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Abstract: Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and 

appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in 

complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust 

on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and 

particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is 

presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The 

pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and 

accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a 

multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by 

roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions 

of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. 

Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost 

of decreasing 2.7%–8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for 

implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost. 
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1  Introduction 
 

With continuously growing of vehicle ownership over 
the past few decades, traffic accidents have become the 
important cause of fatalities. Traffic accidents, 
approximately, injured 20–50 million people worldwide 
each year, and caused at least 1.2 million yearly deaths[1]. 
Therefore, in recent years, vision-based driver assistant 
system has become an active research area[2].  

It is widely recognized that robust detection and tracking 
of adjacent vehicles in highway and urban traffic merely 
using a monocular camera system remains a challenging 
task. The main difficulties are as follows: firstly, with the 
camera installed on a mobile vehicle, the vehicle detection 
algorithm confronts large variations of environment with 
ever-changing background and illumination[3]. Secondly, 
there are large variations of vehicles in shape, color and 
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appearance, which are too large to be modeled[4]. Thirdly, 
the ego vehicle and other vehicles on the road are generally 
in motion, and therefore, the sizes and locations of vehicles 
in the image space are diverse[4]. 

Various vehicle detection approaches have been reported 
in literatures. The statistical approach, such as principal 
component analysis(PCA) and independent component 
analysis(ICA) were used[5]. This method showed high 
accuracy but the efficiency is low. A symmetric property 
and shape-based models were adopted[6], which is usually 
affected by brightness variation. Support-vector-machine 
(SVM) approach was used[7], where Sun et al. built multiple 
detectors using Gabor filters, with the conclusions that the 
method could achieve robust detection at the cost of high 
computing power. To implement on-board vehicle 
recognition, the following methods were widely used: 1) 
knowledge-based method; 2) feature matching method; 3) 
sensor fusion method. The knowledge-based method 
utilizes characteristics to recognize objects and assumes the 
potential vehicle locations. Typical characteristic 
information is classified into following categories: 
shadows[8], corners[9], edges[10], headlights[11], textures[12] 

and symmetry[6]. This method occasionally suffers from 
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unsteadiness due to the changing backgrounds[4]. Feature 
matching approach mainly involves extraction and 
classification of features, and training of classifiers using a 
set of positive and negative images. The most frequently 
used features are as follows: SIFT[13], PCA[14], SURF[15], 
HAAR-LIKE[16] and HOG[17]. Classifiers commonly used 
in feature matching are NN[18], SVM[13] and AdaBoost[19].  

Although there have been numerous literatures on 
vehicle detection and tracking or combination of them, few 
research used simultaneous detection and tracking method 
to build an on-board multi-vehicle recognition system. In 
this paper, a novel framework for simultaneous detection 
and tracking of vehicles is introduced, which has the 
advantages of global optimum and robustness by fusion of 
information from detection and tracking modules.  

 
2  Framework of Simultaneous Multi-vehicle 

Detection and Tracking 
 

It is well known that, vehicle detection method, which 
essentially searches for the global-optimal-solution in the 
whole image, may lead to heavy computation load. Global 
searching can obtain the desired results, but occasionally 
targets may be missed, and false alarms may occur. 
Whereas, vehicle tracking method commits themselves to 
searching for the local-optimal-solution within the expected 
image area, with the information of priori-knowledge and 
spatial-temporal continuity. Unlike conventional approach 
of sequential structure by isolating these two stages, this 
paper proposes a simultaneous detection and tracking 
approach, which takes the advantages of both the global 
optimal solution of detection module and robustness of 
tracking module, as shown in Fig. 1. 

 

 
Fig. 1.  Simultaneous multi-vehicle detection and tracking 

framework in time scale 
 

2.1  Framework description in time scale 
To achieve robustness and high accuracy, both the spatial 

feature and temporal information are integrated 
simultaneously to construct a vehicle recognition system. 
However, as more modules are employed, the 
computational load increases significantly. Then, as 
presented in Fig. 1, a tradeoff framework is presented for 
rapid and robust vehicle detection and tracking.  

