherical four-bar linkages based on Burmester’
s planar theory'®. It has been studied that the analytical
synthesis of function generation of spherical four-bar
linkage for five precision points by RASIM, et al’. A
polynomial approximation method has been presented to

Spherical mechanisms are a type of special mechanism
in which the rotation axes of all the links intersect in a
signal point located at the center of the mechanism. In
recent years, due to their particular characteristics, more
and more attention has been paid to parallel spherical

mechanisms by researchers. For example, a spherical . ! o ’
. . S determine design parameters. The position equation has
five-bar mechanism has been applied to an orienting

devicell. CHEN, et al, designed scanning apparatus with a been constructed b?f using trian.gular relat.ions. LEE, et a.l[g],
four-degrees-of-freedom hybrid spherical mechanism®. explored .the motion generathn of adjustable spherllcal
Based on a spherical six-bar mechanism, a gearless robotic four-bar.hnkage. Base.d on the inp ut-outl?;}t (IO) equation
Pitch-roll wrist has been proposed by HERNANDEZ, et of spherlc'al four-bar 11nkage§, BAI et e?l , researched the
al®. VALASEK, et al*)] reported a redundantly actuated forward—<'11splacement analy51s' of sphenca? parallel rol?ots
parallel spherical mechanism as a new concept of agile by deposing the' closed-loop klne@atlc Cha}m of a spherical
telescope by using a three times overactuated structure. paral[llei)l] r(.)bots ¥nto four-bar spherical c.h.ams. ENFERADI,

The classic spherical mechanisms, spherical four-bar ot al. ’ 1nvest1gated the forward ppsfuon problérTl.of a
linkage and the three-degrees-of-freedom spherical parallel spher%cal star-trlangle. parallel mar}lpulator t?y utilizing
mechanisms, have been investigated by researchersi>? spherical configuration. Constraint equations of the

Numerous advances have been made in establishing and me.chamsm have? been constructed by ’equlvalent angle—
. . . . 17-100  axis representation and solved Bezout’ s method which
solving the constraint equations of these mechanisms .

leads to a closed-form solution with a polynomial of
degree 8. ZHANG, et al'''!] presented a three-spherical
* Corresponding author. E-mail: yangsx@163.com kinematic chain based parallel mechanism. The

Chgl;EG[;:gte Ic\;olssgggg?gg;j by National Natural Science Foundation of o qpraint of the mechanism has been constructed by
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virtual centers of the spherical chains. The singularity of
the mechanism is identified related to the constraint
configuration based on Grassmann line geometry and the
dependency of the constraint screw system. The design
parameters avoiding the platform singularity have been
presented.

Some work have been conducted by researchers on
planar six-bar mechanisms, including Stephenson I, II, and
III, Watt, etcl® 127161, KIM, et al“z], explored the design
problem for six-bar linkages that generate a specific
coupler point trajectory. An approach has been proposed by
MARIAPPAN and KRISHNAMURTY!" to design a
Stephenson III six-bar linkage that generates a path for a
press mechanism by using an optimization procedure. SOH
and McCARTHY!"¥ introduced an approach to synthesize
planar six-bar linkages including the Watt I and Stephenson
I, II, and III with Denavit—Hartenberg convention. TING
and DOU™! presented a method to identify the effects of
both loops on the rotatability of any Stephenson six-bar
linkage and developed algorithms to identify its branch
condition. The proposed method is based on the rotatability
of the common joints between the two loops and no coupler
curve is used. By converting a Watt six-bar linkage to an
equivalent simple Stephenson linkage using the stretch and
rotation of a four-bar loop, TING, et all' examined the
stretch rotation and complete mobility identification of
Watt six-bar chains.

The spherical six-bar mechanism is a special type of
multi-bar mechanism. Comparative research in the analysis
and synthesis of six-bar mechanisms has been conducted by
MAKHSUDYAN, et al regarding spherical and planar
mechanisms!'”. The comparison was carried out by
studying three generalized non-dimensional indexes:
velocity, acceleration and dynamic power. The results show
that spherical linkages have better properties than planar
linkages. A synthesis approach has been proposed by
YANG and XU for spherical six-bar path generation
mechanisms, in which the mechanism is divided into
several link groups!'™. The synthesis equations of two link
groups for the spherical mechanisms have been established
and the constraint conditions and objective functions
presented as well. ZHANG, et al'"”!, proposed a method for
optimal trajectory synthesis of an adjustable spherical
Stephenson-III ~ six-bar mechanism. The multi-task
synthesis equations were derived and the optimization
model of mechanism synthesis was established based on
the virus evolutionary genetic algorithm to obtain
comprehensive results. SANCISI, et al®” presented a
validation approach to a one degree-of-freedom spherical
model for kinematic analysis of the human ankle joint.
GREGORIO™Y researched the analytical method for the
singularity analysis, and exhaustive enumeration of the
singularity conditions in single-DOF spherical mechanisms
by exploiting the properties of instantaneous pole axes. The
exhaustive enumeration of the geometric conditions which
occur for all the singularity types is given, and a general

analytical method based on this enumeration is carried out
for implementing the singularity analysis.

