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Abstract: In the classical process for stability studies on the rotor-bearing system with crack faults, the simple discrete model is adopted 
for research on such problems, which neglect some needful dynamical influence factor, such as the material damping, shearing effect 
and gyroscopic effects, etc. Therefore, it is necessary to find a precise calculation model for simulation of the rotor-bearing system with 
cracks faults. In this paper, instead of the traditional simple discrete model, finite element (FE) model is adopted to investigate the 
motion stability of a nonlinear rotor system with crack fault. According to finite element theory, the FE model of the cracked rotor 
system is established firstly. It should be pointed out that the element where the crack occurs is modeled by a particular crack element 
and the supports at both ends are simulated by two nonlinear loads. Then, based on dimensionless and dimensionality reduction, the 
Newmark-β method and the shooting method are employed to study the effect of eccentricity and the depth of crack on instability speed 
and bifurcation feature. Furthermore, the simulation results are verified by some corresponding experiments. The simulation and 
experimental results show that instability speed does not change monotonically, but decreases firstly and then increases when the 
amount of eccentricity increases. Moreover, as the type of instability changes, the instability speed jumps concomitantly. Additionally, 
the presence of crack fault can disturb the oil whirl, as a result, instability speed tends to increase slightly, but it does not affect the type 
of instability and jumping phenomenon. This research presents an effective and convenient method which uses the finite element 
method (FEM) to research the motion stability of the nonlinear rotor-bearing system with cracked faults and other nonlinear force, and 
the proposed method can provide a theoretical reference for stability analysis and vibration control in more complex relevant 
rotor-bearing system. 
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1  Introduction  

 
In the research of characteristics of rotating machinery 

faults, the crack faults is one of the important topics, many 
scholars carried out a lot of research on crack faults in 
different ways. GASCH[1] used hinge spring model to 
simulate the mechanical behavior of spindle crack, 
analyzed the stability of Laval rotor caused by unbalance 
and shaft crack. Using numerical simulation and 
experiments, LEE[2] show the correctness of the crack 
opening and closing conditions and the analytical theory of 
diagnoses on rotor with crack. CHAN, et al[3], studied the 
vibration response of the rotor system with crack and 
asymmetry factor between the crack and eccentric together. 
MENG, et al[4], analyzed stability and reliability of the 
cracked rotor system with Folquet theory. WAN, et al[5], 
investigated vibration of a cracked rotor with rotor-stator 
rubbing supported by sliding bearings, by using harmonic 
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wavelet transform, they observed differences in wavelet 
time-frequency maps of cracked rotor with and without 
rubbing. ZHENG, et al[6], analyzed the stability of a 
rotor-bearing with a shaft crack by Chebyshev polynomial 
method. PATEL, et al[7], have investigated the rotor whirl 
characteristics of the unbalance, crack and rotor-stator rub 
faults by numerical and experimental method. Recently, 
considered the coupled bending-torsional vibration, PATEL, 
et al[8], investigated the nonlinear response of a rotor with 
rub and crack. LIU, et al[9], established differential 
equations of a rotor-bearing system, considering the 
non-linear factors such as cracks, loose and film force, the 
periodic motion bifurcation and stability is analyzed. With 
the non-linear theory developed in actual production, 
scholars have begun to study the nonlinear problem in 
complex nonlinear system. LUO, et al[10], built a two-span 
rotor-bearing system model with two crack faults and the 
oil-film force, studied the nonlinear dynamics caused by 
the existence of cracks and crack angle. 

Seen from the above literatures, the nonlinear dynamic 
behavior of rotor-bearing system was mainly approached 
by a simple discrete model. However, an assembly rotor is 
a complicated system, which needs to consider more 
important information, such as mass/moment inertia, inner 
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damping, bending and torsion vibration coupling effects, 
the nonlinear factors of oil film bearing, and so on . ZHENG, 
et al[11–12], dealt with the long-term dynamic behaviors of a 
high-order rotor-bearing system with multi-DOF, and 
proposed a new reduction method and corresponding 
integration technique. JING, et al[13–14], compared dynamics 
of the continuous model and discrete model using the fixed 
interface modal synthesis method. 

