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Abstract: Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in 
precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more 
kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, 
which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a 
rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate 
solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal 
flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA 
method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach 
can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 
within 5 mm displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms. 
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1  Introduction∗ 

 
In various fields of application, such as micro- 

positioning in manufacturing equipment, and accurate 
measurement in optical systems, there is an urgent need for 
linear-motion mechanisms[1–3] to perform an ultra-high- 
precision translational motion. Conventional mechanisms 
with assembled joints and rigid links cannot meet this 
demand due to their coarse precision caused by friction, 
backlash, etc. Generally, the resultant errors are also hardly 
traded off by controllers and sensors. Compliant 
mechanisms[4–5] of miniature and monolithic work pieces, 
instead, could potentially offer an attractive alternative to 
traditional linear motion mechanisms both in terms of 
improved functionality and decreased cost.  

A flexure mechanism is a kind of precision compliant 
mechanisms depending on lumped-compliance or 
distributed-compliance characteristics of flexures among 
the mechanism. The motion of the flexure mechanisms is 
achieved via the deflection of these flexures in the 
mechanism. This kind of mechanism can be designed as a 
monolithic structure, which makes possible to achieve a 
high accuracy. Therefore, they have less wear, no backlash 
and no friction, as well as the potential to realizing large 
range of motion due to usage of large-deformation flexure 
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elements. Several linear-motion flexure mechanisms, 
including parallel-guiding flexure mechanisms, have been 
developed [6–11].  

A straight-line mechanism is a mechanism which 
provides at least a point on its component moving in a 
straight line[12]. The corresponding rigid straight-line 
mechanisms include Watt’s linkage, Chebyshev linkage, 
Roberts linkage, and Peaucellier-Lipkin linkage, etc. A 
linear-motion mechanism, however, provides translational 
motion of its component, which means there are two or 
more points on the component. By definition, the 
linear-motion mechanism is included into straight-line 
mechanisms. On the other hand, a linear-motion 
mechanism can be regarded as the combination of two or 
several straight-line mechanisms as fundamental building 
blocks. This conclusion is also available for the flexure 
mechanism family. For example, in a flexural Roberts 
straight-line mechanism as shown in Fig. 1(a), there is only 
one point P on the middle link moving in a straight line. 
Two Roberts mechanisms can compose a linear-motion 
mechanism as shown in Fig. 1(b). All points on the rigid 
body P1P2 move in a straight line. From this view point, a 
parallel linear spring stage[13–14] (a linear-motion flexure 
mechanism) is consisted of two parallel leaf-springs, which 
can be regarded as combinations of two approximate 
straight-line mechanisms. As another example, a fully 
compliant linear-motion mechanism, developed by 
HUBBARD, et al[15] and termed as “XBob”, is made up of 
eight Roberts mechanisms. In addition, several other kinds 
of straight-line mechanisms are also involved, such as 
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Scott-Russell mechanism[16], which is always used in 
compliant mechanisms to guide or amplify the output 
motion. 

 
Fig. 1.  Flexural straight-line mechanism 

 and linear-motion mechanism 
 

Meanwhile, several systematic approaches to 
synthesizing straight-line flexure mechanisms were also 
investigated[17–19]. However, most of them are based on the 
parallelogram linkage, and ignore the effects of parasitic 
motion on characteristics of the mechanism. The parasitic 
motions of a flexure mechanism are trivial enough during a 
short range of travel to be neglected in the general usages. 
But some precision applications also requiring a large range 
of motion, the parasitic motions are always annoying and 
hard to be eliminated. Traditional elimination solution is 
usually achieved by parallel connection or symmetric 
design. The main aim of this approach is trying to restrain 
the parasitic motion and consequently improve the payload 
capability and the stiffness characteristic greatly. It also 
makes the range of motion decreased increasingly. As an 
alternative of improving this trade-off, one practical way is 
to meliorate linearity of each straight-line mechanism 
module. The higher the linearity is, the smaller the 
disadvantageous effects caused by parallel connection are. 

