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Abstract: Joints are necessary components in large space deployable truss structures which have significant effects on dynamic 
behavior of these joint dominated structures. Previous researches usually analyzed effects of one or fewer joint characters on dynamics 
of jointed structures. Effects of joint stiffness, damping, location, number, clearance and contact stiffness on dynamics of jointed 
structures are systematically analyzed. Cantilever beam model containing linear joints is developed based on finite element method, 
influence of joint on natural frequencies and mode shapes of the jointed system are analyzed. Analytical results show that frequencies of 
jointed system decrease dramatically when peak mode shapes occur at joint locations, and there are cusp shapes present in mode shapes. 
System frequencies increase with joint damping increasing, there are different joint damping to achieve maximum system damping for 
different joint stiffness. Joint nonlinear force-displacement is described by describing function method, one-DOF model containing 
nonlinear joints is established to analyze joints freeplay and hysteresis nonlinearities. Analysis results show that nonlinear effects of 
freeplay and hysteresis make dynamic responses switch from one resonance frequency to another frequency when amplitude exceed 
demarcation values. Joint contact stiffness determine degree of system nonlinearity, while exciting force level, clearance and slipping 
force affect amplitude of dynamic response. Dynamic responses of joint dominated deployable truss structure under different sinusoidal 
exciting force levels are tested. The test results show obvious nonlinear behaviors contributed by joints, dynamic response shifts to 
lower frequency and higher amplitude as exciting force increasing. The test results are further compared with analytical results, and joint 
nonlinearity tested is coincident with hysteresis nonlinearity. Analysis method of joint effects on dynamic characteristics of jointed 
system is proposed, which can be used in optimal design of joint parameters to achieve optimum dynamic performance of jointed 
system. 
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1  Introduction  

 

Space deployable structures play a significant role in 
various space exploration activities, e.g., high resolution 
earth observation, deep space exploration and satellite 
communication. They are widely used to deploy and 
support space instruments such as flexible solar array, 
antenna, synthetic aperture radar, space telescope due to 
they can be folded into very small volumes during launch 
process[1–2]. Joints or hinges are usually necessary 
components in the space deployable strcutures. Numerous 
joints or hinges are used to connect link elements or 
modules to achieve higher packaging efficiency, larger 
scale and less weight. These joints or hinges can affect 
dynamics, stability and precision of the jointed space 
structures. The joints are commonly known to be the main 
resource of the nonlinearities and damping to the system, 
and joints usually make the system more flexible[3]. So how 
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the joints affect the stiffness, damping, vibration mode 
shapes and dynamic responses of the system must be 
studied carefully, and dynamic model considering joints 
must be accurately modelled to meet mission requirements.  

Due to the large jointed deployable structures are widely 
used in space, mechanic characteristics of joint have been 
investigated by numerous of researchers[4–6]. The finite 
element method, experiment method and analytical method 
were used to study the influence of joint on dynamics or 
accuracy of jointed deployable structures. For example, 
DUTSON, et al[7], developed a model of a single strut 
which considering friction, impacting, and damping in the 
joints, then this model was extended to analyze the 
influence of joint damping and dynamic behavior of 
pin-jointed truss structures. CRAWLEY, et al[8], proposed 
an experimental technique of force state mapping to 
identify and quantify the potential nonlinear dynamic 
properties of joint, the advantages of this technique were 
abilities to handle arbitrarily strong nonlinearities and plot 
graphical form of the data presentation directly. Later 
MASTERS, et al[9], extend force state mapping to the 
characterization of realistic multiple degree-of-freedom 
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(DOF) systems. BOWDEN[10] and WEBSTER, et al[11],  
used describing function method to model nonlinear joints 
in multi-DOF structures, which validated that describing 
function was an effective method to describe the 
nonlinearity of the joints. LI, et al[12], proposed a virtual 
experimental modal analysis method to analyze the 
dynamic characteristics of the deployable space structures 
considering joint clearance and link flexibility. TAN, et 
al[13],  developed a nonlinear dynamic model of cable 
stiffened deployable structures considering effects of joint 
preload and passive cable pretension, analyzed the joint 
nonlinear dynamic characteristics under preload. 
STOHLMAN, et al[14], studied accuracy of a joint- 
dominated deployable mast, and proposed a strategy to 
model nonlinear joint. STOHLMAN, et al[15], also 
investigated effects of component properties on the 
accuracy of joint domninated deployable mast and shown 
that joint friction was an important property to affect mast 
accuracy. Provious research work usually focused on 
effects of one or fewer joint characters on dynamics of 
jointed structures, such as clearance, damping, however 
joint location and number affect jointed system 
significantly. BOWDEN analyzed effects of joint stiffness 
and damping on dynamics of beam with free-free end 
conditions, however dynamic characteristics of the 
unconstrained jointed beam were different from dynamics 
of deployable structures used as cantilevered beams on 
orbit.  