The detection module is responsible for entry-exit state 
management and the tracking module is in charge of 

accurately and efficiently tracking of targets, which are 
confirmed in the last detection cycles.  

 
2.2  Modules description 

According to the aforementioned strategy, vehicle 
recognition system is composed of three basic modules: 
detection module, tracking module and state management 
module. In the schematic diagram, as shown in Fig. 2, the 
basic modules and procedures at different operation level 
are demonstrated.  

 

 
Fig. 2.  Schematic diagram of the vehicle recognition system 

 
To search for multiple vehicles within a single video 

frame, a layered machine learning approach is proposed. 
The detector employs DAB learning method trained by 
LBP features, in the early layer, for rapid hypotheses 
generation. During the coarse-search process, candidates 
are obtained, which include not only vehicle objectives but 
also falsealarm. Therefore, in later layer, the detector 
trained by RAB with Haar-like features is introduced for 
verification. During fine-search step, each hypothesis is 
verified once again with the robust boosted cascades 
classifier. 

As is well known that, vehicles just appear at the 
vanishing edge of pavement area since they always run on 
the surface of pavement. Considering this fact, a pavement 
segmentation method is introduced in vehicle detection 
stage, which separates the road from the non-road region to 
generate potential vehicle positions.  

In tracking module, a particle filter is adopted to track 
vehicles in successive video frames. Unlike normally 
particle filter focusing on single target distribution, this 
paper concentrates on multi-vehicle tracking by introducing 
the target states of the tracked vehicles.  

 
3  Pavement Segmentation 

 
In the segmentation process, small fragments of the road 

region are extracted. Then the extracted fragment samples 
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are used as seeds growing based on flood fill algorithm. 
The pavement region will be separated as a result of the 
growing process. 

 
3.1  Extraction of characteristic window  

Small fragment windows, as the seeds, are obtained by 
characteristic similarity method. Seeds’ extraction process 
is divided into four steps. 

Firstly, three candidate windows with size of 10´10 
pixels are randomly extracted at the lower edge of image, 
W1, W2, W3, as shown in Fig. 3. Secondly, candidate 
windows move along the direction of x-axis continuously, 
and the grayscale variance of each window is calculated at 
each moving step. The search process stops until all the 
variances are less than the threshold 2

th . If search fails, a 
translation along the positive direction of y-axis is taken, 
and then search continues until succeed. During the 
translation process, window collision is allowed while 
overlaying is forbidden. 

 

 
Fig. 3.  Schematic diagram of the pavement segmentation  

 
The variance of candidate windows is defined by[22]: 
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where ix is the grayscale of each pixel within the candidate 
window, N is the number of pixels, and 2 is the variance of 
the candidate window. 

Finally, when all the grayscale variances of candidate 
windows satisfy the predefined threshold, the average 
grayscale of each window is then calculated. The candidate 
window with the smallest variance is singled out and 
verified whether it is less than the grayscale threshold, 
based on the following equation: 

 

1 2 3 thmin( , , ) ,wx x x x x= ≤             (2) 

 

where wx is the average grayscale of candidate window 
with the smallest variance, thx  is the grayscale threshold, 

1 2 3, ,x x x is the candidates. If the equation is satisfied, 
candidate window with the smallest variance is adopted as 
the characteristic window of pavement, and the parameter 

2
( ), ,w w wx H of reference sample is obtained, wH is the 
histogram of the reference sample window. If the equation 
does not meet, the extraction process returns to the first 
step and search characteristic windows again. 

 
3.2  Pavement filling 

A set of seeds are generated by means of characteristic 
similarity method. Fragment samples are picked up 
randomly and characteristic parameters are compared to the 
reference sample. Fragment windows with similar 
characteristics are selected as seeds, otherwise discarded.  

Feature similarity coefficient(FSC) is defined by  
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where N is the quantity of histogram bin, i and j are the 

indexes of bin, wH is the histogram of reference sample, 

sH is the histogram of the candidate.  