Kinematics analysis is one of the fundamental problems
of spatial mechanism analysis. Establishing constraint
equations is the first step to analyze, synthesize and
evaluate a spatial mechanism. Analytical and numerical
methods can be used to solve the displacement analysis
problem of a mechanism. By using an analytical method, a
closed-form solution of displacement analysis can be
obtained for some mechanisms with simple structures,
which is helpful for carrying out performance analysis and
configuration design intuitively. However, it is difficult to
obtain closed-form symbolic solutions for both forward and
displacement analysis of parallel spatial
mechanisms and the inverse solution of serial mechanisms
unless the constraint equations are established with an
appropriate method and solved in a proper way. ZHAO, et
al®! examined the generation of closed-form inverse
kinematics for reconfigurable robots by means of the screw
and product-of-exponentials formula.

A number of studies have been carried out relating to
kinematics of spherical mechanisms. For example,
WAMPLER®! addressed the displacement analysis of
spherical mechanism having three or fewer loops by using
rotation matrices or quaternion, including the classical
pentad mechanism which has eight solutions. The solutions
were obtained by using modified Sylvester’ s elimination
and numerical calculation via standard eigenvalue routines.
BAKER"" presented the displacement-closure equations of
the unspecialized double-Hooke’ s-joint linkage with focus
on the general relationship between input and output shaft
angles. A set of geometric constraint equations of the 6R
double-centered overconstrained mechanisms has been
constructed by CUI and DAI"!. The axis constraint
equation of the 6R double-centered overconstrained
mechanisms was obtained after applying the Sylvester’ s
dialytic elimination method. The input-output equation of a
spherical Stephenson-III six-bar mechanism has been
reported by HERNANDEZ™ and the dimensional synthesis
of the mechanism was conducted. However, the power of
the input-output equation is on the high side which means
that there are some extrancous roots. BOMBIN, et al'*®]
presented an approach to deal with the computation of the
direct kinematics of parallel spherical mechanisms using
Bernstein polynomials. The direct kinematics of parallel
spherical mechanisms with / legs was converted to solving
systems of /-1 second-order multinomials. KONG and
GOSSELIN®" investigated the forward displacement
analysis(FDA) of a quadratic spherical parallel manipulator:
the Agile Eye. An alternative formulation of the kinematic
equations of the Agile Eye was presented and the
singularity analysis of the Agile Eye was examined.
RODRIGUEZ and RUGGIU™ explored the forward
displacement problem(FDP) of several common spherical
parallel manipulators(SPMs). Quaternion algebra was
employed to express the FDP as a system of equations and

inverse
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the Dixon determinant procedure to construct univariate
polynomials whose roots can be found either numerically
or analytically. The solutions of the system were obtained
analytically by a symbolic method exploiting symmetries.
Ref. [29] reports the forward kinematics of a 3-DOF
spherical parallel manipulator. An algebraic solution was
presented by using a transformational matrix to construct
the geometric constraint equations. The mechanism is with
a simple geometric structure, so its forward kinematic
solution can be reached easily in a univariate quartic
polynomial equation. HUANG and YAOP” studied the
kinematics of a generalized 3-DOF spherical parallel
manipulator, of which each leg consists of two rotating bars
respectively. The inverse kinematic solution of the
mechanism was obtained by using spherical analytical
theory in concise form. The forward kinematics of the
mechanism was also reached in a closed-form solution.

In this paper, analytical methods are used to obtain a
closed-form input-output equation of the spherical
Stephenson-III six-bar mechanism. The displacement
analysis constraint equations have been derived by utilizing
spherical analytical theory®®"). Bezout’ s elimination method
and Sylvester’ s resultant elimination method”*>* are
applied to solve the constraint equations, and implemented
using the computer symbolic systems, Mathematica and
Maple respectively.

This paper is organized as follows: The constraint
equations of the spherical Stephenson-III six-bar
mechanism are derived in section 2. Based on the
established constraint equations, forward and inverse
displacement analyses are conducted in section 3.
Discussions and conclusion are presented at the end of the

paper.
2 Constraint Equations

As shown in Fig. 1, a spherical Stephenson-III six-bar
mechanism can be decomposed into a spherical four-bar
linkage and a spherical two-bar unit. Assuming that 4, is

the input reference point and C, is the output reference
point, therefore, 6 and 6; are the input and output angles,

respectively. The reference coordinate systems are set
according to the mechanism’ s structural characteristics as
shown in Fig. 1. Point O is the global center. The X-axis of
the original coordinate system O-XYZ is perpendicular to
the plane (O, ¢,,) ; Z-axis coincides with the axis OB, and

Y-axis is in the plane (O,¢,,) in Cartesian coordinates.

