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Abstract: Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, 

low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical 

nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved 

gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor 

system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent 

mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. 

The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic 

effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the 

system, and the dynamic equation of motion is calculated by the modified Wilson-θ-based method. To analyze the unbalanced responses 

of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the 

orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the 

nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as 

the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can 

provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system. 

 

Keywords: axial-grooved gas journal bearing, differential transformation method, nonlinear, bifurcation, chaos 

 

 

 

1  Introduction 
 

Many researches have been done on the nonlinear 
characteristics of the rotor system with oil film journal 
bearing support[1–5]. Due to low frictional losses, 
cleanliness, little heat generation, and easy availability of 
gas as lubricant, the gas-lubricated bearings have been 
successfully used in engineering such as high speed 
machine tools, computer drive disks, dental drills, precision 
instruments, micro gas turbines and turbochargers etc. The 
characteristics of hydrostatic gas journal bearings[6] and 
flexure pivot hydrostatic pad gas bearing[7] were 
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investigated both theoretically and experimentally. These 
works provided better understanding and desirable 
application of hydrostatic gas bearing in engineering. Zhou, 
et al[8], analyzed the static characteristics of rigid surface 
and compliant surface aerodynamic gas thrust bearing by 
the finite difference method(FDM). The analysis results 
indicated that the maximum load-carrying capacity and 
smaller friction moment could be obtained with suitable 
values of bearing structure parameters. The dynamic 
coefficients and stability of self-acting tilting-pad journal 
bearing were studied under the assumption of linear field in 
references[9–12]. Due to nonlinearity of gas-lubricated 
bearing in nature, the linear analysis measure fails to 
provide insights into nonlinear behaviors of gas-lubricated 
bearing to some extent. BOU-SAÏD, et al[13], made a 
comparison between linear and nonlinear analysis 
approaches. Their work showed that nonlinear analysis 
measure has to be adopted as the linear approach may lead 
to incorrect result. 

Refs. [14–15] investigate nonlinear dynamic behaviors 
of a flexible rotor supported by relative short gas journal 
bearing and relative short herringbone-grooved gas journal 
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bearing. In both works, the finite difference method with 
successive over relaxation method was employed to solve 
the governing equation that is obtained from Reynolds 
equation in gas lubrication by neglecting the 
circumferential pressure distribution. In later studies, a 
hybrid method combining the finite difference method and 
differential transformation method(DTM) was used to 
implement nonlinear analysis of a rigid[16] and a flexible[17] 
rotor with spherical gas-lubricated journal bearing support. 
The evolution in the dynamic behaviors of the bearing 
systems with respect to the rotor mass and bearing number 
was systematically examined. YANG, et al[18], obtained the 
nonlinear gas film force of cylindrical gas-lubricated 
bearing by the finite difference method. By taking rotor 
mass, periodic external exciting force and aspect ratio as 
system parameters for stability analysis, two unstable 
threshold values of the system parameters were obtained. A 
Newmark-β-based local iteration method with Floquet 
theory was proposed to calculate the nonlinear responses of 
Jeffcott rotor system supported in cylindrical gas journal 
bearings and analyze the stability of periodic solution and 
its bifurcation by ZHANG, et al[19].  In Refs. [20–22], by 
considering noncircular gas-lubricated journal bearings 
with lobe as the supports of rigid rotor system and using 
finite element method and Runge-kutta method, the 
nonlinear behaviors of rigid rotor system with non-circular 
gas-lubricated journal bearings are investigated. The 
authors studied bifurcation of nonlinear responses of rigid 
rotor system supported by two-lobe and three-lobe and 
four-lobe noncircular gas-lubricated journal bearing, also 
provided insights into the effect of preload on nonlinear 
behaviors of rigid rotor system with three-lobe and 
four-lobe support. WANG, et al[23], investigated the 
nonlinear responses and bifurcation of flexible rotor 
supported by self-acting gas-lubricated bearing with two 
axial grooves by using finite difference method and Euler 
integral method. This work indicated that stability of the 
rotor system can be enhanced by imbalance mass to some 
extent. The bifurcation and nonlinear dynamics of united 
gas-lubricated bearing system were investigated using a 
hybrid numerical method combining DTM and FDM by 
WANG[24]. In his work, the changes of the dynamic 
behaviors of a single mass rotor system with two 
degrees-of-freedom with respect to the rotor mass and 
bearing number were analyzed. ERTAS, et al[25],  
experimentally demonstrated the ability of the damped gas 
bearing to safely withstand rotor vibration levels while 
subjected to severe imbalance loading. ZHANG[26] studied 
the static performance of micro gas-lubricated journal 
bearing by spectra collocation method. In his work, by 
considering the effects of length-to-diameter ratio and slip, 
the corresponding stability boundaries were analyzed. 