Seen from above literatures, the FEM and reduction 
method is applied less for a FEM craked rotor system with 
nonlinear factor. In this paper, a double-disk rotor-bearing 
system model with crack faults is established, using the 
relevant calculation method to analyze the impact of the 
system eccentricity and crack depth on the dynamic 
response of the system, and a qualitative experimental 
verification is presented, these results provide a theoretical 
reference for the fault diagnosis of rotor system and 
vibration control. 
 
2  Establishment of Dynamical Model 

 
Default values of related parameters in the rotor system 

are as follows: inside diameter of bearing at both ends is 
D44 mm, effective length Lr20 mm; rotor shaft radius 
r18 mm, length l720 mm, outside diameter of two disk 
Ro160 mm, disk thickness H20 mm, average film 
thickness of bearing c0.18 mm, unbalance of disks 
b0.10 mm, The initial phase of two eccentric disk 

1 2 0ϕ ϕ  , eccentric phase difference 0ϕ∆  , absolute 
viscosity of lubricant μ0.018 Pa • s.  
 
2.1  FE model of the rotor-bearing system 

The finite element model of the rotor-bearing system is 
shown in Fig. 1.  
 

 
Fig. 1.  FE model of the rotor-bearing system             

with one crack fault 
 
The shaft is divided into 20 elements and 21 nodes 

according to its structural characteristics. Oil-film 
supporting forces are applied at 2 and 20 nodes, unbalance 
forces at the 8th and 12th node, respectively. The dots in 
the diagram indicate nodes, and each segment represents an 
element. The motion equation of the whole rotor system 
can be expressed as 
 

( , ) ( ) ,X X X X X t    M C K F R G         (1) 
 
where ( ),ω C D J  T

1 2[ , , , , , ]i nX q q q q   (n21), 
[ , , , ]i i xi yiq x y θ θi (i1, 2, , 21). M , K and C are the 

mass, stiffnes and damping matrix; D is the material 

damping matrix; J is the gyro matrix; ω is the angular 
velocity; F is the supporting force vector; R is the 
unbalanced force vector; G is the gravity vector and X is 
the displacement vector. 

The material damping coefficient is defined in the form 
of Rayleigh damping as follows: 
 

  ,α β D M K               (2) 
 

where 2 1
2 2

2 1 2 1

1 12 ξ ξα
ω ω ω ω

              
, 

2 2
2 2 1 1 2 12( ) ( ).β ξ ω ξ ω ω ω    

 

1 2,ξ ξ  are the damping coefficient, 1 2,ω ω  are the former 
two order critical speed. The first three critical speeds and 
damping coefficients of the simple support system are 
shown in Table 1. 
 

Table 1.  Critical speeds and damping coefficients 

Critical speed ω(rad • s–1) 
Material damping coefficient  

1st  2nd  3rd  
559.334 2 454.529 6 117.442 ζ10.05 ζ20.08 

 
The oil-film force vector ( , )X XF  in system equation is  

 
T( ) [0, , , , ,0] , 2,13xi yiX X F F i F ,    , 

 
( , , , )xi x i i i iF x y x yF   , ( , , , ).yi y i i i iF x y x yF    

 
The Capone correction model[15] is used to simulate 

oil-film force because it has a simple analytical expression 
with good accuracy and convergence. The referenced crack 
model can be seen in Ref. [16]. 
 

2.2  Oil film force 
In this paper, laminar and isothermal lubrication in short 

journal bearing assumption is used[15]. According to bearing 
theory, the dimensionless nonlinear oil-film force can be 
expressed as 
 

2 2

yV x y G x y S x yα α α α α+ -
xV x y G x y S x yα α α α α

2 2

( 2 ) ( 2 )
1

,

x

y

f x y y x
f x y

üì - - ïï ïï ýí ïï ïï þî

              


 
(3)

 

 
where x, y are dimensionless displacement in corresponding 
direction. And 

2 2
2 ( cos sin ) ( , , )( , , ) ,

1
y x G x yV x y

x y
α α αα  


 

 

2
cos sin( , , ) ,

1 ( cos sin )
x yS x y
x y

α αα
α α



 
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2 2arctan sgn sgn( 2 ).
2 2 2 2

y x y x y x
x y x y

α
             

π π  

 
The dimensional oil-film force is obtained by 

x xF Pfσ  and y yF Pfσ . Here, P is half weight of the 
rotor; µ is the absolute viscosity of lubricant, c is the 
dimensional thickness of the lubrication film, and σ is the 
modified Sommerfeld number,  