In this paper, cantilever beam model containing linear 
joints and one DOF system model containing nonlinear 
joint are established respectively. These two dynamic 
models are used to investigate the effects of joint on 
dynamics of jointed structures. Effects of joint stiffness and 
damping on the frequencies and mode shapes of the jointed 
cantilever beam are analyzed and plotted in charts. 
Describing function method is used to describe joint 
nonlinear force-displacement relationship, and influence of 
joint nonlinearities on dynamic response of the jointed 
system is also analyzed systematically. Dynamic responses 
of a jointed deployable truss mast are tested to investigate 
the nonlinearities contributed by the joints. The layout of 
this article is as follows. Firstly, the typical jointed space 
deployable structures are introduced. Secondly, the linear 
effects of joint stiffness and damping on natural frequencies 
and mode shapes of jointed system are investigated. Then 
the nonlinear effects of different joint nonlinearities on 
dynamic responses of jointed system are studied. 
Followingly, nonlinear dynamic responses of the joint 
dominated deployable truss structure are tested and joint 
nonlinearity is identified. At last concludes the paper. 

 
2  Jointed Space Deployable Structures 

 
Various articulated deployable structures have already 

been used in several spacial missions, e.g., earth 
observation, deep space exploration and satellite 
communication for tens of years. For instance, the mobile 
servicing system(MSS) which is better known as the 
Canadarm-2 robotic arm in the international space 
station(ISS), as shown in Fig. 1, it is a typical articulated 
boom[16]. It is fully deployment length is 17.6 m long, and 
has seven motorised joints, each giving one degree of 
freedom. 

 

 
Fig. 1.  Mobile servicing system 

 
Space deployable truss structure is another kind of 

articulated deployable structure containing a number of 
pinned joints or spherical joints instead of rigid joints to 
provide several degrees of freedom for storage and 
deployment. These types of structures are widely applied in 
space, such as 17 m deployable truss antennas used in 
Japanese engineering test satellite Ⅷ[17], American able 
deployable articulated mast(ADAM) used to support 
inverse synthetic aperture radar in shuttle radar topographic 
mission[18], and folding articulated square truss(FAST)mast 
used to support the flexible solar arrays in ISS[19], ADAM 
and FAST are shown in Fig. 2. There are hundreds of joints 
used to connect struts or modules in these articulated truss 
structures. 

 

 
(a) ADAM                      (b) FAST 

Fig. 2.  Articulated deployable truss structure 

 
The main feature of these deployable structures is that 

joints are used to realize the structural retraction and 
deployment. The number of the joints used in the 
deployable structures vary from several to hundreds 
dependants on the different scale of the structures. 
Although hundreds of joints contained in larger space 
deployable structures, these joint dominated structures are 
still primary choice for large scale or high precision 
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deployment and support structures due to their high 
stiffness and advantageous perfermence[20]. But models of 
these jointed structures must be accurately established, and 
effects of joint on system performance must be deeply 
understood and analyzed before these structures are applied 
in missions. The following sections will discuss joint linear 
and nonlinear effects on dynamics of the jointed systems. 

 
3  Joint Linear Effects Analysis 

 
3.1  Modeling of jointed system 

The space deployable structures usually extend from the 
spacecraft, the top end is used to support the apparatus, 
while the root end is fixed on the spacecraft. So the 
deployable structure can be modeled as cantilever beam 
containing joints. As shown in Fig. 3, a simple model is a 
cantilever beam system of two identical beams connected 
by one joint. The folded state length of the structure will be 
shorter as the number of joints increasing, so the more 
joints used, the higher of structural packaging efficiency. 

 

 

Fig. 3.  Jointed cantilever beam(Folded and Deployed) 
 
To analyze the joint effects, finite element method is 

used to establish the motion equation of the above jointed 
system. Each beam is represented by four beam elements, 
and each beam element has 4-DOF with translation and 
rotation allowed at each end, considering the two DOFs at 
the end of beam are restricted, there are totally 17 DOFs as 
shown in Fig. 4. 