The coordinate system of a four-bar mechanism is assumed
to coincide with the original coordinate system. The
X, -axis of the coordinate system O-X,Y,Z, of the

spherical two-bar unit is perpendicular to the plane (0, a,,) ;
Z, -axis coincides with the axis OC|; and Y| is following
Cartesian coordinates. Denoting §; =sin8,; C; =cos6;;

§; =sing;; ; C; =cosq; , where ¢ is the spherical

[j >

central angle between points i and j. The transformation
matrix rotating around the X-axis and Z-axis can be
expressed as follows:

10 0

R(X,0;)=10 C; -5,/ (1)
0 s, C
¢ -5 0

R(z.6,)=|5, ¢ 0. 0)
0 0 1

I’}f@

Fig. 1. Coordinate systems of the mechanism

The coordinate system O-X,YZ, can be transferred to
the original coordinate system O-XYZ by rotating o,

clockwise with respect to the X-axis. Thus, the
transformation matrix is written as follows:
1 0 0
R(X,a55)=10 Gy —Sy|. A3)
0 S25 CZS

According to Ref. [31], vector V¥, in coordinate system
O-XYZ can be obtained by the loop equation of the
spherical polygon of the spherical four-bar linkage:

Ve = (x5, v5» 25) @)

where
Xp = }46’1 7?451 ,
ys =Gy (}4S1 +I_/4C1)—S12§4,
zp = Sp (Y“Sl +?4C1) +C1224;
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X4, Ys,and Z4 are defined as in Ref. [31], X4= AR
Vi =—(84Csy +C4185,Cy) s Za = CpyCyy = 8, 53,C, .

Similarly, vector ¥, in O-XYZ can be expressed as
follows:

VAZ(XA,)’A,ZA)T, Q)

where x, =S,5,, v, =S4CCy+CyS,,
2y = =84 GS, +C,, G,
Vector ¥y in O-XYZ is denoted as follows:

T
Vs, =10, 0, 1] . (6)
According coordinate transformation theory, vector
Vpin O-X,Y,Z,, denoting as V), , is written as follows:

Vi, = R(z,0,)R(x,05)R(z,05) R(x,06;) (0, 0, 1)

Therefore, V), in O-XYZ can be expressed as follows:

V= R(X,c5)V,, - 7)

Applying the cosine formula of spherical triangles to the
platform ABD of the spherical Stephenson-IIl six-bar
mechanism, the structural constraint equations can be
obtained as follows:

VyeV, =cosays,
V, oV = cOsay, COSOy3 —Sinay, sina,; cosd,  (8)

VeV, = cosay;.

Eq. (8) is the constraint equation set of the mechanism,
which involve variables 6,,6,,0; and 6,. While the
input angle 6, is given, Eq. (8) can be solved.

3 Displacement Analysis

3.1 Forward displacement analysis

05 is taken as the output angle of the mechanism.
Forward displacement analysis of the spherical Stephenson-
IIT six-bar mechanism is defined as that to solve Eq. (8) to
obtain the value of output angle 6; when the input angle
6, is given.

Denoting tan(6,/2) =¢,, the following equation can be
obtained:

C =(1-)/A+1); S, =2t/(1+1t) (i=1,4,5,6).
©)

Substituting Eq. (9) into Eq. (7), according to
trigonometric transformation and by the aid of symbolic

[34]

software Mathematica”™, Eq. (7) can be expressed as

follows:
antﬁz +bytg +¢, =0,
a22t62 +byts +cy =0, (10)
assty +bysty + 33 =0,
where
ay, = ayfs + ayts +ay, by = a,ls +asts +ag,
= a7t52 +agls +ag, ay = b1t52 +byts + by,
byy = byti +bsts + by, cy = byts +byts +by,
a;, and b(i=1, 2, ---, 9) are expressions of #, and the

structural parameters of the mechanism, a,;, b;;, c3; are

the expressions of the structural parameters of the
mechanism.

t, 1s obtained by solving the third equation in Eq. (10):

—byy £+(by3 )2 —4ay;cy

2as,

(11)

t, =

The Bezout’ s elimination method is traditionally used
for reducing a set of polynomials of multiple variables into
a polynomial of only one variable. Appling Bezout’ s
elimination method to the first two equations of Eq. (9) and
eliminating ¢, , the following equation is obtained:

2
(a11¢20 — Ay ¢1))” —(@y1Dyy — gy )by ¢ —bycyy) =0

(12)

Eq. (12) can be expressed in a univariate quartic
polynomial equation as follows:

dits +dyt] +dstd +d, b3 +dts +
dyt3 +dot; +dgts +dy =0, (13)

where d,, -+, dy are expressions about ¢, (C,,S,).

Substituting the two solutions of ¢, obtained from Eq.
(11) into Eq. (13), sixteen solutions of ¢ are derived,
which are the forward displacement solutions of the
spherical Stephenson-III six-bar mechanism.

Substituting solutions of ¢, and ¢ into the first and
second equations of Eq. (10), #; is obtained:

_ 91 4y

6 .
aybyy —ayby

(14)

After that, with Eq. (9), 6, , 6; can be

calculated.

and 6

3.2 Numerical example of forward displacement
analysis
The structural parameters of the spherical Stephenson-III
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six-bar mechanism are given as a;;=135°% ay;=85°;
034=70°; a41=85°; a5=135°; a56=85°; a7=75°; a73=90°,
and the input angle is set as 6, = 60°. After computing
coefficients in Eq. (10) and Eq. (13) with the given
structural parameters and the value of input angle, #, and
t; are obtained, as listed in Table 1.