 
2 2

.
2

m RL R L
P c R

ωσ
             

 

 
2.3  Dimensionless and reduction of the system 

equations 
Because the system response amplitude is too small, to 

ensure the precision, the numeric solution usually needs to 
be nondimensionalized with the following substitutions: 

 

c
XX  , tω τ , d d

d d
c

t
τ ω

τ
 

XX X , 

2d d
d d

c
t
τ ω

τ
 

XX X


 , ( , , , ),xi
x i i i i

F
f x y x y

Pσ
   

( , , , ).yi
y i i i i

F
f x y x y

Pσ
   

 
Eq. (1) can be transformed into a convenient dimensionless 
form: 
 

2 ( , ) ( ) .c c c τΩ ΩM X C X K X F X X R G        (4) 

 
If it is assumed that 2 ,cΩM M ,cΩC C and ,cK K  
and replacing X   and X   by X and X , Eq. (4) can 
be written as 
 

( , ) ( ) .τ    MX CX KX F X X R G        (5) 

 
For a finite element system, especially a nonlinear 

dynamic system, a processing of dimension reduction is 
needed so as to save computing resources. When the order 
of the vector components is rearranged in linear and 
nonlinear parts, to simplify notations, Eq. (5) can be 
partitioned as 
 

( )
.

( , ) ( )

ii is ii isi i

si ss si sss s

ii is i i i i

si ss s s s s s

t
t

                              
                                                  

M M C CX X
M M C CX X

K K X 0 R G
K K X F X X R G

 

 



  
(6)

 

 
As shown in Eq. (6), only components of sN

sX R  are 
directly subjected to the nonlinear forces, therefore, 
truncated modal transformation can be used to reduce the 

DOFs (degrees of freedom) of , ( ),iN
i i sX N N NR    

4N n . We fix the interface freedom Xs in Eq. (6), and 
structure the fixed interface master mode  T, 0l lΘ ψ  
with the lower mode lψ  which is systematic normalized. 
In addition, given some interface degrees are unit 
displacements and other interface degrees are zero, the 
static mode can be derived which is also called “constraint 
mode”. The system constraints modal equation is  
 

1 .i ii is s
X K K X               (7) 

 
So, the constraints modal set is  
 

               
1

.ii is
sΘ K K

I

      
 

 
After assembling the fixed master mode and the constraint 
mode, the system mode matrix Θ  can be written as 
 

                ( ).l sΘ Θ Θ

MU CU KU

                 (8) 

 
Then, the vibration equation in modal coordinates could be 
written as  
 

( ) ,
( , )s s

τ
æ ö÷ç ÷+ + = + +ç ÷ç ÷çè ø

i0
R G

F X X
 



    (9) 

where 
 

Tˆ ii is

si ss
Θ Θ

M M
M

M M
      

, ii isT

si ss

ˆ ,Θ Θ
C C

C
C C
      

 

Tˆ ,ii is

si ss
Θ Θ

K K
K

K K
      

T ( )ˆ ( ) ,
( )

i

s

t
t

t
Θ

R
R

R
      

Tˆ .i

s
Θ

G
G

G
      

 

 
Thus, the number of the equations of the system has been 

reduced from N(NiNs) to Q(NlNs) where Q is 
substantially smaller than N. If U is the solution of the 
equation in mode coordinates, then the vibration response 
results of the original system can be obtained from the 
relationship ΘX U  which can return to the original 
physical coordinates.  

Eqs. (1), (4), (5), and (9) describe a nonlinear dynamic 
systematic equation in different stage. The approximate 
solution of these coupled nonlinear differential equations 
can be obtained by some numerical methods. 