 

Fig. 4.  Finite element model of jointed cantilever beam 

 
The stiffness and mass matrices of the beam element are 
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where EI is stiffness of beam cross-sectional, le is length of 
element, ρ is mass of per unit length of beam.  

If the joint stiffness is assumed as kj, then the system 
stiffness and mass matrices can be obtained by assembling 
the stiffness and mass matrices of these beam elements and 
adding the joint stiffness to stiffness matrix at 
corresponding joint location, they are respectively K17×17  
and M17×17. 

Firstly, the system damping is not considered, so the 
system motion equation can be expressed as  

 
q q .K F Μ                 (3) 

 
The modal solution of Eq. (3) is a straightforward 

eigenvalue problem, the eigenvalues delegate system modal 
frequencies, while the eigenvectors delegate system modal 
shapes. 

 
3.2  Effects of joint stiffness 

The length of the cantilever beam is assumed as 8 m，

modulus of elasticity is E70 GPa，beam section bending 
stiffness is assumed as EI343.6 kN·m2. When the joint is 
located at the middle of the beam, the frequencies of the 
cantilever beam with different joint stiffness are calculated 
and given in Table 1. Frequencies of the same cantilever 
beam without joint(delegated by CON) are also calculated 
and compared with frequencies of jointed beam. The mode 
shapes are compared graphically in Fig. 5. 

 

       Table 1．  Frequencies of cantilever beam with different joint stiffness and continuous beam         Hz 

Mode No. 1 2 3 4 5 6 7 8 
kj0.1EIle

 
0.879 3

 
4.313 8

 
19.536 9

 
29.858 9

 
63.632 2

 
80.522 9

 
134.618 4

 
156.702 7

 kjEIle

 
1.082 1

 
6.258 4

 
19.540 8

 
35.035 6

 
63.632 3

 
88.268 5

 
134.620 7

 
166.182 7

 kj10EIle

 
1.109 8

 
6.888 9

 
19.542 1

 
37.896 1

 
63.632 3

 
94.471 7

 
134.622 3

 
176.545 1

 CON
 

1.113 0 6.975 7 19.542 3 38.357 7 63.632 3 95.632 5 134.622 6 178.844 1 
 

It is clearly shown in Fig. 5 that when the peak shapes 
occur at the location of the joint, the peak shapes become 
the cusp shapes due to bending stiffness decreases suddenly 
at the joint location(modes 1, 2, 4, 6, 8), and the less of the 
joint stiffness, the sharper of the cusp shapes. But when the 

peak shapes do not occur at the location of joint(modes 3, 5, 
7), difference of the mode shapes are not distinct. Mode 
frequencies comparison of the cantilever beam with 
different joint stiffness are clearly shown in Fig. 6, the 
frequencies of modes 1, 2, 4, 6, 8 increase distinctly as the 
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joint stiffness increasing, while the frequencies of modes 3, 
5, 7 have little change. Presence of joint in the system 
reduces system natural frequencies, but effects of joint 
stiffness on natural frequencies of different modes are 
different. 

 

 
Fig. 5.  Mode shapes of cantilever beam with different joint 

stiffness and continuous beam 

 

 

Fig. 6.  Frequencies comparison of beam  

with different joint stiffness 

 
The joint stiffness has significant effect on local mode 

frequencies and mode shapes at location of joint. As shown 
in Table 2 and Fig. 7, the joint local frequencies increase 
and the corresponding mode shapes become shaper near the 
joint location and smoother far away from the joint location 
as the joint stiffness increasing.  

 
Table 2.  Local frequencies under different 

joint stiffness 
Joint stiffness  

kj (N·m·rad–1) 
kj0.1EIle kjEIle kj10EIle 

Frequency f Hz 1 259.42 1 421.08 2 749.75 

 

Fig. 7.  Local mode shapes under different joint stiffness 
 

3.3  Effect of joint location 
To analyze effects of joint location on natural 

frequencies and mode shapes of the jointed system, joint is 
placed near the top end and near the root end of the 
cantilever beam respectively. Mode shapes and frequencies 
comparison of the jointed beam with different joint 
stiffness are shown in Fig. 8 and Fig. 9.  

