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Abstract: Natural frequency characteristics of a thin-walled multiple layered cylindrical shell under lateral pressure are studied. The 
multiple layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are 
stainless steel and the middle layer is aluminum. The multiple layered shell equations with lateral pressure are established based on 
Love’s shell theory. The governing equations of motion with lateral pressure are employed by using energy functional and applying the 
Ritz method. The boundary conditions represented by end conditions of the multiple layered cylindrical shell are simply 
supported-clamped(SS-C), free-clamped(F-C) and simply supported-free(SS-F). The influence of different lateral pressures, different 
thickness to radius ratios, different length to radius ratios and effect of the asymmetric boundary conditions on natural frequency 
characteristics are studied. It is shown that the lateral pressure has effect on the natural frequency of multiple layered cylindrical shell 
and causes the natural frequency to increase. The natural frequency of the developed multilayered cylindrical shell is validated by 
comparing with those in the literature. The proposed research provides an effective approach for vibration analysis shell structures 
subjected to lateral pressure with an energy method.  
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1  Introduction∗ 

 
Thin-walled structures such as shells are generally used 

as constructive components in many engineering 
applications. The shell structures are usually flat plates and 
cupola. In comparison with plates and beams, shells are 
usually exposed to more different dynamic behaviours 
because they can carry applied loads effectively by their 
curvatures. The dynamic characteristic of shells has been 
reported by many researchers. It was first recommend by 
LOVE[1]. He was the first scholar to use Kirchhoff 
hypothesis for shell structures and named love’s shell 
theory. Then ARNOLD and WARBURTON[2]  used this 
shell theory for cylindrical shell based vibration analysis.  

A particular type of shell structure is cylindrical shell. 
Cylindrical shells are constructions with different materials 
for various applications in engineering from large 
aerospace, naval construction, civil and mechanical 
structures to small electrical components[3]. Mechanical and 
dynamics behaviours, including vibration, buckling and 
impact, are reasons for the popularity of cylindrical shell 
structures in engineering. They are used as structures in 
aircrafts, ships, rockets, missiles, pressure vessels, oil 
tanks[4–5]. Thin-walled multiple layered cylindrical shells 
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with lateral pressure subjected to vibration is significant for 
a successful usage of these structures. There are group of 
papers being reported on vibration of cylindrical shells that 
include factors such as boundary conditions, thicknesses, 
stresses, thermal loads but the vibration of multiple layered 
cylindrical shells subjected to lateral pressure using energy 
method is restricted. Some works on vibration analysis of 
cylindrical shells have been reported. ARNOLD and 
WARBURTON[6]  and ZHANG, et al[7], studied the walls of 
cylindrical shells and derived the equations of motion. 
FORSBERG[8], NAJAFIZADEH and ISVANDZIBAEI et 
al[9], ISVANDZIBAEI, et al[10–11], PRADHAN, et al[12], and 
DAI, et al[13], presented numerical analysis to prove the 
importance of edge conditions on free vibration. Vibration 
of cylindrical shells were analysed by SHARMA[14] and 
BAKHTIARI, et al[15], using Sander’s thin-walled shell 
theory. SOEDEL[16], CHUNG[17], HUA, et al[18], and JUNG, 
et al[19], worked on circular cylindrical shells. LAM and 
LOY[20–21] presented works on rotating cylindrical shell 
based on vibration analysis. Differential quadrant method 
has been used by BERT and MALIK[22] to study the 
frequency behaviour of cylindrical shell. Some authors 
used functionally graded material(FGM) in shell structures 
and analysed the vibration behaviours.  Some of them are 
LOY, et al[23], NAJAFIZADEH and ISVANDZIBAEI[24], 
GHAFAR, et al[25–26], ARSHAD, et al[27], and XIANG, et 
al[28]. 

The effect of buckling on cylindrical shell subjected to 
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temperature was presented by KADOLI and GANESAN[29]. 
Similarly SHI-RONG and BATRA[30] worked on buckling 
of circular cylindrical shells. MALEKZADEH, et al[31], 
used composite material in cylindrical shells for dynamic 
action.  