Table 1. Solutions of forward displacement analysis

Variable 5

Variable #,

Real root Imaginary root
—0.600 069 i
0.296 822 i
—0.288 823 .
0.897 892 -1
23.948 =i
-3.033 83 i
—0.598 56 i
1.624 46 .
0.642 809 =i
0.924 906 —i

Substituting #, and the real roots of ¢, into Eq. (9)
respectively, the solutions of joint angle €, and the output
angle 6, of the spherical Stephenson-III six-bar are
obtained and presented in Table 2.

Table 2. Forward solutions

Joint angle 6./(°) Output angle 05/(°)
-61.93
33.06
83.84

175.22

—32.22

—143.51
—61.81
65.47
85.53

116.77

With the results of the forward displacement analysis,
configurations of the mechanism were calculated. Of the
eight real solutions, two solutions meet the mechanism’ s
configuration requirement, which is shown in Fig. 2. The
other solutions will cause interference between the links.

3.3 Inverse displacement analysis

Inverse displacement analysis is defined as a process
whereby the input angle 6, of the mechanism is
determined by solving the displacement constraint
equations when the output angle §; of the mechanism is
given.

Denoting tan(d, /2)=¢, (i=1, 4, 6), Eq. (8) can be

transformed into Eq. (15) with trigonometric
transformation:

Mt +Mytg+ My =0,

Lt + Lty + L, =0, (15)

(nltlz +n2) t; sty +n, t7 +ng =0,

where

M, = mytit, +my tt, +mgtlty +mtit; +mgt; +
MgtPty + mygly -+ my gty +mys,
M, = mpt; +m; G A my 1, +mytt, +mys +
Myl Mgty gt gt
My =myt, "‘mstl2 "‘mzotlztj it +myty +
Moty Maylyty F Masty g,
L =Lt +Lt +1,
L, =Lt} +1 t, +1,
Ly = Lt7 +1t, +1y,

Iy,eor do, mg -+, my, and ny ... ns are all of expressions
about the structural parameters of the mechanism.

(b) Output angle 05=—61.93"

Fig. 2. Configurations of forward solutions

Eq. (15) can be solved with Sylvester’ s resultant
elimination method by the aid of computer symbolic
systems Mathematica and Maple. The solving process is as
follows.

Step 1. Eliminating ¢, with the first two equations of
Eq. (15), Eq. (16) is obtained:

poti—l—plli—sztf +pts+p, =0, (16)
where py ... p4 are all polynomials with the highest degree
of #.
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Step 2. Eliminating ¢, with Eq. (16) and the third
equation of Eq. (15) by resultant elimination, an equation
with the 24th-degree of # is obtained as follows:

kote + gt 4 kyt? oo kggt? kgt +hyy =0, (17)

where ko, -+, ko4 are all of expressions about the structural
parameters of the mechanism.

Step 3. Solving Eq. (17) to discover reverse displacement
solutions of the mechanism, Eq. (17) has twenty-four
solutions in total. After # is obtained, substituting ¢
into the second and the third equations of Eq. (15), the
solutions of #, and ¢, will be obtained as follows:

2 2
B - - 5
(nyt, +n4)+\/(n3tl +ny) 4(111t1 —|—n2) n

ty = , (18)
! 2(n1t12+n2)
LM, —LM
=M LM, 19
PRl B e

Furthermore, configurations of the inverse displacement
analysis of mechanism can be calculated.

Coefficients a, b, d in Eqgs. (10)—(13) are shown in the
appendix. Coefficients /, m, n, p, k in Egs. (15)—(17) are too
complex to present in this paper, which can be requested
through email: yuanzhang198621@163.com.

3.4 Numerical example of inverse displacement
analysis

The structural parameters of the mechanism are set in the
same way as those in the numerical example of forward
displacement analysis. The output parameter of the
mechanism is set as §5=—143.51° (£s=—3.033 83). Substituting
ts and all the structural parameters into Eq. (17),
twenty-four solutions of #; which are the solutions of the
inverse displacement analysis have been obtained, and
shown in Table 3.

Table 3. Solutions of inverse displacement analysis (#;)
Parameter ¢,
—0.006 395 0.577 353
Real root 1.459 67 1.925 87
0.263 218+0.531 1671 0.263 218-0.531 1671
0.076 878+0.356 911 0.076 878+0.356 91i
0.002 612+1.003 031 0.002 612—1.003 031
—1.006 17+2.114 76i —1.006 17-2.114 76i
Imaginary —1.343 723+1.091 6i —1.343 723-1.091 6i
root —1.509 42+1.211 36i ~1.509 42-1.211 36i

—0.735 87+0.929 349i
0.003 017+0.997 41i
—0.003 059+1.002 59i
—0.002 57+0.996 9611

—0.735 87+0.929 349i
0.003 017+0.997 41i
—0.003 059+1.002 59i
—0.002 57—0.996 9611

With the four real roots in Table 3, the values of the input

of trigonometric transformation. The solutions are listed in
Table 4.