 

  
Fig. 8.  Mode shapes of jointed beam  

with different joint location 
 

Frequencies have the same vary trend which increase 
with joint stiffness increasing, but the difference from the 
joint placed in the middle of the beam is that joint has 
effects on each mode frequency whenever the joint placed 
near the top end or near the root end, that is because the 
joint participates in each vibration mode, and the cusp 
shapes occurs at the location of joint in each mode shape. 

The natural frequencies of the cantilever beam system 
with the joint placed at different location are further 
compared when the joint stiffness kj is 0.1EIle, as shown in 
Fig. 10.  When the joint stiffness is same, location of the 
joint significantly affects frequencies of the jointed system. 
The first natural frequency is highest when the joint is near  
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the top end while it is lowest when the joint is near the root 
end. The natural frequencies of other modes vary with the 
relationship of the peak shapes and joint location. When the 
location of peak shapes are at the location of the joint or 
nearest to the joint location, the natural frequency is the 
lowest. It is noted that the peak shapes of mode 5 do not 
occur at the any joint location, so the natural frequency are 
affected less by the joint. The system frequencies with 
wherever the joint placed are all lower than that of 
continuous beam due to the joint makes the system more 
flexible and thereby reduces the overall stiffness in all 
modes.  
 

 

Fig. 9.  Frequencies comparison of jointed beam 

 with different joint stiffness 

 

Fig. 10.  Frequencies comparison of jointed beam  

with different joint location(kj0.1EIle) 

 
3.4  Effect of joint numbers 

In space deployable structures, the more joints are used 
means that the higher packaging efficiency can be achieved. 
But the more joints are used, the more complex and 
instable of the system. The same simple jointed cantilever 
beam model with different numbers of joints is used to 
analyze how the joint numbers affect the frequencies and 

mode shapes of the jointed system.  The frequencies and 
mode shapes of the same beam connected with two joints 
and three joints are calculated by solving the system 
equation of motion. All joints are assumed identical in the 
same analysis model. Fig. 11 shows the comparison of 
mode shapes and natural frequencies of the cantilever beam 
with two joints, two joints have more influence on the 
mode shapes and natural frequencies than one joint, 
especially the higher mode shapes are affected significantly 
by the joint near the root end of the beam. 

 

Fig. 11.  Mode shapes and frequencies comparison  

of jointed beam with two joints 

 
The mode shapes and natural frequencies of the 

cantilever beam with three joints are compared and shown 
in Fig. 12, cusp shapes occur when location of peak shapes 
and the locations of the joint are same. The more cusp 
shapes occur, the more natural frequencies are influenced 
by the joints. Three peak shapes of mode 4 and mode 8 
occur at three locations of joints, so there are three cusp 
shapes occur, and these mode frequencies are affected more 
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significantly by the joints.  
 

  
Fig. 12.  Mode shapes and frequencies comparison 

 of jointed beam with three joints 
 

The influence of the joint number on the natural 
frequencies of the system are compared when the joint 
stiffness jk  is 0.1EIle, as shown in Fig. 13. The overall 
trend of the frequencies is decreasing with the joint 
numbers increasing, but the frequencies of mode 2 and 
mode 6 of the two joints system are higher than the one 
joint system, that is because of that the peak shapes of 
mode 2 and mode 6 in one joint system occur at the 
locations of joint, the joint participates in the vibration 
mode effectively, so the joint has more influence on 
frequencies in single joint system. The influence of the 
joint number on the mode shapes and frequencies also 
depend on the joint stiffness, it has more effect when the 
joint stiffness is lower. Thus it is concluded that it is not 
necessary that the more joints contained in the jointed 
system, the more influence on dynamic of the system. The 
effect extent of joint number on dynamic of jointed system 
is dependent on the practical number of joints participating 

in vibration mode. So effects of joint can be reduced by 
designing the locations of joints and avoiding the peak 
shapes of mode shapes to occur at the locations of joints. 

 

Fig. 13.  Frequencies comparison of jointed beam  

with different number of joints (kj0.1EIle) 

 

 3.5  Effect of joint damping 
Damping in the joint is one of the most significant source 

of passive damping for large space deployable structures. 
To understand the effect of joint damping on dynamics of 
jointed space deployable structures, the dynamics of above 
jointed cantilever beam considering joint damping is 
investigated. Only the joint damping is considered and 
assumed as cj, so the elements of damping matrix C of the 
jointed system are only related to joint damping cj, the 
elements at the corresponding location of joint are 
contributed by joint damping and the elements of non-joint 
location are all set to be zero.  