In this paper, we try to design the straight-line 
mechanisms using the rotational flexural joints. The main 
idea stems from making full use of the parasitic motion 
generated by axis-shift (in this paper, it is called compliant 
parasitic motions) to compensate the trajectory deviation 
from a straight line (in this paper, it is called rigid parasitic 
motions) in a simple flexure revolute joint. Although the 
center-shift of a flexural joint as a disadvantageous factor is 
diminished in general cases, here we turn to effectively 
control the magnitude and direction of center-shift to get 
higher linearity and larger range of motion. It can therefore 
establish a bridge between flexural joints and compliant 
straight-line mechanisms. Furthermore, the viewpoint is 
also helpful to find some new types of straight-line flexure 
mechanisms and to further provide a convenient way to 

design and optimize them.  
It should be noted that the traditional small-deflection 

flexural joints, such as notch-type joints are not suitable in 
this approach, since the center-shift is used to counteract 
the rigid parasitic motion cannot be too small. Therefore, 
only large-deflection flexural joints are available. For this 
purpose, two large-deformation flexural joints, i.e., cross- 
axis hinge and leaf-type isosceles-trapezoidal flexural 
(LITF) pivot [20] are investigated as two cases. 

 
2  Counteraction of Rigid and Compliant 
   Parasitic Motion (Design Method) 

 
As well known, for a compliant mechanism with flexures, 

the rotational flexural joints are the basic elements. Lots of 
investigations have been involved with the analysis, 
synthesis and optimization of various flexural joints. If we 
can start to design a straight-line flexure mechanism from 
the flexural joints, then the previous works can be used, and 
new kinds of straight-line flexure mechanisms even may be 
found by flexural joints. 

In order to explain the viewpoint, firstly we classify the 
parasitic motions of a flexural joint into two categories, i.e. 
rigid parasitic motion and compliant parasitic motion. The 
parasitic motion induced by an ideal revolute joint is 
defined as the rigid parasitic motion here, while the other 
one only caused by the compliant nature is called the 
compliant parasitic motion. For example, because of their 
rotational nature, all the flexural joints can be equivalent to 
a pin joint as shown in Fig. 2. The corresponding rigid 
configuration consisted of a pivot and a link. When the 
rotational angle is small enough, the assembly can be 
considered as an approximate straight-line mechanism 
characterizing the straight-line motion near parallel to 
x-axes at point B of the link. In this case, the motion of 
point B parallel to y-axe (denoted as dr) is defined as the 
rigid parasitic motion. The dr is given by 

 
 (1 cos )r pd H θ  , (1) 

 
where Hp is the distance between point B and the pivot axes, 
θ is the rotational angle. dr can be considered as the error 
when this mechanism is used to generate a straight line.  

 

 
Fig. 2.  Rigid parasitic motion of a linkage 

 
By replacing the above rigid pivot with a flexural joint, 

such as a leaf spring, a corresponding compliant 
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mechanism is constructed as shown in Fig. 3. The pivot 
point of the leaf spring is point O. For a flexural joint, the 
center-shift leads to a kind of parasitic motion other than 
rigid parasitic motion. If the center-shift of the leaf spring is 
zero (like an ideal joint), point D located on the upper rigid 
part will rotated to the position Dr. However, because of the 
center-shift d, point D will move to the position D′. The 
center-shift can be further decomposed into x-direction and 
y-direction components. Here the y-direction component of 
the center-shift refers to the compliant parasitic motion, 
denoted as dc. The x-direction component, dx, which is 
along the direction of the line motion (assuming the 
straight-line motion is parallel to x-axes), however, is much 
smaller than the displacement of point D. Hence, we can 
ignorant the effect of dx in this case. 