Table 4. Inverse solutions of input angle (6,)

0, —139.88° 60.00° 111.17° 125.12°

The corresponding mechanism configurations of the
inverse solutions are presented in Fig. 3 except the first
solution in Table 3. The mechanism configuration of the
first solution in Table 3 will result in interference between
bars ByB and AyA4. The configuration shown in Fig. 3(a) is
the same as the forward result shown in Fig. 2(a).

(a) 61=60,00°

(c) 6=125.12°

Fig. 3. Configurations of inverse solutions

4 Discussion

Compared with the results presented in Ref. [3], the

constraint equations constructed in this paper are
2,22

angle 6, of the mechanism have been calculated by the aid polynomials with the highest order about #7¢,¢#, which is
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lower than the highest order of the constraint equation
polynomials, tftfftg , presented in Ref. [3]. Therefore, the
constraint equations established in this paper are much
simpler, and can be readily eliminated and solved. They
also reduce the number of extraneous roots, which is the

main contribution of this paper.
5 Conclusions

(1) A symbolic kinematic solution of the spherical
Stephenson-1II six-bar mechanism is obtained by dividing
the mechanism into a spherical four-bar mechanism and a
spherical two-bar unit according to the structural
characteristics of the mechanism.

(2) The constraint equations of the mechanism are
constructed by utilizing spherical analytic geometry and
coordinate transformation theory and solved by Bezout’ s
elimination method and Sylvester’ s resultant elimination
method. The solving process is implemented by using the
computer symbolic systems Mathematica and Maple
respectively.

(3) Numerical examples are presented as an illustration
to validate the proposed approach. The mechanism
configurations of the forward and inverse solutions are also
presented.
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Appendix
Coecfficients a, b, d in Eq. (10)—(13) are as follows:

@) = €y Cy5C3y €y Csg Gy — Cg3 = C34Cy G5 C S1585 —
C1Cy5CiCiCseCr 15834 — GG CuCL CsgCr S5 S5y +
Cy5Cs6Ce7515125348, + Gy CsCr 818558348, —
C1Cy5C3y Cs6 G 812841 — GG Gy Csg G Sp5841 —
C12Cy5CyCs6Cr 834841 + C4Cs6C7 8128585484 +
Cr5C34Ci Cir 812856 + C1nC3y g Cr Sp5Ss6 +
CiCpCo5C G Cir 834856 — CLC4C1 Cr 812855534556 —
Ci2CosC78183484856 + C7 8151252583484 S56 +
C1C12C25C34C67S41S56 - C1C34C67S12S25S41S56 -
C55C4C7512534541556 — C1oCyCr 855534541856 —
C55C34C41Cs6512567 — C1nCsu €y Cs6S25567 —

GGy Ch5CCCs6S34Ss7 + GG Cy Cs6 815555834867 +
C12C35Cs65153484857 — Cs6518128,553484 567 —

GGy 05 Gy Cs6 417 + iy Cs6512855541 67 +
C5CyCs6512534541867 + CiaCaCs6855854541 867 +
CiaCr5C34CyS56S67 — C34Ca1 812825856567 —
CiCy5CiChy812834856557 — CiC1Co G 855834856567 +
C25S1S12534S4SSGS67 + C12S1S25S34S4S56567 -
CiCosCayS12841856S67 — CiC12Cau 855841 856567 —
Ci2CosCyS34841856Ss7 + Ca815525534541856 567

ay = 2C,CpyC781834856 + 2C1C783484556 +
2C54C75,841856 —2C4Cyy Cs65,534 Sy —
2€Cs653484867 — 2C34Cs651541 5675

a3 = C12C25C34C41C56C67 - C73 - C34C41C56C67S12S25 -
CiCy5CCa1 Cs6CrS1283 — GG CuCpy CsoCr S55S34 +
Cy5Cs6Cs78181283484 4 €15 Cs6Cr 8185553484 —
CiCy5C3yCs6Cir 815841 — GG Ciy CsgCr $25S41 —
C5Cy5CyCsoCr 34541 + CyCssCsr 812525834841 —
Cy5C34CiCr 815856 — €12 C34Cyy S5 Ss6 —
GGy CysC Gy Cr 3456 + GG Cy Cr 81585583456 +
C12Cy5C75155454856 — Cs7818158553484 856 —
GG Co5C3y CiS41Ss6 + CiCay CgrS12825841S56 +
Cy5CiCarS12854841S56 + C12CyC7 825834541856 +
C35C34CiCs6S512867 + C12C3s €y Cs6 825867 +
CiCpC05C4C1 Cs6 834867 — GGGy Cs6 815855834867 —
C12C5C568,83484S67 + C568181,8,55345, 567 +
CiCpCh5C4Cs6841S67 — CCau Cs651282584 567 —
Cy5CyCs65128345 41867 — C1CaCs6525834541 567 +
CioCosCsyCyySs6S67 — C34Ca1 812555856567 —
CiCysCiCiyS12834S56Ss7 — C1CCaC1855834 856567 +
C25S1S12S34S4S56S67 + C12S1S25S34S4S56567 -
CiCy5CayS1284S56S67 — C1C12C4825841 856567 —
CioCosCyS34841S56S67 + Cy812525834541 556567