The jointed system motion equation considering 
damping can be expressed as  

 
,q q qM C K F                   (4) 

 
which can be rewritten as  

 
,xx A B                      (5) 

 

where 
q
q

      
x


, 

1 1

0
,

E
A

M K M C 

      
 

1

0
.B

M F

     
 

 
The natural frequencies and mode shapes of the jointed 

system can be obtained from eigenvalues and eigenvectors 
by solving the characteristic equation x Ax . 

The solved eigenvectors can be expressed as following 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·867· 

form:  
 

q
x

q
ψ
λψ

               
,                (6) 

 
where ψ delegates the displacements of nodal vibration, 
and λψ delegates the velocities of nodal vibration, λ is the 
corresponding eigenvalues, which can be expressed as 
λαiω, The imaginary parts of eigenvalue λ delegate the 
mode frequencies. 

The part of eigenvector ψ can be interpreted as a mode 
shape, which is a time dependent mode shape because ψ is 
a complex vector, so unlike standard undamped modal  

vibrations, the mode shape of damped system changes its 
spatial distribution and magnitude during each cycle. 

The mode shape can be expressed as  
 

R Iexp( )( cos sin ),V t t tα ψ ω ψ ω            (7) 

 
where ψR is the real part of ψ, and ψI is the imaginary part 
of ψ. 

Take cantilever beam with three joints as example, when 
the joint stiffness and joint damping are assumed as 
kj.1EIle and cj10 respectively，solving the equation of 
motion and obtaining the frequencies and mode shapes of 
the system which are given in Table 3 and Fig. 14.   

 

                       Table 3.  Frequencies of cantilever beam considering joint damping                 Hz 

Mode No. 1 2 3 4 5 6 7 8 

λ 
–0.000 2+ 
0.569 9i

 

–0.008 2+ 
3.598 9i

 

–0.057 9+ 
9.735 7i

 

–0.109 6+ 
15.973 6i

 

–0.068 7+ 
59.690 6i

 

–0.228 3+ 
80.414 4i

 

–0.528 9+ 
104.088 7i

 

–1.113 9+ 
118.893 0i

  

The real and imaginary parts of the mode shapes(modes 
1, 2, 3, 8) are illustrated separately in Fig. 14. It is noted 
that the real part of the mode shapes are consistent with 
mode shapes of the undamped system, while the imaginary 
parts have more complicated shapes. 

 

Fig. 14.  Mode shapes of cantilever beam considering 
 joint damping 

 
To better illustrate the effect of joint damping on system 

modal vibration, the mode shapes time variation of mode 1 
and mode 8 over the course of a vibration cycle are shown 
in Fig. 15. Comparing with the undamped vibration, the 
most prominent difference is that the mode shape does not 
become zero at the quarter cycle point(ωtπ2), contrarily 

it is the imaginary part of the eigenvector. 

Fig. 15.  Complex mode 

 

Each eigenvalue of motion equation consists of a system 
resonant frequency and corresponding modal damping. The 
real and imaginary parts of eigenvalue vary with joint 
stiffness and joint damping. The variation of the first three 
eigenvalues with the joint damping increasing is plotted in 
the complex plane as shown in Fig. 16. The joint stiffness 
value kj is fixed at 0.1EIle, while the joint damping varies 
from zero to infinity, the imaginary parts of eigenvalue 
delegate the resonant frequencies which vary from jointed 
system frequency ωi to continuous beam frequency ωc. The 
real parts of the eigenvalues delegate the system modal 
damping whose absolute values increase firstly and then 
decrease. It means there is a maximum amount of modal 
damping achievable for each mode and the maximum 
amount of modal damping occurs at different values of joint 
damping for each mode with the given joint stiffness kj.   
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Fig. 16.  Eigenvalues plotted in complex plane (kj=0.1EIle) 

 
As shown in Fig. 17, variation of the first three 

eigenvalues with the joint damping increasing under the 
different joint stiffness kj is compared and plotted. The 
values of joint stiffness are 0.1EIle, EIle and 10EIle 
respectively, as the joint damping approaches infinity, the 
imaginary parts of eigenvalues are up to ωc, but they start at 
different undamped frequencies under different joint 
stiffness. The comparison of the eigenvalues with different 
joint stiffness shows that the higher the joint stiffness, the 
lower the maximum modal damping achieves.  