A method of analysing a multiple layered cylindrical 
shell is to determine the natural frequencies, when 
subjected to lateral pressure. Lateral pressure is often an 
important loading condition for these multiple layered 
cylindrical shells and causes high natural frequencies due to 
vibration. The behavior of multiple layered cylindrical 
shells under lateral pressure is dependent on the strength of 
structure. For pressurized cylindrical shells filled by fluid 
and subjected to lateral pressure, problem may arise if 
vibration developed as a consequence of interaction 
between lateral pressure, liquid and deformation of the 
shell. Therefore potential energy of the fluid is considered 
as variable at the multiple layered cylindrical shell elements 
where its motion is expressed in terms of displacement at 
the fluid. For fluid filled multiple layered cylindrical shell 
with lateral pressure, the fluid boundaries are divided into 
two sections, such as free surface boundary and 
fluid-multiple layered shell interaction boundary. Reported 
works on vibration of multiple layered cylindrical shells 
composed of stainless steel and aluminum subjected to 
lateral pressure could not be found in the literature. 

This paper presents the study on the natural frequency 
characteristics of a multiple layered cylindrical shell under 
lateral pressure with asymmetric boundary conditions. The 
analysis is carried out based on Love theory. The governing 
equations with lateral pressure are derived using energy 
method by solving Ritz technique. The multiple layered 
cylindrical shell is made-up of isotropic three layers where 
the inner and outer layers are made of stainless steel and 
the middle layer is aluminum. The analysis of the natural 
frequency characteristics of the multiple layered cylindrical 
shell is presented with asymmetric boundary conditions by 
using beam functions as the axial modal functions. The 
boundary conditions of the multiple layered cylindrical 
shell considered are the combination of simply supported- 
clamped(SS-C), clamped-free(C-F) and free-simply 
supported(F-SS). The influence of different lateral 
pressures, different thickness to radius ratios, different 
length to radius ratios and effect of the asymmetric 
boundary conditions on natural frequencies characteristics 
are discussed. The results obtained from this method are 
validated by comparing with the results for cylindrical 
shells without lateral pressure reported in the literature. 

 
2  Theoretical Formulation  

  
Consider a thin-walled multiple layered cylindrical shell 

with the thickness h, radius of the shell R, length L, mass 
density ρ , modulus of elasticity E, and Poisson’s ratio ν, as 
shown in Fig. 1. An orthogonal coordinate system is 
established at the mid-surface of the multiple layered shell 

along x, θ and z, the axial, circumferential and radial 
directions respectively. The corresponding displacement 
deformations from the multiple layered shell mid-surface 
are defined by u, v and w respectively. Thickness of the 
thin-walled multiple layered cylindrical shell is divided into 
three layers where the inner and outer layers are of stainless 
steel and the middle layer is aluminum. 

 

 
Fig. 1. Geometry of multiple layered cylindrical shell  

with the coordinate system 
 

The stress-strain relations is given by Hooke’s law as  
 

 Qeσ .                  (1) 
 

where σ , e  are the corresponding stress and strain vectors 
respectively and Q  is the reduced stiffness matrix with 
Kirchhoff hypothesis expressed as follows: 
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For cylindrical shells, the stiffness ijQ are defined as 
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where E is modulus of elasticity, and ν is Poisson’s ratio. 
According to Love shell theory[32], the strain components in 
the strain vector e  are defined as linear functions of the 
thickness coordinate z as  
 

1 1xe e z  k , 2 2e e zkθ   , 2xe zθ γ τ  .    (7)                                                    
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where 1 2,e e and γ are the area strains and 1 2,k k and τ  
are the surface curvatures and defined as follows: 
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From Eqs. (5) and (7), the stress vector σ is defined as 
follows: 

 

1 1 11 2 2 12( ) ( ) ,x e zk Q e zk Qσ           (10)  
 

1 1 12 2 2 22( ) ( ) ,e zk Q e zk Qθσ           (11)                      
 

 66( 2 ) .x z Qθσ γ τ              (12)                                                
 
The force and moment resultants are defined by 
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where ,xθN N and xθN are force components in axial, 
circumferential and shear directions, respectively 
and ,xθM M and xθM are moment components in axial, 
circumferential and shear directions, respectively.  

Eqs. (7), (13) and (14) are combined as  
 

,N Le                   (15) 
 

where L and e  are expressed as follows:     
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and L for multiple layered cylindrical shell is defined as 
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where X, Y, Z are the extensional, coupling, bending 
stiffness, expressed as follows: 
 

11 12

12 22

66

0

0 ,

0 0

X X

X X

X

X

          

         (19) 

11 12

12 22

66

0

0 ,

0 0

Y Y

Y Y

Y

Y

          

          (20) 

 

     
11 12

12 22

66

0

0 .