ay = (=2C,Cyy 5834 Se7 —2C, 834 84 Se7 —
2Cs4 81 841 S67)s

a5 = 4Cy5C34Cy1 815867 +4C1,C30Cy) 85586 +
4G Co5CyCy 834 Sy — 4G CuC4181585834 867 —
4C15C05853484S67 + 4515155553454 567 +
4C G5 C5C34841867 —4C1C34812525541 867 —
4C55C4812534841 867 — 4C1,Cy855834841 75

ag = 2C,C15,534867 +2C15345,S67 +2C345,541567

a; = C12C25C34C41C56C67 - C73 _C34C41C56C67S12S25 -
CCy5Cy Gy CsoCr S12834 — GG GGy Csg Cr S5S34 +
Cy5Cs6Ce7515128348, + C1aCscCr 818555348, —
CCy5C3yCs6 G 812841 — CiC Gy Cs C Sp5S41 —
C12C55CCs6Cr 834841 + CyCsCo 812855534541 +
Cy5C34CiiCir 812856 + €15 G4 Cy Cp S5 Ss6 +
C1CuCosCiCy 1 CirS3uSss — GG Ca Cr 12525834856 —
Ci2Cy5Cs78153484 856 + C67815128553484S56 +
GG ChsCiyCir 841 Ss6 — CiC3y C812855841 56 —
C5CyC751253454156 — €12 CyC7525834541556 +
Cy5C34Cy Cs6S12867 + Cia Gy Cyy CsSh5Ser +
CiCpCosCyCy Cse 834867 — CLC4C41 Cs6812855534867 —
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C12C25C56S1S34S4S67 +C56SIS12S25S34S4S67 + C1C12C25C67S41S56 + C1C67S12S25S41S56 +
C1C12C25C34C56S41S67 _C1C34C56S12S25S41S67 - C25C41C56S12S67 +C12C41C56S25S67 +
C25C4C56SIZSB4S4IS67 _C12C4C56S25S34S41S67 - C1C12C25C56S41S67 _C1S12S25S41S67 +
C12C25C34C41S56S67 + C34C41S12S25S56S67 + C’12C25C41S56S67 - C41S12S25S56S67 -
C1C25C4C41S12S34S56S67 + C1C12C4C41S25S34S56S67 - C1C25S12541S56S67 - C1C12S25541S56S67 - C5S34S73s

C25S1S12S34S4S56S67 - C12S1S25S34S4S56S67 +

C1C25C34S12S41S56S67 + C1C12C34S25S41S56S67 +

C12C25C4S34S41S56S67 - C4S12SZSS34S41SSGS67’ bs = 4C25C41S12S67 +4C12C41S25S67 +4C1C12C25S41S67 -
4C18,,55541 567

b4 =—288,567

ag = 2C4C4IC67SIS3>4S56 + 2C1C67S34S4SSG +
2C_MC'67SIS41S56 + 2C4C41C56S1SB4SG7 + b
2CICVS6S34S4SG7 +2C34C56S1S41S679

=25,54,15¢

>N

b7 = C12C25C41C56C67 - C34C73 7C41C56C67S12S25 -

dy = C,CysCyyCyyCsoCor — Coy — CyyCyi CsoCsr S1pSns — CCysCssCir 81284 = CC1aCseCr S15Sy +
C,Cy5C,CyCesCirS1r Sy — C1C1yCyCyyCs CorSysSay + CosCi1Cr 812856 + €12 Cy Cr S5S56 +
Cy5Cs6Ci78,8158348, + C1,Cs6Cs78,8,58348, — GGy Co5Cir841S56 — €1 Cir$12525841 556 +
C,CysCsyCesCarS12Ssy — CC1yCayCsCorSsSyy — C5Ci1Cs6512867 + C1aCay CseSasSer +
CrCy5CCs6C7 83484 + CyCs6Cr 81985583484 — CiCrChsCs6841S67 — 1812825843167 — C1aCrsCyySs6Ss7 +
Cy5C34C 1 Cs7815856 — C1C34Cy 1 Cer Sy5S56 — Ca1S812825856567 + C1Cos81284 856867 +
C,C12Cy5C4Cy1Csr 834855 + CCuCy1 CerS12 825554856 + CiC1p85841856S57 = (5834573,

C12Co5C78183454856 — C78151,82553454 856 —

GG, G5 Gy Cir 84 Ss6 + C1C3y Cgr 815855841556 +
Co5CiCs7812834841856 + C12CyCr 855834541556 —
Cy5C3Ci1Cs6 81,57 — €13 C3yCy Cs6 855867 —

GGy Ch5CCa Csp 834867 + C1C,C1 Cs6S12855834 867 +
C12C55C565155484867 = Cs6515152553484 867 —