 

 
Fig. 17.  Variation of eigenvalues under different joint stiffness 

 
The joint damping needed to reach the peak modal 

damping and corresponding eigenvalues are calculated in 
Table 4. More joint damping is needed to reach the peak 
modal damping when joint stiffness is higher, while less 
joint damping is needed for higher mode with the same 

joint stiffness. This reflects that less joints are excited when 
the joints are stiffer or in a lower mode, so more joint 
damping is required to achieve maximum modal damping.  

 
Table 4.  Joint damping needed to reach the peak  

modal damping and corresponding eigenvalues 

Mode No. 1 2 3 

kj0.1EIle

 

cj 15 200
 

2 700
 

1 600
 λ 

–0.404 2+ 
0.785 7i 

–2.011 2+ 
4.954 6i 

–6.264 7+  
14.747 3i 

kjEIle 

cj 62 700 11 100 4 160 

λ 
–0.068 7+ 
1.048 6i 

–0.489 7+ 
6.517 9i 

–1.664 5+ 
 18.006 0i 

kj10EIle 

cj 505 000 84 800 29 500 

λ 
–0.007 7+ 
1.105 4i 

–0.059 6+ 
6.918 6i 

–0.205 4+ 
 19.339 3i 

 
As shown in Fig. 18, variation of eigenvalues of higher 

modes are compared, the mode 4 and mode 6 achieve larger 
modal damping compared with other modes, while the 
modal damping of mode 5 is not becoming larger as the 
mode increasing. It is shown in mode shapes of beam with 
three joints that there are three peak shapes occur at the 
locations of joint and one peak shape occurs at the location 
of joint respectively when the modes are 4 and 6, but there 
is no peak shape occurs at the location of joint when mode 
is 5. So it is concluded that the more joints involved or 
excited in the vibration, the more modal damping 
contributed by the joints. 

 

Fig. 18.  Variation of eigenvalues (kj0.1EIle)  

 
4  Effect of Joint Nonlinearities Analysis 

 

4.1  Joint nonlinearities description 
Joints used in the space deployable structures, either 

pin-joints or spherical joints, not only have linear effect on 
dynamics of jointed system, but also have nonlinear effects 
due to joints present nonlinear force-displacement 
relationship. But the force-displacement responses are 
different due to different construction of joint, and the 
nonlinearities in the same kind of joint are also different 
because of different load paths or whether restricted by 
latches or preload. Two main nonlinear force-displacement 
responses may happen during deployable structures 
deployment process or deployed as shown in Fig. 19. 

Fig. 19(a) shows nonlinear force-displacement of 
freeplay due to clearances between two components of the 
joint. The freeplay nonlinearity is characterized by two 
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parameters, gap dimension δ and stiffness KFP beyond the 
gap: 

 

FP

0,                   < ,
( ),       or .

F q
F K q q q

δ δ
δ δ δ

      
      (8) 

 

  

Fig. 19.  Two main nonlinear force-displacement relationship 
 

Fig. 19(b) shows hysteresis nonlinearity of the joint due 
to friction between the joint components. The 
characterizing parameters are slipping force Fs and stiffness 
KCF before slip happens. Assume As Fs KCF and 2AsA, 

 

CF S S

S S

S CF

( ) ,    0< 2 ,
,                          2 < ,

( ),    : 0,

F K A q F q A A
F F A A q A
F F K A q q A

            

    (9a) 

 

or when 2AsA, 
 

S

S CF S

S S

,                              0< ,
( ),       : 2 ,

,                           : 2 0.

F F q A
F F K A q q A A A
F F q A A

          

   (9b) 

 
Due to the symmetry, the force has inverse value when 

q0. 
The describing function formulation is used in describing 

joint nonlinear force by calculating the first harmonic in a 
Fourier series expansion of the nonlinear joint force and 
ignoring the higher harmonics[10].  