0 0

Z Z

Z Z

Z

           

Z          (21) 

 
The matrix L  in terms of Xij, Yij and Zij can be written as 
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For a multiple layered shell, the stiffness are given by 

LAM and LOY[4]: 
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where kt  and 1kt   are the distances from the mid-surface 
of the multiple cylindrical shell, T is number of layers and 

k
ijQ  is the reduced stiffness for the k-th layer as defined in 

Eq. (6). By substituting Eqs. (16)–(21) into Eq. (15) for a 
multiple layered cylindrical shell, thus 
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3  Energy Equations  
 

To investigate the relationship between lateral pressure 
with strain energy and kinetic energy, consider a 
thin-walled multiple layered cylindrical shell under uniform 
external lateral pressure as shown in Fig 2.  
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Fig. 2.  Geometry of a multiple layered cylindrical shell  

subjected to uniform external lateral pressure 
 

The potential energy of the external lateral pressure for 
multiple layered cylindrical shell F, is 
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The strain energy of thin-walled multiple layered 

cylindrical shell U is  
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Substitution of L and e  into the strain energy for 
multiple layered cylindrical shell, thus 
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The total potential energy for vibration of multiple 

layered cylindrical shell under lateral pressure is 
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The kinetic energy for vibration of thin-walled multiple 
layered cylindrical shell under uniform external lateral 
pressure, is given by 
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where Tρ is the mass density per unit surface area, defined 
for multiple layered cylindrical shell: 
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4  Displacement Field and Boundary 
   Conditions  
 

The displacement field for multiple layered cylindrical 
shell under lateral pressure with asymmetric boundary 
conditions can be expressed as follows: 
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where E1, E2 and E3 are constants denoting vibrations in the 
axial u, circumferential v and radial w directions. The axial 
modal function is denoted by Ω(x), n denotes the number of 
circumferential waves in the mode shape and ω is the 
natural frequency of the vibration.  

The axial modal function Ω(x) in Eq. (33) is chosen to 
satisfy condition at both ends of the multiple layered 
cylindrical shell. The beam modal function has been chosen 
as the axial modal function and expressed by MOON and 
SHAW[33]. 
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where, the values of ( 1, , 4),i iΨ   Φm and µm for 
multiple layered cylindrical shell under lateral pressure 
with asymmetric boundary conditions considered are given 
in Table 1. 
 

Table 1.  Values of boundary conditions 
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The geometric boundary conditions for simply supported, 

clamped and free that satisfy the applied boundary 
conditions at the ends of multiple layered cylindrical shell, 
x  0 and x  L can be expressed in terms of Ω(x) as 
follows. 
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5  Ritz Method 
 

Ritz method is commonly used as an approximation 
method for a numerical solution of various boundary value 
problems in mechanics. To determine the natural frequency 
of vibration for multiple layered cylindrical shells under 
lateral pressure, the Ritz method is used. The energy 
functional, Π , defined by the Lagrangian function for 
vibration of multiple layered cylindrical shells under 
external lateral pressure is 
 

max total max .T UΠ  
             (38) 

 
Substituting Eq. (33) into Eqs. (27), (29) and (31) and 
applying Ritz method with minimizing the energy 
functional Π  with respect to the unknown coefficients as 
follows:
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This equation includes three equations of motion for 
multiple layered cylindrical shell under lateral pressure is 
obtained. 

The three governing eigenvalues of the equations of 
motion can be expressed in matrix from as 
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The solution is obtained by setting the determinant of 
matrix C equals to zero, i.e., 
 

0.C                    (41) 
 
The solution of Eq. (41) is the characteristic of the 

multiple layered cylindrical shell under lateral pressure 
expressed in the power of ω as 
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where ( 0,1,2,3)i iβ   are some constants. Eq. (42) can be 
solved using Newton-Raphson procedure where three 
positive and three negative roots are obtained. The three 
positive roots obtained are the natural frequencies of 
multiple layered cylindrical shell with asymmetric 
boundary conditions under lateral pressure. The smallest of 
the three positive roots is the natural frequency of interest 
in the present study. 
 
6  Numerical Results 
 

To validate the accuracy of the model developed, the 

results for multiple layered cylindrical shell without lateral 
pressure are compared with those in the literature. The 
material properties of the three multiple layered cylindrical 
shell are given in Table 2. 
 