Additional, in this paper, the Floquet theory is adopted 
for distinguishing the periodic instability. And the initial 
value on the Poincaré section for every rotational speed is 
seeked by the shooting method which is combined with the 
Newmark-β. So the accuracy of the initial value can be 
fully guaranteed. 
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3  Dynamic Response Analysis 
 

In this section, the impact of the amount of unbalance 
and the crack depth on the rotor-bearing system with crack 
is investigated. Fig. 2 displays the instability bifurcation 
state in the speed-eccentricity domain when the crack depth 
ratios are d0.6 and d0.9, respectively. In Fig. 2, set A 
(A1, A2) represents the Hopf bifurcation, and set B (B1, B2) 
represents the period-2 bifurcation. It can be seen from  
Fig. 2, system instability occurs Hopf bifurcation when 
crack depth ratio is d0.6 and disk eccentricity is b≤0.065 
mm, and instability speed decreases with eccentricity 
increasing. When b≥0.065 mm, system instability shows 
as period-2 bifurcation, instability speed decreases firstly 
and then increases with eccentricity going up. Meanwhile,   
Fig. 2 indicates that when the crack depth ratio is d0.9, 
the system bifurcation type is identical with the former, and 
the instability trends are basically same, but the instability 
speed of the latter is obviously greater, and the increment is 
small. According to these phenomena, the presence of 
cracks does not affect the type of system instability and the 
instability speed is slightly increasing as the crack depth 
becomes deeper. 
 

 
Fig. 2.  Bifurcation set of the rotor system with crack         

in eccentricity-rotational speed parameters plane 
 

In order to verify the validity of the calculation results in 
Fig. 2, the real and imaginary parts of the maximal Floquet 
multipliers in some special speeds are listed in Table 2, 
which demonstrates that the maximal Floquet multiplier 
run out of the unit circle from negative real axis while the 
system speed reaches 501 rads. It can be determined that a 
period-2 bifurcation occurs right here. Fig. 3(a) is the 
diagram of the module of the maximal Floquet multiplier, 
and Fig. 3(b) describes its changing track in complex field. 
These diagrams can show the change of the maximal 
Floquet multiplier in Table 2 more clearly. In order to 
confirm the validity of the synchronous periodic solution, 
the system responses are concerned too. The bifurcation 
diagram of the system is displayed in Fig. 4 which indicates 
that the system response shows two misaligned points sets 
beginning at 501 rad sω    on the Poincaré hyperplane. 
Thus, the system has a period-2 bifurcation at 501 rads, 
following with the quasi periodic or chaotic motion. This is 
accord with the previous bifurcation situation. When the 

system is at 501 rad sω    and 520 rad sω   , the 
oscillogram, axis orbit diogram, Poincaré sectional view 
and amplitude spectrogram are shown in Fig. 5. From the 
graph we can see that when the rotational speed is 480 rad/s, 
the system is stable with a synchronous periodic motion. 
When the speed is 520 rads, the system becomes unstable. 
The oscillogram shows harmonic wave in Fig. 5(e). The 
axis orbit figure appears as an inner “8” shape. Two 
concentration points appear in the Poincaré sectional view. 
The amplitude spectrogram appears half frequency 
component and weak double frequency component. But 
when the speed is 800 rads, in Figs. 5(i)–5(l), the 
oscillogram of system response shows harmonic wave. The 
axis orbit figure shows a non-repetitive path. Poincaré map 
shows a closed ring. The amplitude spectrogram of this 
response shows more combination frequency components 
of first critical frequency and rotating frequency. These 
results prove the previous calculation is correct. 

 
Table 2.  Maximal Floquet multipliers of synchronous 

periodic motion when b0.08 mm 

Rotation speed 
ω (rad • s–1) 

Multipliers mold 

maxλ  Floquet multipliers λ  

350 0.296 233 0.245 7260.165 447i 
400 0.241 984 0.241 9840.000 000i 
450 0.354 868 0.347 7340.070 795i 
480 0.829 852 0.829 8520.000 000i 
490 0.913 487 0.913 4870.000 000i 
500 0. 995 491 0.995 4910.000 000i 
501 1.002 527 1.002 5270.000 000i 
502 1.000 902 1.000 9020.000 000i 
505 1.033 440 1.033 4400.000 000i 
510 1.069 406 1.069 4060.000 000i 

 

 
Fig. 3.  Diagrams of the Floquet multipliers for synchronous 

periodic motion when b0.08 mm 
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Fig. 4.  Bifurcation diagrams at the right bearing          

when b0.05 mm 
 

The previous response process of the system with 
unbalance parameter b0.08 mm shows period- doubling 
bifurcation instability. In this section, we change the 
parameter b0.05 mm, and still keep the crack depth  

d0.6. Under this working condition, the real and 
imaginary parts of the maximal Floquet multipliers in some 
special speeds are listed in Table 3 which shows that the 
maximal Floquet multiplier run out of the unit circle from 
negative real axis while the system speed reaches 592 rads. 
From this, we can conclude that a Hopf bifurcation occurs 
right here.  