In growing process, the seeds progressively merge the 
adjacent fragments whose FSC is greater than the 
merge-threshold. As a consequence of absorbing the 
adjacent pixels, pavement regions are marked by a 
specified color, and then the color of pavement area is 
changed to the specified color. The specified color should 
be uncommonly used in actual roads(red is used here as 
shown in Fig. 3). Growing process continues until adjacent 
fragment windows with similar characteristics cannot be 
found. 

 
4  Vehicle Detection Method 

 
Contrary to traditional approaches to guess the most 

suitable vehicle features in advance, the layered vehicle 
detectors based on boosted cascade classifiers are 
employed.  

 
4.1  The earlier candidate generation classifier 

In rapid candidate generation stage, LBP is used as the 
feature operator. The feature identification has been used 
successfully in face recognition, vehicle detection and other 
object identification area[20–21].   

A 9´9-neighborhood scaled LBP operator was 
employed for vehicle feature description. The 
comparison-operator for single pixels is calculated using 
the average grayscale of sub-regions. By this operation, a 
9´9-neighbourhood operator is converted to 
3´3-neighbourhood one, as described in Fig. 4. Taking the 
grayscale of center pixel as the threshold, the operator is 
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converted to a binary array. Using the scaled LBP operator, 
the entire image is represented by a binary string. The 
histogram of binary string is calculated as a texture 
descriptor, which is defined by equation: 

,

{ ( , ) }, 0, , 1,i l
x y

H I f x y i i n= = = -å         (4) 

where H is the value of histogram, n is the number of labels, 
( , )lf x y  is the labeled image and { }I   is defined as 

follows 
1, is true,

{ }
0, is false.

I





ìïï= íïïî
                   (5) 

The histogram of binary string contains local 
micro-pattern features, such as edges, texture, spots and flat 
areas.  

LBP detector provides a feature extraction method to 
train classifiers. A DAB learning method is employed, as 
described in Table 1, to construct the early vehicle 
detection classifier.  

 
Table 1.  Discrete AdaBoost(DAB) 

Input: sequence of N labeled examples { }1 1( , ), , ( , )N Nx y x y  
      distribution D over N examples 
      weak learning algorithm WeakLearn 
      integer T specifying number of iterations 
Initialize: the weight vector: 1 ( )iw D i=  for i = 1, , N. 
Do for t=1 to T 
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Most of the redundant information is removed and the 

most effective features are reserved, by the DAB training 
algorithm, to construct the cascade weak classifiers for 
rapid vehicle detection. In order to reduce the missing rate 
and improve the efficiency, in the stage of candidate 
generation, weak classifiers are restricted to 4 layers, as 
descript in Fig. 4. Approximately, 20 candidates remain 
after the early procedure. 

 
4.2  The later candidate verification classifier 

In the previous stage, positions of candidate vehicles are 
hypothesized. A further verification is needed to eliminate 
negatives in candidates. Then, two kinds of Haar-like 
features(non-rotated and rotated Haar-like feature) are used 
for candidate verification.  

Non-rotated features values are calculated by the 
following function: 

1, ,

( ) ( ),m m
m N

f I Sum A
=

= å


             (6) 

 
and the rotated features values are calculated by: 

 

1, ,

( ) ( ),m m
m N

f I RSum A
=

= å


            (7) 

 

where N is the quantity of Haar-like features of the image I, 
m is the index, Am is a rectangular area, and m is either 0 
for black rectangles or 1 for white rectangles， R is the 
rotation coefficient. 

 

 

Fig. 4.  Classifier of rapid detection trained by DAB     
learning method of LBP features  

  
Training samples used to construct the robust classifier 

are images with the size of 32´32 pixels containing large 
amount of Haar-like features in grayscale space. However, 
only a few of these are accounting for the vehicle 
appearances. To this end, it seems proper that, RAB 
learning method is employed to pick out the efficient 
features for candidate verification process.  

RAB training method, shown in Table 2, is used to 
construct the robust classifier. An appealing characteristic 
of this method is that, by using an integral image, the 
classifier can work both fast and efficiently during object 
detection procedure.  