 

 
Fig. 3.  Compliant parasitic motion 

 of a compliant mechanism 
 
In Fig. 2, the directions of the rigid parasitic motion dr 

and compliant parasitic motion dc are always opposite to 
each other. Their counteraction just can be used to improve 
the linearity of the movement of point D. If we use this 
compliant mechanism as a straight-line mechanism, the 
linearity of the mechanism is largely dependent on the 
choice of the magnitudes of both dr and dc. 

In conclusion, to reconstruct a flexural joint to a 
straight-line mechanism, two conditions should be satisfied. 

(1) The directions of the center shift should be opposite 
against the direction of the rigid parasitic motion. 

(2) When the rotational angle θ increase, the magnitude 
of dr should be close to dc. So they can be neutralized. 

There are many ways to find answers that can satisfy 
above two conditions. Here, we give an analytical method 
to quickly obtain an approximate solution. This method is 
based on the Taylor series expansion. 

Through Taylor series expansion, Eq. (1) can be 
expressed as 

 

 2 4 6

2 24 720
p p p

r
H H H

d θ θ θ    . (2) 

 
It can be written in the form 
 

 2 4 6
2 4 6rd a a aθ θ θ    . (3) 

 
If the center-shift component dc can also be written in the 

same form 
 

 2 4 6
2 4 6cd b b bθ θ θ    . (4) 

 
Then we can control the magnitude of a2 (by adjusting of 

Hp) and b2 (by selecting configuration and parameters of 
flexural joint) to keep 

 

 2 2a b , (5) 
 

i.e., 
 

 22pH b . (6) 

 
Therefore, the error of the line motion after the 

neutralization is 
 

 
4 4

4 4( ) ( )c rd d b a oε θ θ     . (7) 
 

Because angle θ is very small (θ1), the terms with 
higher order in Eq. (7) may be ignored.  

 
3  Design Process 

 
Based on the above viewpoint and method, a systematic 

process to design a compliant approximate straight-line 
mechanism can be explicitly described as follows. 

Step 1. Select a flexural joint with large-deflection 
capability. 

Step 2. Given a flexural joint, its center-shift should be 
calculated precisely.  

Step 3. If condition (1) can be satisfied and the 
center-shift can be expanded in the form of Eq. (4), go to 
the next step. Otherwise, the flexural joint cannot be used 
to construct a straight-line mechanism. 

Step 4. Choose Hp (the corresponding point can be called 
characteristic point), and adjust the parameters of the 
flexural joint to ensure the center-shift satisfy Eq. (6). 

Step 5. On the rigid bar attached to the mobile part of 
flexural joint, the characteristic point can move on an 
approximate straight line when the flexural joint deflects.  

Step 6. Based on the results of FEA software or other 
more precise tools, the position of the characteristic point 
can be adjusted slightly to further improve the linearity. 

The correctness of the result is largely dependent on the 
accuracy of the center-shift’s analysis. The performance of 
an approximate straight-line mechanism can be evaluate by 
the linearity λ, which can be defined as 

 
 ,x yd dλ   (8) 

 
where dx is the distance that the characteristic point moves 
along the defined straight line, dy is the offset perpendicular 
to dx. The larger the linearity λ is, the more close to 
straight-line the trajectory of the characteristic point is. 
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In the next two sections, two examples are selected to 
illustrate how the method works. And the results are 
compared with the FEA method. 

 
4  Case Study I: Cross-axis Hinge 

 
A cross-axis hinge, widely used in applications requiring 

large deflections[13], consisted of two or more leaf springs 
each attached to a fixed base at one end and the moving 
platform at the other, as shown in Fig. 4(a). Although a 
relatively large center-shift of the flexure is a shortcoming 
in its application as a rotational joint, it makes the 
cross-axis hinge available to reconstruct a straight-line 
mechanism. 