The joint nonlinear force-displacement relationship can 
be expressed as 

 
NL ( , )F f q q  .               (10a) 

 
Using describing function method, the nonlinear 

force-displacement relationship is approximated as 
 

NL p q( , ) ( , ) ( , )F f q q c A q c A qω ω    .      (10b) 
 

If it is assumed to be harmonic motion, qAsinωt, cp, cq 
are describing function coefficients, they are depend on 

amplitude and frequency, they are 
2π

p
0

1 ( sin , cos )sin d
π

c f A A
A

ϕ ω ϕ ϕ ϕ  , 

2π

q
0

1 ( sin , cos )cos d
π

c f A A
A

ϕ ω ϕ ϕ ϕ
ω

  , 

cp and cq represent equivalent stiffness and damping of joint 
used in the deployable truss structures respectively. For 
more general form of the assumed response, qasinωt + 
bcosωt, 2 2A a b  , then the same describing function 
representation can be applied. 
  So the nonlinear joint force of freeplay and hysteresis are 
described as   

 

 FP
FP 1 1 12 sin 2  ,    arcsin

KF q
A
δφ φ φπ

π
    .   (11) 
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                        
  

 

1
S CF

2 arcsin 1 .
/
A

F K
β φ

β
       

，          (12) 

 
Describing function coefficients are function of 

amplitude and corresponding characterizing parameters. 
Only the hysteresis nonlinearity contributes damping due to 
dissipation occurs when there is slipping. 

 
4.2  Joint characteristics analysis 

In order to further analyze the effects of joint 
nonlinearities on jointed system, the dynamics of one-DOF 
jointed system is studied in this section. 

The dynamic equation of one-DOF system with 
nonlinear joint can be written as  

 
NL ,Mq Cq Kq F F                (13) 

 
where M, C, K are linear mass, damping and stiffness 
respectively, FNL is the nonlinear force produced by 
nonlinear joint which is described by Eq. (10b), F is 
harmonic exciting force, FF0sin ωt. 

Assume the dynamic response is   
 

sin cos ,q a t b tω ω               (14) 
 

if insert the expression q and Eq. (10b) into Eq. (13), and 
divided by sine and cosine terms, two new equations are 
obtained: 

 

0
2

p q( ) ( )M K c a C c b Fω ω ω      ,     (15a) 
 

2
p q( ) ( ) 0M K c b C c aω ω ω      .     (15b) 
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From above two equations, the dynamic respond 
amplitude can be derived: 

 

2 2 2
p q(1 ) (2 )

FA
c cΩ ζΩ Ω


   



 
,      (16) 

 
where 0 ,K Mω    (2 ),C KMζ    0 ,Ω ω ω   

p p ,c c K    q q 0c c Kω    and 0 .F F K    

So Eq. (16) is the forced response of one-DOF system 
with nonlinear joint. It is clearly found that pc  and qc  
are stiffness and damping contributed by joint to the system 
respectively.  

If no damping is considered and the exciting force is set 
to zero, the equations of motion become 

 
2

p1 0cΩ    ,                (17) 

 
pc  is a function of amplitude A. So Eq. (17) can be 

converted to expression of amplitude A as function of ω. 
The curve A-ω represents the degree of joint nonlinearity.   

The nonlinearities of joints and how the characterizing 
parameters affect nonlinearities are analyzed as follows. 
Due to the physical parameters of the system is not easy to 
be determined, specially KFP and KCF must be identified 
from experimental measures, so the following joint 
nonlinearity analysis mainly focuses on changing trend of 
nonlinear dynamic responses at different given parameters 
rather than magnitudes.  

 
4.2.1  Freeplay 

To keep the mobility of the links connected by joints, 
there is usually clearance remained between joint connect 
faces, and the manufacture errors also affect clearance of 
the joints. As shown in Fig. 20, the forced response of 
freeplay nonlinearity can be divided into two parts. The 
first part is that the amplitude is smaller than the gap in the 
joint (Aδ) when the exciting force is at its low level, the 
freeplay nonlinearity does not present in the response 
curves. The responses are same as the linear system, the 
responses are around the natural frequency ω0. However 
the amplitude exceed the gap in the joint (Aδ), the 
responses change rapidly and around another frequency 

FP 01 K Kω  . The backbone curve (dash dot line) 
defined by BOWDEN[10] describes the responses changing 
trend. Fig. 20(a) shows the response curves under different 
exciting force levels. Fig. 20(b) is the response curves with 
different δ, it will need larger exciting force to produce a 
larger amplitude to exceed the joint gap as δ increasing. Fig. 
20(c) shows the responses of the system with different joint 
stiffness parameter KFP, the nonlinearities become more 
distinct and the amplitudes at same exciting force lever 
decrease as the KFP increasing. 