GG Ch5C3y Cs6S41 867 4 €G3 Cs 815855841867 +
Cy5CyCs6812854841867 + C1aCyCis6855534841867 —

bs =2C578841856 +2C565,5415675

by = €, C5Cy CsCy — C34Co3 — €4y Cs6C S12.505 —
CCy5Cs6Ci78158 4 — C1C1pCss Cgr 85584, —
C25C41C67S12S56 - C12C41C67S25S56 -
GC,CosCr 841856 + CiCr 812855541556 —
C5C41Cs6512867 — C12Cyy Cs6Sr5S67 —
CC,CosCs6 841867 + 1815855841567 —

CioCosCsyCyyS56Se7 + C34Cy 8155555667 + CyCasCiySssSer + Cyi Sy SysSscSer +
CiCysCyCy1815834856567 + CiC1CoC1 855834856567 — C,CysS1584,S56S67 + C\C1ySsS41Ss6Ser — C.. Sy S
C25S|S|2S34S4S56S67 - C12S|S25S34S4S56S67 +

C1CysC3y 81584185657 + CiC15C3y 825841556567 + d, = a;b} — a,a,bb, + a,a,b; +a;bb, —

C12C5CS34841S5667 — CaS12825534541856567 2 aya,bb, — a,a,b,b, +a’b?,

by = CyCy5Cy CssCoy = C34Ci3 = Cy Cs6Cr 815855 — d, =2 a7agb12 +2 a72b1b2 —asa;bb, —a,agb b, —
C1Cy5Cs6CrS12841 — GG, CsoCr Sp5S4y +-
Cy5CiCerS12S56 + €1y Cy 7 S5S56 +
GGy CosCs7 841856 — CiCo7 812525841856 —
Cy5CaCs65128s7 = C12Ca1Cs6525867 —
CiC,Cy5C56841 867 + C1812825841 867 +
C2CysCa1Ss6Ss7 — CarS1282556S67 —
CiCy5815541856867 — C1C12855841856Ss7 — C583457,

a,a;,b,b, + a,a,b; + aagh; — a,a,bbs +
2aya,b,b5 42 ajasbb;, —2 a,a,bb, —2 ajah b, +
azb,b; —2 a,a,b,b, — a,a,b,b, — a,ash,b; —
aya,bsb, +2 aya,bs + azbby —2 aya;bb, —
aya,bby +2 alb,by,

dy = agh! +2 a,a,b +4 a,aghb, +arb; +

by = 2C, 8,8, S5 — 2CscS:S4,Sr, 2 abb, — aza;bb, — asaghb, — a,a.bb, —
asa,b,b, — a,agh,b, — a,a,b,b, + aza,b; +
by = C13Cy5Cy CssCo7 — C3yCr3 — €41 Cs6C7512855 — ayaby + ayaghy — asa;bibs — ayaghbs — aazbybs +
CiCy5Cs6Ce7 815841 — GG CsCr Sy5 Sy — 2 aya;b,bs + 2 ayaghbs + ya;bs —ayaqb,b +

C35Ca1Ce7812856 — C12C41C7 825856 — 2 a,a,b,bs + azbb, +2 a,ashb, —2 aya;bb, —
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2 ayabb, -2 ajagb b, +2 a,ab,b, -2 a,a,b,b, — 2 a,ash,by — 2a,a,b,b, — 2a,asb,b, + a’b,b, —

2 ayagh,b, + a;b;b, — 2 a,a,b;b, — aza,b,b, — 2a,a;b;by — aya,b,b, — ayasb,by — a,asb,by — aya,bsby —
a,asb,b, — ajab,b, — aya,bb, — a,a;bsb, —aya,beb, + a,ashshy — aa,bby +2 asb,by +4 a,azh,by + 4 a,a,beb,
ab? +2a,ab? +2a,a.bb, —2 a,a.bb, — +a,’by,

2 a,agh,b, + a;b,b, — 2 a,a,b,b, — a,a,b,b, — a,ash,b, - d, = 2 a2bb, +2 agagh? + 4 agagb b, +2 a2byb, +

a,a,bb +4 a,a,b,b, +a’b; +a;bb, —2 a,a,bb, - 4 aya,b,b; + 2 a,ah? — agagh,b, — agaghsb, —

a,a,b,b, +2a’b.b,, asaghyb, — agagh,bs — agagh,bs — asagh,bs — aga;bybs —

asaghybs — a,agbsbs + 2 azagh,bs + azagh? + a,agh? —
agagh by — asab by — aga,b,bg — asagh,bg — a,a,b,b; —
asa;b,b, — a,a3bbg +2 ayagh,by +2 ayagh,bg +

2 aya,bsbg + 2 a,aghsb, + 2 a,aghshg + aya;by +

a,aght + atb,b, — 2 asagh,b, +2asab.b, —2 ayaghsb, —

d, =2 agagh +2 aghb, +da,aghb, +2 a,agb; +
da,aghb, +2 arb,b, — asahb, — asaghb, —
aga,b,b, —asagb,b, —a,a,b,b, —asa,bib, —
a,aghyb, + asagh; + ayagh; — aga,bbs — asaghbs —

2 aya,b,bs + a,a4b,bs — asa;b,bs — a,a.b,bs — a,a,b.bs +
2a,agh,bs +2a,a4b,bs + a,a,b: + a,agh; — asa,b b —
ayagb by — a,a,b,bs +2 a,a;b,b, +2a,a.b,bg +
2a,a;bsb + 2 asagh b, —2 ayagbb, — 2 a,a,bb; + asbyby +2a,a5bsby —2asa;b3bs —2a,a5bsb,