Without loss of generality, a cross-axis hinge only 
consisting of two leaf springs is investigated. The two leaf 
springs have a uniform-thickness and the same width. The 
pivot center O is assumed to be on the axis of intersection 
between the leaf springs (Fig. 4(b)). The distance between 
O and the moving platform DC is H; the distance between 
O and the fixed base AB is hf; the half angle between two 
leaf springs is φ. The rotational angle of the moving 
platform DC is θ. 

 

 
Fig. 4.  Cross-axis hinge 

 
According to Ref. [20], the center-shift of a cross-axis 

hinge outline in Fig. 4b is given by 
 

 1 sinx B Hδ θ  ,  (9) 
 

 
1 cos 1y B H

n
γδ θ

      
 ,  (10) 

 
where γ is the characteristic radius factor, and  

 

 3
1

2
tan 1 1

B
B

B
ϕ   , (11) 

 

 
2

2 2( ) (1 cos )B n nγ γ θ    ,  (12) 
 

 
2 2

3 / sinB γ ϕ , (13) 
 

 f

Hn
H h




, (14) 

 

2

2
15

2 3 18
n

n n
γ 

 
. (15) 

 
Substitute Eqs. (11)–(15) into Eq. (10), and solve the 

equation 
 

 0yδ  , (16) 
 

i.e.,  
 

 
(7 3 5) 2 0.145 9fh H H   . (17) 

 
Generally, hf satisfies Eq. (2). So the cross axis hinge can 

satisfy condition (1). 
The Taylor series expansion of Eq. (10) yields 
 

 

 

   

2
2

2 2 2 2
4

3 4

2 cos
3 3 6 12 cos

,
24 cos

y
H n

H n n n n n

γ
δ θ

γ ϕ
γ γ γ γ ϕ

θ
γ ϕ




 

        

 

 (18) 
 

thus the cross axis hinge satisfies condition (2). 
Eq. (6) is written as 
 

 
2cosp
nH Hγ

γ ϕ


 . (19) 

 
If the characteristic point P locates on the moving 

platform or outside of the hinge, then Hp should be larger H, 
i.e., 

 

 
2 1

cos
nγ

γ ϕ


 . (20) 

 
The error of the line motion defined by Eq. (7) yields 
 

 

2
4

3 4
( ) 2( 2 )cos

8 cos
n n n n

H
γ γ γ ϕ

ε θ
γ ϕ

      . (21) 

 
The displacement of the line motion is given by 
 

 sinx p x pd H Hθ δ θ   . (22) 
 
The linearity defined by Eq. (8) yields 
 

 

2 2

2 3

8 cos
2( 2 )cos

xd
n n n

γ ϕλ
ε γ γ ϕ θ

 
    

. (23) 

 
The maximum deflection of the cross-axis hinge is given by 
 

 
max (3 1) cos c

H d
Et n n

θ
ϕ




, (24) 
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where t is the thickness of the leaf-type segments, E is the 
Young’s modulus. Thus the maximum range of motion of 
the straight-line mechanism is  

 

 max maxsinpd H θ . (25) 
 
In most occasions, the symmetric shape is preferred, then 

we can select Hhf,  
 

 
1 2n  , (26) 

 

 
3 4γ  . (27) 

 
Hence, Eq. (20) reduces to 

 

2
1 1

3cos ϕ
 ,                (28) 

 
when arccos 3 3 54.735 6 ,ϕ     the inequality in Eq. 
(28) is tenable.  

Also, Eqs. (19), (21), (23) and (24) reduce to 
 

 
2

1
3cospH H

ϕ
 , (29) 

 

 

2
4

4
2cos 1
108cos

Hϕε θ
ϕ


 , (30) 

 

 

3
2

36
12

cos

λ
θ

ϕ


     

, 
(31)

 

 

 
max

4
cos c
H d

Et
θ

ϕ
 . (32) 

 
Then we can select proper parameters to obtain a large 

stroke (dmax) and a high linearity (λ). 
The following concrete example uses FEA to validate the 

approach. Selecting φ60°, H30 mm, hfH, t0.5 mm, 
b5 mm (b is the thickness of the pivot) then  