 
Fig. 20.  Response of freeplay nonlinearity 

 
4.2.2  Hysteresis 

The responses of the hysteresis nonlinearity is similar 
with responses of freeplay, as shown in Fig. 21. There are 
also two resonance frequencies, distinguished by whether 
there is slipping. When the amplitude is small (AAS), 
slipping does not happen, the resonance frequency 
is CF 01 K Kω  . While the amplitude is larger (AAS), 
slipping happens and the stiffness of the joint decreases to 
zero rapidly, the resonance frequency changes to 0ω . The 
amplitude is very sensitive to the exciting force due to 
stiffness contributed by joint disappears when slipping 
happens, as shown in Fig. 21(a). The amplitude is more 
sensitive to the exciting force, which increases significantly 
and rapidly with the exciting force increasing a small level. 
The larger of KCF, the more nonlinear presents in the 
response curves. To decrease the slipping force has the 
same effect as to increase the exciting force as shown in Fig. 
21(c). 

 

4.3  Nonlinear dynamic test 
To identify the nonlinear effect of the joints on the 

deployable structure, the dynamic responses of the 
deployable truss mast under different excitation force level  
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Fig. 21.  Response of hysteresis nonlinearity 

 
are measured in this section. As shown in Fig. 22 is a 
deployable articulated truss mast fixed on the working face 
of the vibration table at one end as a cantilever beam.  It is 
a modular deployable structure which constructed by 
articulating basic bay repeatedly using spherical joints[21]. 
There are eight joints in each basic bay, and dynamic 
responses of the deployable truss mast contains five bays 
are tested in the experiment. The sine sweep vibration tests 
of the truss structure under different exciting force levels 
are tested. The dynamic responses of the truss are measured 
as shown in Fig. 23, the plot spans the first three model 
frequencies. It is similar with Fig. 21(a), the response 
characteristics of the structure illustrate a shift to lower 
resonant frequency and higher amplitude as the excitation 
force increasing. The finite element model of the tested 
truss is developed and joints are modeled as rigid 
connection, the natural frequencies calculated by FEM are 
signed by vertical dash dot line in Fig. 23, which are higher 
than experimental results, the comparison shows joints 
lower the stiffness of the truss significantly. Nonlinear 
dynamic behavior of the truss is mainly contributed by 
coulomb friction nonlinearity of the joints, the joint has 
fairly high stiffness when the friction mechanism is sticking 
at lower excitation force level, while the stiffness of the 
joint decreases as soon as the joint mechanism slips at 
higher excitation, the peak amplitude is also very strongly 

damped by hysteresis. So the joint nonlinear dynamic 
behavior in this tested structure can be modeled as coulomb 
friction nonlinear hysteresis.  

 

 

Fig. 22.  Truss vibration experiment 
 

 

Fig. 23.  Truss mast dynamic responses  

under different excitation force level 
 
It is found that the joints have significant nonlinear effect 

on dynamic of deployable truss structure from experiment 
test results. Nonlinear joint behaviors present highly 
complex responses which are hard to model, but it is 
concluded from the analysis and experiment in this paper 
that joint nonlinearities can be represented conveniently 
and efficiently using describing function method. The 
accurate nonlinear dynamic model of the joint-dominated 
space deployable truss will be further researched based on 
combination theoretical modeling and experiment tests. 

 
5  Conclusions 

 
(1) The presence of joint in the jointed system can lower 

the natural frequency of the system, and the less of joint 
stiffness, the more flexible of the system. 
  (2) The influence degree of joint on natural frequencies 
and mode shapes of jointed system is dependent on the 
practical numbers of joint participating in vibration mode. 
So the effects of joint on dynamic of jointed system can be 
decreased by designing joint location and number to avoid 
peak shapes of mode shape occur at the locations of joints. 

(3) There is maximum modal damping of jointed system 
exists at certain joint damping for each mode, and the 
maximum modal damping varies with joint stiffness. The 
higher the joint stiffness, the lower the maximum modal 
damping achieves, more joint damping is required to 
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achieve maximum modal damping when joint is stiffer or 
in a lower mode. 

(4) The joint nonlinear effects of freeplay and hysteresis 
present that the dynamic responses of jointed system switch 
from one resonance frequency to another frequency when 
amplitude exceed demarcation values. The nonlinear degree 
of jointed system is determined by joint characterizing 
parameters KFP and KCF. 

(5) Dynamic responses of the modular beam-like 
deployable joint-dominated truss structure under different 
sinusoidal exciting force levels show that the dynamic 
response shifts to lower frequency and higher amplitude as 
the exciting force level increasing. The nonlinearity of the 
joints is identified as hysteresis nonlinearity. 
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