Table 2.  Material properties of the multiple layered 
cylindrical shell 

Layers status 
Type of 

materials 

Young’s 
coefficient 

E(GN • m–2) 

Poisson 
ratio ν 

Density  
ρ(kg • m–3) 

Outer layer 
Stainless 

steel 
210 0.28 7.8103 

Middle layer Aluminum 70 0.35 2.7103 

Inner layer 
Stainless 

steel 
210 0.28 7.8103 

 
  Table 3 shows the comparison of the natural frequency 
parameter 2(1 ) /R EΓ ω ν ρ  with those in LOY, et 
al[34] and ZHANG, et al[35] for multiple layered cylindrical 
shell without lateral pressure with simply support- clamped 
boundary conditions. Table 4 shows the comparison of the 
natural frequency (Hz) with those in SHARMA[36] for 
multiple layered cylindrical shell without lateral pressure 
with clamped-free boundary conditions. From the 
comparisons presented in Tables 3 and 4, it can be seen that 
the results agreed well with those in the literature. The 
comparisons with cylindrical shells subjected to lateral 
pressure are not presented as the results for a multiple 
layered cylindrical shell are not found in the literature. The 
finding could be validated experimentally which is out of 
the scope of this study. The experiment could be designed 
based on the study of buckling under pressure to create the 
effect of lateral pressure[37].    

 

Table 3.  Comparison of values of the natural frequency 
parameter 2(1 ) /R EΓ ω ν ρ  for a multiple layered 

cylindrical shell without lateral pressures with SS-C 
boundary condition (m  1, RL  0.005, Rh  100) 

 n           LOY, et al[34]        ZHANG, et al[35]       Present 
 1             0.032 8            0.034 8            0.031 1     
 2             0.013 9            0.014 0            0.012 2 
 3             0.022 6            0.022 7            0.021 4 
 4             0.042 2            0.042 2            0.043 7 
 5             0.068 0            0.068 1            0.069 3 
 6             0.099 7            0.099 8            0.098 4 
 7             0.137 2            0.137 3            0.138 6 
 8             0.180 8            0.180 6            0.182 1 
 9             0.229 5            0.229 6            0.229 9 
 10            0.284 4            0.284 5            0.285 0 

 
Table 4.  Natural frequency of multiple layered cylindrical 
shell without lateral pressure with C-F boundary condition. 

(L  502 mm, R 63.5 mm, h  1.63 mm) 

 m            n             SHARMA[36]           Present  
 1             2               319.5               318.462 
 1             3               769.9               768.323 
 1             4              1 465.8              1 467.78 
 1             5              2 367.1              2 366. 02 
 1             6              3 470.3              3 468.89 



 
 

ISVANDZIBAEI Mohammad Reza, et al: Frequency Analysis of Multiple Layered Cylindrical Shells       
under Lateral Pressure with Asymmetric Boundary Conditions 

 

·28· 

 
7  Results and Discussion 
 

In this paper, a multiple layered cylindrical shell is 
subjected to lateral pressure is analysed. The analyses are 
conducted by assuming lateral pressures equal 50 kPa and 
100 kPa. Altogether, three boundary conditions are 
discussed in this paper. The effects of the asymmetric 
boundary conditions on the natural frequency for multiple 
layered cylindrical shell subjected to lateral pressure as the 
function of circumferential wave numbers (n) is studied. 

Figs. 3–5 show the variation of the natural frequency of a 
multiple layered cylindrical shell for different 
circumferential wave numbers (n) with and without lateral 
pressure for the asymmetric boundary conditions. All of 
these graphs show the vibration characteristics of the 
multiple layered cylindrical shell under the effects of lateral 
pressure. For all the three boundary conditions when the 
lateral pressure is zero, the natural frequency initially 
decreases and then increases.  

 

 
Fig. 3.  Variation of the natural frequency for different lateral 

pressure under clamped-free (C-F) boundary condition 
(hR  0.002, LR  20, R  1, m  1) 

 

 
Fig. 4.  Variation of the natural frequency for different lateral 

pressure under clamped-simply supported (C-SS) boundary 
condition (hR  0.002, LR  20, R  1, m  1) 

 
Fig. 5.  Variation of the natural frequency for different external 

lateral pressure under free-simply supported (F-SS) boundary 
condition (hR  0.002, LR  20, R  1, m  1) 

 
When multiple layered cylindrical shell is subjected to 

lateral pressure, for all asymmetric boundary conditions the 
natural frequencies increase as the circumferential wave 
number n is increased. The results show the effect of lateral 
pressure on the natural frequency of a multiple layered 
cylindrical shell which causes the natural frequency to 
increase. When the value of the lateral pressure is large, the 
natural frequency is higher. The results obtained also show 
the natural frequency characteristics of a multiple layered 
cylindrical shell with and without lateral pressure are 
different for different boundary conditions. It should be 
noted that the natural frequencies of multiple layered 
cylindrical shells with and without lateral pressure for all 
the graphs are calculated for m  1. 