In the works above, nonlinear behaviors of symmetrical 
rigid or flexible rotor system without consideration of the 
moments of the inertia of the rotor were reported. Due to 
low stability of cylindrical and noncircular lobe self-acting 

gas journal bearing, the easiest way to overcome the 
shortcoming is that axial grooves are designed in the inner 
surface of the bearing along the axial direction. Because 
axial-grooved gas-lubricated journal bearing can prevent 
the pressure perturbation that may spread along the axial 
direction, this is extremely important to self-acting 
gas-lubricated bearing that clearance-to- diameter ratio of 
the bearing is usually very small. 

This paper focuses on the gas-lubricated journal bearings 
with three axial grooves and the rotor with the moments of 
the inertia of the rotor. As the gas film forces are nonlinear, 
it is difficult and time consuming to solve Reynolds 
equation in gas lubrication. In order to save computational 
cost and improve the calculating accuracy, the differential 
transformation method is employed to obtain nonlinear gas 
film pressure distribution due to its rapid convergence rate 
and minimal calculation error. For a more precise 
description of the actual rotors, the effect of gyroscopic 
moment is taken into consideration in the model of the 
rotor system. The dynamic equation of an unsymmetrical 
rotor system supported by three axial-grooved 
gas-lubricated bearing is solved by using the modified 
Wilson-θ-based method[3], and the nonlinear dynamic 
behaviors, bifurcation and chaos of the bearing-rotor 
system are investigated. The numerical methods and results 
can provide the reference for the nonlinear dynamics design 
of gas-lubricated bearing-rotor systems. 

 
2  Equation of System 

 
The schematic diagram of an unsymmetrical rotor 

supported by gas-lubricated journal bearing is shown in Fig. 1.  
 

 
Fig. 1.  Schematic diagram of an unsymmetrical rotor      

with gas-lubricated bearing support 

 
The equation of motion for an unsymmetrical rotor with 

the axial-grooved gas-lubricated journal bearing can be 
written as follows： 
 

,+ = + +mx gx w q f               (1) 

 
where m is the mass matrix, g is the gyroscopic matrix, 
x is the displacement vector, w is the weight vector, q is 
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the external excitation force vector, f is the nonlinear gas 
film force vector, those are 
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where m is the mass of the rotor, xj and yj (j=a, b) are the 

displacements of the journal centers in the x and y 

directions at bearing “a” and “b” stations, Jox and Joy are the 

equatorial moments of the inertia of the rotor, Joz is the 

polar moment of the inertia of the rotor, fxj and fyj (j=a, b) 

are the nonlinear gas film forces acting on the rotor in the x 

and y directions at bearing “a” and “b” stations. la is the 

distance between the center of the left bearing (bearing “a”) 

and the center of mass, lb is the distance between the center 

of the right bearing (bearing “b”) and the center of mass, l 

is the distance between the centers of two bearings, g is the 

acceleration of gravity, ex and ey are the mass eccentricities 

of the rotor in the x and y directions, ω is the rotating speed 

of the rotor. 
The following dimensionless variables are defined: 
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where c is the radial clearance. 
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where pa is the ambient pressure, R is the radius of the journal. 