Similarly, Fig. 6 is the diagram of the maximal Floquet 
multiplier which can display the change of the maximal 
Floquet multiplier in Table 3 more clearly. In order to 
confirm the validity of the prediction conclusion by 
shooting method in Table 3 and Fig. 6, the system response 
is studied. The bifurcation diagram of the system is 
displayed Fig. 7. The system response shows a series of 
misaligned point sets beginning at 592 rad sω    on the 
Poincaré hyperplane which is the same as that in the Table 
3 and Fig. 6, the system has a Hopf bifurcation at 592 rads, 
and then a small length of period-doubling motion happens. 
This is consistent with the preceding result. When the 
system is at 550 rad sω   , 600 rad sω   , 700 rad sω    
and 800 rad sω   , the oscillogram, axis orbit diagram, 
Poincaré sectional view and amplitude spectrogram are 
shown in Fig. 8. It can be seen from the graphs that when 
the rotational speed is 550 rads, the system is stable with a 
synchronous periodic motion; while when the speed is 600 
rads, the system becomes unstable. The oscillogram 
shows harmonic wave in Fig. 8(e). The axis orbit figure  

 
 

 

Fig. 5.  Time wave plots, trajectories, Poincaré maps and amplitude spectra when b0.08mm  

    



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·1 199· 
  
appears as a non-repetitive path. A closed ring is made up 
by some concentration points in the Poincaré sectional view. 
Rotating frequency component and half frequency 
component appear in amplitude spectrogram. When the 
speed is 700 rads, in Figs. 8(i)–8(l), the oscillogram of 
system response shows week harmonic wave; the axis orbit 
figure displays a repeating ring, but the Poincaré sectional 
view is two misaligned points; the amplitude spectrogram 
of this response shows a strong half frequency component 
and a weekly rotating frequency component. These results 
mean that the shaft rotates in a half-speed whirl motion at 
700 rads. When the speed is 800 rads, the oscillogram of 
system response shows week harmonic wave too; the axis 
orbit figure is a non-repetitive path but the Poincaré 
sectional view displays a closed ring; the amplitude 
spectrogram of this response shows a strong first critical 
frequency component, a week rotating frequency 
component and some other frequency components which 
cannot be common divisor. It can be concluded that the 
shaft rotated in a quasi-period motion. All these results also 
prove the previous calculation is correct. 

From above results the following conclusions can be 

conducted. The accurate calculation results are obtained by 
the prediction method in this paper. The depth of the crack 
influence on the system instability speed and the 
bifurcation form slightly. A deeper crack can lead to a  
larger instability speed of the rotor system, but the change 
is small. On the contrary, for the same crack fault, the 
unbalance has a more remarkable impact on the instability 
speed and the bifurcation form of the system. 
 
 

Table 3.  Floquet multipliers of synchronous periodic  
motion when b0.05 mm 

Rotation speed 

ω (rad • s–1) 

Multipliers mold 

maxλ  
Floquet multipliers 

λ  

350 0.283 208 0.096 3090.266 330i 

450 0.685 437 0.651 6380.212 584i 

550 0.932 609 0.930 4230.063 815i 

580 0.985 719 0.973 5330.154 519i 

591 0.999 394 0.982 0900.185 170i 

592 1.000 902 0.983 0500.188 193i 

593 1.002 404 0.983 9970.191 219i 

595 1.005 457 0.985 9060.197 312i 

 

    
Fig. 6.  Curve of the Floquet multipliers for synchronous periodic motion when b0.05 mm 

 

    

Fig. 7.  Bifurcation diagrams at the right bearing when b0.05 mm                                                
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Fig. 8.  Time wave plot, trajectory, Poincaré maps and amplitude spectra when b=0.05mm 

 
 
4  Experiment and Analysis 

 
An experiment rig is built based on the dynamic 

similarity principle, as is shown in  
Fig. 9. Here a shaft with crack depth ratio d=0.6 is used 

in order to investigate the effects of eccentricity on system 
motion stability. 