 
Table 2.  Real AdaBoost(RAB) 

Input: 1 1( , ), , ( , )M Mx y x y  
where { }, 1, 1i ix X y YÎ Î = - +  
Initialize: weight vector: ( ) 1 /D i m=   
Do for t=1 to T 

1. Train base learner using distribution tD  
2.  Get base classifier :th X R  
3.  Choose t RÎ  
4.  Update 

1

( ) exp( ( ))
( ) t t i t i

t

t

D i y h x
D i

Z+

-
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Where tZ is a normalization factor 
Outputs the final classifier 

1
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T

t t
t
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The training process eventually selects nf ( fn N ) 

subset features from feature space, each of which is 
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associated with a weak classifier. When combined properly, 
weak classifiers become a strong classifier and can classify 
the vehicles effectively. The final classifier is expressed as: 

 

 
1

( ) ( ),
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i i
i

R F r f
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=å                (8) 

 
where ( )R F is the final strong classifier, ( )i ir f is a decision 
function on classifier if , fn is the number of weak classifier, 
it returns a positive ( iv+ ) or negative ( iv- ) value according 
to classification decision, as follows:  
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To verify candidates, a strong classifier was constructed 

using a set of weak classifiers with increasing difficulty. 
Following this strategy, a cascade of classifiers of 8 layers 
has been developed, as shown in Fig. 5. 

 

 

Fig. 5.  Verification classifier trained by Haar-like features   
and RAB 

 

4.3  Implementation 
Firstly, pavement area information is used to estimate the 

potential vehicles’ positions. Then, a layered machine 
learning classifier is applied to detect vehicle positions, as 
shown in Fig. 6. Through rapid candidate generation and 
verification, the stable detection results will be obtained. 

 

 

Fig. 6.  Sketches details of vehicle detection module 

 
5  Multi-vehicle Tracking Method 

 
Particle filter is employed in tracking module to prevent 

performance degradation caused by detection errors. The 
original particle filter is designed to track only one object at 
each time, thus cannot handle the ever-changing number of 
objects in tracking procedure. To reach this goal, a 
multi-vehicle tracking method with target state 
management method is introduced.  

 
5.1  Target state management 

Maintaining tracking of multiple vehicles is carried out 
by a state management of the tracked targets. In this 
implementation, there are four states of object: falsealarm, 
confirmed, undetected and exit, which are managed by 
credibility counter driven by detection module, as shown in 
Fig. 7. 

 

 

Fig. 7.  Credibility counter of target state management 

 
Particle filter algorithm is applied to estimate the 

probability distribution of the vehicles with confirmed-state 
and undetected-state. Meanwhile, vehicle detection module 
inspects the entire pavement area periodically to search 
vehicles, and then drives the credibility counter.  

When a vehicle appears in the field of view, firstly, it is 
recognized as falsealarm-state, because of the probability of 
erroneous identification. In the following process, detection 
module detects it continuously and adjusts the 
corresponding credibility counter in each heartbeat cycle. 
Specifically, in the adjustment period, the decrease step is 
given by a fixed value vD , while the increase step is 
determined by the confidence deduced from detection and 
tracking fusion results, as given by equation: 

 
( ) ( ) ( ) ( )( ) ( ) ( ),i i i i
t t t tS D x P x F x=           (10) 

 

where tx is the vehicle state at time t and i is the index of 
tracked vehicles in the current frame. ( ) ( )i

tD x  is the 
vehicle confidence obtained from detection module, 

( ) ( )i
tP x is the probability density drawn from tracking 

module and ( ) ( )i
tF x is the consistency between detection 

result and tracking result.  
Fig. 7 shows the switch process of state management. 

When a vehicle is in falsealarm-state, the tracking process 
does not work until the credibility counter is greater than 
the threshold of confirmed-state. The credibility counter 
keeps increasing until it reaches the maximum limit. 