Substitution of Eqs. (2), (3) into Eq. (1) gives the 
dimensionless dynamic equation as follows: 
 

,¢¢ ¢+ = + +MX GX W Q F          (4) 
 
Eq. (4) can be rewritten in the following form 
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               (5) 

 
3  Reynolds Equation and Nonlinear Gas 

Film Forces 
 
3.1  Dimensionless Reynolds equation 

Under the isothermal operating condition, the gas 
pressure governing equation is modeled by Reynolds 
equation as follows: 
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           (6) 
 
where aP p p= / is the dimensionless pressure distribution, 

1 cos( )H   = + -  is the dimensionless gas gap between 

journal and bushing, 2 2
x ye e c = + is the dimensionless 
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eccentricity,  is the angle which is calculated from 

negative y axis to gas film location(radian),   is the 

deviation angle (radian), 2
a(6 ) ( )p R c = ´ is the 

bearing number,   is the gas dynamic viscosity, t =  

is the dimensionless time,  is the dimensionless 

circumferential coordinate which is calculated from 
deviation line to gas location (as shown in Fig. 2) (radian), 
  is the axial coordinate. 

The pressure distribution boundary conditions of the 
axial-grooved gas-lubricated journal bearing are stated as 
follows. 

(1) Gas pressure on both ends of the bushing is equal to  
ambient pressure pa, i.e., ( , 2 ) 1,iP B R  = 1, 2, 3i =  . 

iP  is the pressure distribution of the ith pad, B is the width 
of the axial-grooved gas-lubricated journal bearing, 

2B R is the width-to-diameter ratio. 
(2) Gas pressure distribution P  is an even function for 

λ, i.e., ( , ) ( , ).P P   = -  
(3) Gas Pressure P  is continuous at λ=0, i.e., 

 

0

0
P

 =

¶
=

¶
. 

 
(4) Gas Pressure iP  obeys ( 1)( )i iP     = + - + - =  

( 1) 1,i i iP     = + + - - = i.e., 1iP =  at the leading and trailing 

edge of the ith pad, respectively. β is the location angle of 
the pad which is calculated from negative y axis to the 
leading edge of the 1st pad,  is the arc bushing angle of 
the axial-grooved gas-lubricated journal bearing, ξ is the 
groove width angle of the axial-grooved gas-lubricated 
journal bearing(as shown in Fig. 2). 

     

 

Fig. 2.  Calculation coordinates for a three axial 
grooves gas-lubricated journal bearing 

In Fig. 2, h cH= is the gas film thickness, Ob is the 
center of the axial-grooved gas-lubricated bearing, Oj is the 
journal center of the rotor. 

 
3.2  Solution of the dimensionless Reynolds equation 

The differential transformation method is presented[27] 
based on Taylor expansion and first applied to engineering 
domain. Differential transformation is usually employed to 
solve differential equations because of its rapid 
convergence rate and minimal calculation error[28–30].  

By applying differential transformation with respect to 
time into Eq. (6), the following equation can be obtained: 
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circumferential and axial directions of the gas field, l, m 
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in axial direction, Δτ is the dimensionless time step. 
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If 0n = , the following equations can be obtained: 
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  (13)        

 
where , (0)i jH is the thickness of gas film at previous one 
step, , (1)i jH  is the associated variable which can be 
obtained by the known variables, , (0)i jP is the pressure of 
gas film at previous one step, , (1)i jP  is the associated 
variable which can be obtained by Eq. (13). 