Figs. 6–8 show the variation of the natural frequency of a 
multiple layered cylindrical shell subjected to lateral 
pressure for different thickness to radius ratio (hR) with 
asymmetric boundary conditions. The analysis is conducted 
by assuming lateral pressure equal to 50 kPa. All of these 
graphs show the vibration behaviour of the multiple layered 
cylindrical shell under the effects of lateral pressure.  

 

 
Fig. 6.  Variation of natural frequency for various hR ratios with 

C-F boundary condition (LR  20, R  1, m  1, P  50 kPa) 
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Fig. 7.  Variation of natural frequency for various hR ratios  

with C-SS boundary condition (LR  20, R1, m  1,        
P  50 kPa) 

 

 
Fig. 8.  Variation of natural frequency for various hR ratios  

with F-SS boundary condition (LR  20, R  1, m  1,       
P  50 kPa) 

 
The results show that the natural frequency is higher for 

larger thickness to radius ratio (hR). Thus lateral pressure, 
different boundary conditions and different thickness to 
radius ratios have effect on the natural frequency of a 
multiple layered cylindrical shell. 

Tables 5–7 show the variation of the natural frequency 
against circumferential wave number for different LR 
ratios under three boundary conditions for multiple layered 
cylindrical shell with lateral pressure. In these tables the 
effect of lateral pressure and asymmetric boundary 
conditions on the natural frequency are illustrated. For all 
asymmetric conditions, the natural frequency is found to 
decrease as the length to radius ratios (LR) is increased. 
This frequency behavior shows, the effect of lateral 
pressure on natural frequency characteristics is significant 
at different LR ratios. These tables show that asymmetric 
boundary conditions have effect on the natural frequency 
characteristics of multiple layered cylindrical shell. For 
example in Table 5 with clamped-free boundary conditions, 

the natural frequency difference between n1 and 5 at 
LR20 is about 86% and at LR  70 is about 80% while 
in Table 6 with clamped-simply supported boundary 
condition, the natural frequency difference between n1 
and 5 at LR20 is 59.5% and at LR70 is 96.4%.   

 
Table 5.  Variation of the natural frequency for various LR 

ratios with C-F boundary condition 
 (hR  0.002, R  1, m  1, P  50 kPa) 

 n       LR20       LR30      LR 40       LR70 

 1        6.136         2.755         1.555          0.509 
 2        13.84         13.53         13.01          12.70 
 3        23.93         23.38         22.87          22.16 
 4        33.84         33.23         32.72          32.10 
 5        43.84         43.22         42.61          42.11 

 
Table 6.  Variation of the natural frequency for various LR 

ratios with C-SS boundary condition 
 (hR  0.002, R  1, m  1, P  50 kPa) 

 n       LR20     LR30       LR40         LR70 

 1       17.730        8.206         4.687           1.559  
 2       14.926        13.35         12.68           11.91 
 3       24.082        23.65         22.12           21.81 
 4       33.883        33.25         32.84           32.22 
 5       43.853        43.14         42.73           42.22 

 
Table 7.  Variation of the natural frequency for various LR 

ratios with F-SS boundary condition 
 (hR  0.002, R  1, m  1, P  50 kPa) 

 n      LR20       LR30       LR40        LR70 

 1       25.317        11.540         6.554          2.165  
 2       16.005        14.187         13.85          12.72 
 3       24.233        23.979         23.43          22.82 
 4       33.920        33.559         32.83          32.21 
 5       43.869        43.346         42.84          42.13 

 
8  Conclusions 
 

(1) The vibration of thin-walled multiple layered 
cylindrical shells under lateral pressure for three 
asymmetrical boundary conditions are investigated. 

(2) The type of material for multiple layered cylindrical 
shell are stainless steel and aluminum where the outer and 
inner layers are stainless steel, while the middle layer is 
assumed to be of aluminum. 

(3) The models are formulated based on Love’s shell 
theory with beam functions to describe the vibration 
problem. The governing equations are derived using energy 
functional with Ritz method. The boundary conditions 
considered are simply supported-clamped (SS-C), 
free-clamped (F-C) and simply supported-free (SS-F). 

(4) For this multiple layered cylindrical shell the 
frequency characteristics, the influence of lateral pressure 
on the natural frequency and the effect of different 
boundary conditions on the natural frequency are 
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investigated. The lateral pressure has effect on the natural 
frequency of a multiple layered cylindrical shell and 
increase the natural frequency. 

(5) The results obtained also show that the natural 
frequency characteristics for a multiple layered cylindrical 
shell with lateral pressure are different for different 
boundary conditions. 

(6) The results are very useful for engineering 
application when studying vibration of shells with lateral 
pressure and this study can be used to validate numerical 
methods. 
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