 
 

WANG Ke, et al: Simultaneous Multi-vehicle Detection and Tracking Framework with Pavement 
Constraints Based on Machine Learning and Particle Filter Algorithm 

 

·1174· 

However, if the previous object cannot be found in the 
current heartbeat detection cycle, the corresponding 
credibility counter will be reduced by vD  and switch to 
undetected-state. Afterwards, vehicle in undetected-state 
will be tracked until the credibility counter is less than the 
declining ceiling.  

 
5.2  Algorithm for vehicle individual tracking 

A particle filter is introduced for tracking of single 
vehicle, to solve the general problems of non-linear and 
non-Gaussian estimation under Markov assumptions. In the 
proposed approach, color based distribution in HSV space 
is used as object model to calculate the likelihood. A 
randomly generated particle sets with scaling size are 
employed to represent the probability density of vehicle 
individuals. The method consists of the following steps. 

(1) Initialization of particles 
The particle of vehicle at time t is constructed by a 

rectangular bounding box defined by the dynamic model

, , , ,[ , , ].m m m m
t i t i t i t ix p s h=  Where {1, , }m MÎ   and M is the 

quantity of vehicles in the tracking queue, i is the index of 
the tracked object, ,

n
t ip determines the center of target 

position in the image plane, ,
n
t is is the scaling coefficient 

and ,
n
t ih is color based histogram calculated in HSV color 

space.  
In initialization stage, a random particle set of 

hypotheses with the quantity of N is generated. Although 
more promising results can be obtained if the number N is 
big enough, the computation load would be unacceptable. 
In a framework of simultaneous detection and tracking, the 
quantity of particles can be small, since the references are 
periodically calibrated by the latest results.  

(2) Particle transition 
Vehicles are assumed to drive on a planar ground. Thus, 

the range of vehicles in image area can be estimated and 
restricted by the transition model. A second-order 
autoregressive dynamics model is adopted, which uses 
historical data to predict the current status[26]. The transition 
function is given as follows: 

 

1 1 2 2 (0, ),t t tX A X A X B N - -= + +         (11) 

 
where , , ,{ , , }n n n

t i t i t iX x y s= denotes the particle status of 
image position and scaling, ,

n
t ix is coordinate of x-axis, 

,
n
t iy is coordinate of y-axis, ,

n
t is is particle scaling factor. 

1 2{ , , }A A B  is the Autoregressive coefficients, and taking 

1 2.0,A = 2 1.0,A =- 1.0.B = (0, )N  denotes the 
Gaussian distribution with zero mean and covariance 

2 2 2diag( , , ).x y s   = Here, 2 1.0,x = 2 0.5,y = and 
2 0.01.s =  
(3) Color based likelihood calculation  
Color based histogram distribution in HSV color space is 

used as object models, since they can achieve robustness 
against rotation, scaling, illumination changing and partial 
occlusion. To model colors, a cumulative normalized 
histogram with three independent channels of hue, 

saturation and value is used.  
The histograms are typically represented in HSV space 

by H S VN N N´ + ( 9H S VN N N= = = ) bins. The 
resultant histogram is composed of 90BN =  bins. Pixels 
with saturation and value greater than th

SV  and th
VV  fill 

the first H SN N´ bins. Other pixels with colorless feature 
fill the last VN value-only bins. Where, th 0.18,SV =  

th 0.25.VV =  Color histogram is expressed by: 
 

1

( ; ) ( ), 1, , , ( ; ) 1,
N

t t t
n

q n x q x n N q n x
=

= = =å    (12) 

 

where N is the number of histogram bin, q is the 
normalized histogram.  

In order to calculate the likelihood of particles, reference 
color histogram is also needed. The HSV color based 
histogram of the reference vehicle is given by: 

 

0 0
1

( ; ) , 1, , , ( ; ) 1,
N

n

q n x q n N q n x* * *

=

= = =å    (13) 

 
where q* is calculated and calibrated in each heartbeat 
detection cycle using image histogram solving method. The 
reference image tR  is derived from detection and tracking 
modules, as given by: 

 

10.4 0.4 0.2 ,t t t tR D T R -= + +          (14) 

 
where tD is the detection result, tT is the tracking result, 
and 1tR - is historical information of last heartbeat cycle. 