Since transformation function of the dimensionless 

thickness of gas film, i.e., 1 cosH  = + is not function 

of the axial coordinate , one obtains 0H ¶ ¶ = . If n=1, 

then m=l=0 and 1, Eq. (8) is written in the following form: 
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   (14)       

 
If n=1, the following equations can be obtained: 
 

, , ,(1) 2 (0) (1),i j i j i jP P =                (15) 
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, (1)i jΖ = , ,2 (0) (1),i j i jH H              (16) 

 

, , , ,(1) 3 (0) (0) (1).i j i j i j i jH H H =            (17) 
 

Substituting Eqs. (10)–(12) and Eqs. (15)–(17) into Eq. 
(14), the following form can be obtained: 
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            (18) 

 
where , (2)i jH is the associated variable which can be 

obtained by the known variables, , (2)i jP is the associated 

variable which can be obtained from Eq. (18). 

Substituting (0)iH , , (0)i jP  and , (1)i jH  into Eq. (13), 

one can obtain , (1)i jP , then , (2)i jP  can be obtained from 

Eq. (18). 

The transformation function ,i jP of dimensionless 

pressure distribution ,i jP  can be obtained in the following 

form: 
 

, , , ,(0) (1) (2)i j i j i j i jP P P P= + + .          (19) 

 

The dimensionless gas film forces of the ith pad in the x 

and y directions can be obtained by integrating pressure 

distribution in its gas-lubricated field: 
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The dimensionless gas film resultant forces of the three 

axial grooves gas-lubricated journal bearing are the sum of 
each pad: 
 

   

1 2 3

1 2 3

,

.

x x x x

y y y y

F F F F

F F F F

ì = + +ïïïïíïï = + +ïïî

              (21) 

 
 
4  Numerical Examples and Results 

 

This paper presents two different cases. The detailed 
parameters of three axial grooves gas-lubricated journal 
bearings are B=8.25 mm, R=5 mm, α=115º, ξ=5º, 
c=0.005 mm, µ=18 μPa • s, respectively. The parameters 
of the rotor are l1=60 mm (length of the 1st segment), 
d1=10 mm(diameter of the 1st segment), l2=30 mm, d2=14 
mm, l3=20 mm, d3=20 mm, l4=30 mm, d4 =15 mm, l5=60 
mm, d5=10 mm, respectively. 

Case 1: The rotor has the mass eccentricities of ex=0.015 mm 
and ey=0.015 mm. The calculated results are shown in 
dimensionless form. The rotating velocity of the rotor ω 
(rad/s) is chosen as the bifurcation parameter. With the 
increase of ω, the unbalanced periodic response of the 
system loses its stability and turns into quasi-periodic 
motion. As the rotating velocity of the rotor ω increases 
continually, quasi-periodic motion turns into subharmonic 
motion. This phenomenon, in which the ratio of the forced 
frequency and the response frequency becomes rational, is 
called phase locking or mode locking. A continuous 
increase of ω to 1640 rad/s results in a chaotic motion of 
the system. Fig. 3 represents the periodic-quasi periodic- 
mode locking-chaotic routine. The periodic solution is 
stable before quasi-periodic bifurcation appears. With the 
increase of the rotating velocity of the rotor ω, the periodic 
motion of the system bifurcates to quasi-periodic motion.  
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Fig. 3.  Bifurcation diagram of Xa versus ω                 

at bearing “a” station 
 
The unbalanced response of the system, i.e., gas film 

whirl(gas film whirl cause nonlinear characteristics of the 
system) is the stable periodic motion at ω1450 rads, 
which is shown in Fig. 4. The quasi-periodic orbit of the 
journal center, Poincaré map, time series and FFT spectrum  

diagram for ω1500 rads are shown in Fig. 5. The 
Poincaré map in Poincaré section is the tours attractors(Fig. 
5(b)), the FFT spectrum is discrete and the ratio of 
frequencies is irrational(Fig. 5(d)). The unbalanced subhar- 
monic response of the rotor is the period-4 motion at 
ω1630 rads, which is shown in Fig. 6. In fact, 
subharmonic motion appears in very tiny rotating velocity 
intervals. Comparing to subharmonic motion, quasi-periodic 
motion is more frequently occurred. As rotating velocity of 
the rotor reaches to ω1640 rads, the motion of the 
journal center becomes chaotic motion. The characteristics 
of chaotic motion are low power and wide band. The time 
series of chaotic motion is irregular, and the Poincaré map 
on the selected Poincaré plane presents a typical characteristic 
of strange attractors. Chaotic orbit of the journal center, 
projection of the Poincaré map of the journal center on X-Y 
plane, time series of Yb at bearing “b” station for ω1700 
rads are shown in Fig. 7.  