 

 40 mmpH  , (33) 
 

 
42

9
Hε θ , (34) 

 

 
3

6λ
θ

 . (35) 

 
The numerical simulation is made with a commercial 

FEA program ANSYS capable of nonlinear analysis. The 
Beam elements were used with the large displacement 
option turned on. The material assumed in these cases is 
Aluminum alloy. The Young’s modulus, E, is chosen 71 

GPa and the Poisson’s ratio is 0.33. 
The cross-axis hinge is fixed as shown in Fig. 4(b), and a 

moment is applied on the middle of movable segment. The 
movement trace of the characteristic point P is recorded. 
Fig. 5 shows the displacement of point P in y-direction 
error motion, ε, vs. the displacement in x-direction, dx. The 
analytic results are illustrated in the figures. The curves 
show that the analytical method predicts the movement of 
the characteristic point pretty well. When the displacement 
of x-direction is less than 5 mm, the error of line motion is 
less than 0.001 mm, therefore, the linearity is higher than  
5 000. When the displacement of x-direction increases, the 
linearity drops quickly.  

 

 

Fig. 5.  Displacement of point P in a cross-axis hinge 
 
In order to illustrate the efficiency of the method, the 

parallel linear spring stage is introduced to compare with 
the approximate straight-line mechanism derived from the 
cross-axis hinge, as shown in Fig. 6. The parameters of the 
parallel linear spring stage are: l60 mm, t0.5 mm, b5 
mm. In the figures, it can be seen that the movement of the 
characteristic point of the cross-axis hinge is much close to 
a straight-line than the parallel linear spring stage. When 
the displacement of x-direction is 5 mm, the linearity of the 
cross-axis hinge is 5 000, while the linearity of the parallel 
linear spring stage is only 20. 

The accuracy of result obtained by the method is relied 
on the accuracy of the calculation of center-shift. The finite 
element model can be used to optimize the line motion 
further to make the linearity higher. 
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Fig. 6.  Comparisons between the cross-axis hinge  
and parallel linear spring stage 

 
 

5  Case Study II: LITF Pivot 
 
A LITF pivot is a type of large-deflection flexural joint, 

which always can be used as a building block to construct 
new large-deflection high-precision flexural joints, such as 
Cartwheel hinge and butterfly flexural joint. Also, the 
center-shift of a single LITF pivot is relatively large; it 
therefore can be used to reconstruct an approximate 
straight-line mechanism, i.e., roberts mechanism. 

The LITF pivot consists of two leaf-type segments and 
two rigid segments (Fig. 6). The lengths of two leaf-type 
segments are identical. In the initial unloaded configuration, 
the two rigid segments are parallel to each other. Thus the 
configuration of a LITF pivot can be completely 
determined by three parameters: (1) hf denotes the distance 
between the bottom AB and the virtual pivot point O; (2) H 
denotes the distance between bottom DC and point O; (3) φ 
denotes half of the angle between two sides. 

The analysis of the LITF pivot by the PRB model is 
proposed in literatures[19–20]. If the long base of a LITF 
pivot (DC in Fig. 7) is fixed, then the short one (AB) can 
move around point O. Its y-direction component of the 
center-shift can be given by 

 

 
11 1 cosy B H

n
γδ θ

          
, (36) 

 
where B1 is obtained by Eq. (11), the characteristic radius 

factor γ can be computed by Eq. (15). Because the direction 
of hf is opposite to one of the cross-axis hinge, the value of 
n in Eq. (14) becomes 

 

 f

Hn
H h




. (37) 

 

 

Fig. 7.  LITF pivot to generate a straight-line motion 
 at point P (Roberts mechanism) 

 
Eq. (37) indicates 1n ≥ . Since γ, n and cosθ are larger 

than zero respectively, then 0yδ > , i.e., the LITF pivot can 
satisfy condition (1). 