 

 

Fig. 9.  Experimental rig of rotor-bearing system 
 
Fig. 10 is the three-dimensional spectrum of measuring 

point 1, where fn is the first-order critical speed of the 
system, 1X and 2X line represent rotational frequency and  

 
double frequency spectrum amplitude, respectively. As is 
shown in the Fig. 10, oil-whirl appears at time t1, and 
disappears at t2, then “locking frequency” appears,  until 
time t3, the vibration during this time is oil whip firstly, and 
then oil-whirl appeared at t3, then disappears at t4. 
Furthermore, double rotational frequency appears in 
amplitude spectrum due to the existence of crack fault. The 
responses after system becomes instable are shown in Fig. 
11 and Fig. 12, respectively. Fig. 9 shows the response of 
measuring point 1 when ω636 rads, trajectory of 
measuring point 1 indicates the quasi-periodic motion at 
this moment, and a half rotational frequency 12X can be 
seen in amplitude spectra, so it is considered that the 
system is undergoing a quasi-periodic instability at this 
time. Fig. 12 displays the response of measuring point 1 
when ω1 043 rads. It can be seen that system is in a 
state of instability, amplitude spectra shows oil whip 
appears at this moment, and dominant amplitude in 
frequency spectrum is greater than amplitude of rotational 
frequency at first-order critical speed. In addition, the  
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combination frequencies also appear at the same time such 
as f21Xfn and f31Xf1. Besides, double rotational 
frequency component also appears because of crack fault. 

 

 
Fig. 10.  The global three-dimensional spectrogram of the 

rotor-bearing system with small eccentricity 
 

 
 

Fig. 11.  Response of the rotor-bearing system                     
at ω636 rads 

 
Fig. 13 gives the three-dimensional spectrum of 

measuring point 1 when the eccentricity of the disks 
becomes larger while the other experiment conditions keeps 
same (crack depth ratio d0.6 ). fn, 1X and 2X line are also 
given in the figure. Oil whirl appears at t1 until t2 when oil 
whip appears and this lasts until t3. At the same time oil 
whirl appeared again and it disappeared at t4. It should be 
noted that when rotation frequency is f191.797 Hz at t1 
and f485.938 Hz at t4, an obvious “lagging” phenomenon 
can be found. It can be concluded that the instability speed  

decreases due to the increase of eccentricity which is 
consistent with the previous calculation. Furthermore, two 
times rotational frequency appears in the frequency 
spectrum because of the crack fault, but not obviously.  

 

Fig. 12.  Response of the rotor-bearing system                      
at ω1043 rads 

 
 

 
Fig. 13.  Global three-dimensional spectrogram             

of the rotor system with greater eccentricity 
 
The responses after system becomes instable are shown 

in   Fig. 14 and Fig. 15 respectively. The former gives the 
response of measuring point 1 when ω611 rads. The 
quasi-periodic motion can be indicated easily in the 
trajectory of measuring point 1 at this moment, 12 times 
and 2 times rotational speed amplitude can be seen in 
amplitude spectra. The latter gives the response of 
measuring point 1 when ω835 rads. Amplitude spectra 
shows oil whip appeared at this moment, and combination 
frequencies appears, for example, f11Xfn. Besides, 
double rotational frequency component also appears due to 
the crack fault. 
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Fig. 14.  Response of the rotor-bearing system                     

at ω611 rads 
 

 
Fig. 15.  Response of the rotor-bearing system              

at ω835 rads 
 
 
It comes to a conclusion from previous experiment that 

increasing eccentricity will reduce the instability speed 
slightly for the system with crack depth ratio d0.6, and 
“lag phenomenon” and the frequency combination 
phenomenon occurs together. 

 
5  Conclusions 

 
(1) Because of the disturbance to formation of the oil 

whirl by crack fault, the instability speed increases slightly 
as the crack becomes deeper. But this does not mean that 
the existence of cracks should be ignored. The crack deep 
enough will cause the shaft breakage. Furthermore, the 
effect of eccentricity on system stability is greater than that 
caused by crack fault by contrast. 

(2) With the influence of system eccentricity, the 
instability speed does not show the monotonically trend, 
but decreases firstly and then increases, and as the type of 
instability changes, the instability speed jumps 
concomitantly. 

(3) Cooperation between shooting method and the 
Newmark-β is an effective strategy to study the period 
instability on the rotor-bearing system, the numerical 
method and the Floquet theory can be adopted for the 
reduced FE system. 
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