2a,a4b,b; — asagb,by — azasbsby — a,agbsby —aza,bgby —

2a,a,b;b, — ayaghsh, — azasheb, — a,agbb, + alb b —
2a5a4b,by +2 asagb,by — 2 ayagh,b, — 2 a,a4b,by +

albb, +2a,agh,b, —2 asa,b,b, —2a,a5h,b, —

2 aja4b,b; 42 a,asbb, —2 aya,b,b, —2 aja.byb, —
ayasb,b; — ayagh,b, — aya,bsb; — a,asbsb, — ajaghsb, — 2 ayagh by —2 ayaghby + asbyby +2 a,aghyb, -
aya,beb; — ayashgh, + 2a,azb? + albbg 4+ 2a,a.b.b, — 2 ayasbyby —2 ayashyby —2 ayaghyby +2 asashyby —
2aa,bb, — 2 ayagh b, — 2 a,aybbg + 2 a,asb,by — 2aa;b3by — 2 aaghsby — aasbyby —ayash,by —
ayaybsby — ayasbsby — a,aghsby — aya,beby — a,asbby +

4a,asb;by +2 asbeby + 4 a,azbby +2 ajanby’

ayashgh — ayaghby +2a3b,bg +2 ayashg +2 asaghby —

2 a,a,b,b; —2 ayagh, by + a;bybg — 2 aya;byb, —
aya,byby — ayasb,b; — ajagb,by — a,a,bby — ayasbsb, —
a,a,bghg +2 a3b;by +dayash,bg +2a,a,by +

2 a,ashby —2 a,a,bby —2 a,aghby + a;byby —

2 a,a,b,by — a,a,b,by — a,asb,by — a,a,bsby +

4 a,a,b,b, +2 a* beb,,

d, = agh; +2 a;gh b, + 4 agagh,b, + agb; +
2a, a9b32 — agaybsb, — agayb,bs — agagb,bs —
asaybsbs + a3a9b52 — agaybibs — agagh,bg — asagh,bg —
aga;b,b, — asagb,b, — a,a,b.bg + 2a;a,b,b, +

ds = agb} + 4 agagh b, + aghy +2 asaghy + 2 ayaghsb, + 2 ayaghshg + aza.b + a,agh? +
2aghby +4 ayagbby + 4 aaghyb; +azb; — ajagh; +agbyb, —2 azaghsb, — ayagheb; + agh,by —
agtyhby — agasbyby —asaghyby — aga;bib, — asagbb, — 2aya4b,bg 4 2asasbybg — 2 ayaghyby — 2 a,aybyb, —
a,a5bsb, +asayhy — agaghibs — asaghibs — agaybybs — ayaghshy — azashgh — ayaghgby +aib; +agbby —
asagh,bs — a,a9bybs — asa;bybs — aaghibs + 2 azagh,bs + 2 ayayb by +2 asagh,by — 2 ayaib,by — 2 a,ayb,by +
2 ayaghybs +asa;bs + ayashs +ayagh; —agasbibg — albyby +2a,abyby — 2aya,byby — 2 ayaghiby —
asaghbs — ayagbbs — asa;bybg — a,agh,bg — a,a;bb + 2 ayaybyby — azagh,by — ayasbsby — a,agbsby —
2a,a;b,b, +2a,a3b,bs + 2a,a4b,b, +2a,a,bb, + 30,bgbs — yashgby — ayaighgbs +2 a2biby +

2a,absbs + a,a,b; + aghb, —2 azagh,b, 42 asagh,b, — 4 ayashb, + @02 +2 aa b2,
2 ayagh,b, — 2 ayagh,b, + aibib, +2 a,agh;b, — . .
2 aya,b3by — 2 ayaghyb, — 2a,a5byby — azaghyby — dy = 2a5b,b; + 2a3a5by — agasbsbs — agashybs —

2
ayasbsb; — ayaghsb, — aza,bb, — ayasbgb, — ajaghb, + agaghbs — asagbsbs +2azagbsbs + azaghg +

azb: +2asagh b — 2 azagh by — 2 ayaghb, + as’b,bs + ayagbg +aghsby —2aagbyby — asaghbs +
2a,a.b,b; —2a5a,b,b; — 2a,a.b,b; — 2a,a,b,bs + agbyby —2 ayaghyby + 2 asaghyby — 2 asaghyb, —
2a,asb,by —2 a,a,b,b; —2a,a.b,b, — azash,by — 2 ayagbsby — ayaghsby — azasbgby — ayagbby +
ayaghyby — a3a,bsby — ayasbsby — ajaghsby — aya,bgby — 2 a3bgby +2 ayashy

ajashgb +4 a,ab,bg + azbg +2 a,azbg + azbyb, + dy = ayb; — agagh,bs + azagh; + aghyby —

2 a,asbby —2 aya;b,by —2 a,agb by — 2 a,aybby + 2 ayayh;by — azagbshy + aib;.