The Taylor series expansion of Eq. (36) is 
 

 

2
2

2 2 2 2
4

3 4

( )
2 cos

( ) 3 3 (7 18 12 )cos
.

24 cos

y
H n

H n n n n n

γδ θ
γ ϕ

γ γ γ γ ϕ
θ

γ ϕ



 

       

 

(38) 
 
Thus the cross axis hinge satisfies condition (2). 
Attaching a rigid segment on the movable segment DC, 

such as bar EP in Fig. 7, the characteristic point P is located 
on the y-axis in the initial position. The distance between 
point P and center O, Hp, can be calculated by solving   
Eq. (6)  

 

 
2cosp

nH Hγ
γ ϕ


 . (39) 

 
If the characteristic point P should locate on the moving 

platform or outside of the hinge, then Hp should be larger H, 
i.e., 

 

 2 1
cos
n γ

γ ϕ


 , (40) 

i.e., 
 

 
2

2
2(9 9 1) 1

15 cos
n n

n ϕ
 

 . (41) 

 
The results will be 
 

2 4 21 6 5cos 5(5cos 12cos 4)
12

n ϕ ϕ ϕ        .  (42) 
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Therefore, condition (3) can be satisfied. 
The error of the line motion defined by Eq. (7) yields 
 

 

2 2
4

3 4
( ) 3 2 2( 2 )cos

8 cos
n n n

H
γ γ γ ϕ

ε θ
γ ϕ

      .
 
 (43) 

 
The linearity defined by Eq. (8) yields 
 

 
2

2 3
8

( )(2 4 / cos )n n n
γλ

γ γ ϕ θ


  
. (44) 

 
The maximum range of motion of the constructed 

straight-line mechanism is also given by Eqs. (24)       
and (25). 

In the next, a concrete example is designed to validate 
the equations. Selecting hf8.75 mm, H20 mm, φ30°, 
t0.5 mm, b5 mm. According to Eq. (10), Hp26.89 mm. 
The parameters setting in ANSYS is the same as those of 
section 4. The LITF pivot is placed as shown in Fig. 7, and 
a lateral force is loaded on the characteristic point P. The 
displacements of point P are recorded as shown in Fig. 8a. 
The analytic results computed by Eq. (43) are also 
illustrated in the Figure. The two curves are close to each 
other, which prove the correctness of the approach. The 
linearity of point P is shown in Fig. 8(b). When dx is lesser 
than about 3.5 mm, the linearity is larger than 1 000, which 
means that the LITF pivot can be used as an approximate 
straight-line mechanism with a high linearity within a 
relatively large stroke.  

 

 

Fig. 8.  Displacement of point P on the LITF pivot  

 
6  Conclusions 

 
(1) A new viewpoint is proposed to convert rotational 

flexural joints into straight-line flexural mechanisms in the 
view of exploiting the parasitic motions. After taking 
advantage of the previous investigations on rotational 
flexural joints, a new type of straight-line mechanisms can 
be obtained by counteracting both the rigid and compliant 
parasitic motion. Such a viewpoint establishes a bridge 
between rotational flexural joints and straight-line 
mechanisms, and lead to a new way to design, analyze or 
optimize straight-line flexure mechanisms. 

(2) An analytical design method based on the Taylor 
series expansion is deduced to quickly obtain an 
approximate solution. To illustrate and verify the proposed 
method, two kinds of flexural joints, cross-axis hinge and 
LITF pivot are used to reconstruct straight-line flexural 
mechanisms. The results verified by FEA method shows 
the calculated model is accurate. Both examples show that 
the proposed method can derive a large-deflection flexural 
joint into approximate straight-line mechanism with a high 
linearity (higher than 5 000 within 5 mm displacement). 

It should be noted that the accuracy of the result is 
largely relied on the accuracy of the calculation of 
center-shift when using the method. Thus the finite element 
model can be used to further optimize the straight-line 
mechanism. 
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