 

 

Fig. 4.  Periodic orbit of the journal center, projection of the Poincaré map of the journal center on X-Y plane,                 
time series of Ya and spectrum of Ya at bearing “a” station for ω1450 rads 

 

Case 2: The rotor has the mass eccentricities of   
ex0.001 mm and ey0.001 mm. The unbalanced 
response of the system is the stable periodic motion when 
the rotating velocity is low. With the increase of the 
rotating velocity of the rotor ω, the periodic motion 
bifurcates to period-doubling motion, i.e., the half-speed 

whirl of the rotor, which is considered as an obstacle in the 
application and development of gas bearing with higher 
speed. Period-doubling orbit of the journal center, 
projection of the Poincaré map of the journal center on the 
X-Y plane, time series of Yb and FFT spectrum of Yb at 
bearing “b” station for ω2 200 rads are shown in Fig. 8. 
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If the rotating velocity is higher, the system motion will become unstable. 
 

 

Fig. 5.  Quasi-periodic orbit of the journal center, projection of Poincaré map of the journal center on X-Y plane,            
time series of Ya and spectrum of Ya at bearing “a” station for ω1500 rads 

 

                      

Fig. 6.  Subharmonic Period-4 orbit of the journal center, projection of the Poincaré map of the journal center                  
on the X-Y plane, time series of Ya and FFT spectrum of Ya at bearing “a” station for ω1630 rads  
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Fig. 7.  Chaotic orbit of the journal center, projection of the Poincaré map of the journal center on X-Y plane,                     

time series of Yb at bearing “b” station for ω1700 rads 
 

         
Fig. 8.  Period-doubling orbit of the journal center, projection of the Poincaré map of the journal center on X-Y plane,        

time series of Yb and FFT spectrum of Yb at bearing “b” station for ω2 200 rads  
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5  Conclusions 

 
A three axial-grooved gas-lubricated journal bearing- 

unsymmetrical rotor system with gyroscopic effect is 
modeled. In order to reduce the computational cost and 
minimize the computational error, the gas film pressure 
distr ibution is  solved  by using the differential 
transformation method. The dynamic equation of motion of 
three axial-grooved gas-lubricated journal bearing- 
unsymmetrical rotor system is solved by using the modified 
Wilson-θ-based method. The unbalanced dynamic 
responses of the system are investigated via bifurcation 
diagram, orbit diagram, Poincaré map, time series and 
frequency spectrum diagram. There exists the phenomenon 
of stable periodic motion, critical quasi-periodic motion 
and instable chaotic motion in nonlinear rotor system with 
axial-grooved gas-lubricated journal bearing support. 
According to the proposed models and numerical results, 
the following conclusions can be drawn. 

(1) The strong nonlinearity of the gas film forces has 
significant influence on the stability of gas-lubricated 
journal bearing-rotor system. 

(2) In case 1, with the increase of ω, the unbalanced 
periodic response of the system loses its stability and turns 
into quasi-periodic motion. As ω increases continually, 
quasi-periodic motion turns into subharmonic motion. 
When ω reaches to ω1640 rads, the motion of the 
journal center becomes chaotic motion. The periodic-quasi 
periodic-mode locking-chaotic routine is shown in Fig. 3. 

(3) In case 2, with the increase of ω, the periodic motion 
bifurcates to period-doubling motion, i.e., the half-speed 
whirl of the rotor, which is considered as an obstacle in the 
application and development of gas bearing with higher 
speed. If the rotating velocity is higher, the system motion 
will become unstable. 
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