Then, Bhattacharyya coefficient is used to calculate the 
likelihood between two histograms 

 

2
0 0

1

( , ) 1 ( ; ) ( ; ),
BN

t t
n

d x x q n x q n x*

=

= - *å      (15) 

 

where tx denotes the image of particles, 0x denotes the 
reference image. The weight of the particles is calculated 
using color based histogram likelihood, as is described by 
function: 

 
2

0( | ) exp( ( , )),¥ -t t tp z x d x x         (16) 

 

where  is the distance coefficient, and is set to 
experimental value of 18.  

The more similarity between the tracked vehicle and 
reference, the greater the weight could be. In this manner, 
the promising tracked object with best posterior probability 
density of particle is obtained. 

(4) Re-sampling method 
The basic idea of resampling is to remove particles with 

small weight and reproduce great weight ones. Firstly, 
particles are sorted according to the weights, and then a 
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new set of particles are re-sampled according to the rule of 
discrete probability distribution ( )j i i

k k kP x x w= = . Where 

0, ,{ }i
k i Nx =  and 0, ,{ }i

k i Nx =  are the particle sequences 
before and after re-sampling respectively. The newly 
generated particles are given the equal initialized weights. 
To maintain the diversity of particles, Gaussian noise is 
added to the re-sampling process.  

 
6  Experimental Evaluation 

 

In this section, Experiments are conducted to evaluate 
the accuracy and efficiency of the proposed vehicle 
identification system. 

 

6.1  Test environment setting 
Real road videos were captured with resolution of 

640´480 pixels and frame rate of 25 frames per second, in 
different traffic environments such as expressways, urban 
roads, suburban roads and rural roads. The image size was 
further downsized to 320´240 pixels to reduce 
computation load. The proposed method was evaluated on 
a windows platform with Intel Pentium(R) dual-core CPU 
(E5200 frequency 2.5 GHz) and 2 Gb RAM installed. 

 

6.2  Video database  
The recorded video databases are mainly composed of 

two parts: training sets and test sets. The training sets 
consist of positive subsets and negative subsets. The 
positive training subsets contain 1276 distinct static images 
with image size of 32´32 pixels, and include mainly 
rear-facing samples and a few side-view samples, as shown 
in Fig. 8. The negative training subsets contain 2234 
images of background scene without any vehicles in the 
image, as shown in Fig. 9. 
 

 
Fig. 8.  Examples of positive training subsets 

 

 
Fig. 9.  Examples of negative training subsets 

 
The presented method was evaluated by using test sets of 

eight video shots lasting 50 min and 75 082 frames in total. 

The test sets were captured both on the urban road and 
highway, and the weather conditions are both cloudy and 
sunny. More than 150 different vehicles were available in 
test sets. 

 
6.3  Parameter setting 

In training stage, each positive image was scaled to the 
size of 32´32 pixels, which were used as the appearance 
based training features for LBP feature and Haar-like 
feature learning. In negative samples, image size was 
arbitrary.  

In detection stage, the clustering threshold of similarity 
measurement was set to 0.8 for the appearance based 
feature. And the centroid-distance between two clustered 
vehicle positions was less than 15 pixels.  

In tracking stage, 50 particles were used for each tracked 
vehicle, and the rectangular size of each particle was  
between 18´15 pixels and 200´180 pixels. 

  
6.4  Performance  

Real video test sequences were captured from a CMOS 
front-mounted camera. Proposed system achieves 91.2% 
detection rate on a fine day with proper illumination and 
clear vehicle appearance. However, the recognition rate 
declines to 85%–90% on a cloudy day due to the smudges 
and dirt on the windshield.  

In the heartbeat detection cycle, as shown in Fig. 10, 
vehicle detection and tracking methods were implemented 
in the same video frame. At this moment, with the result 
fusion of two modules, more credible estimation of vehicle 
position was obtained.  

 

 
Fig. 10.  Simultaneous vehicle detection and tracking    

process for the same image frame 

 
A complementary operation between detection module 

and tracking module is demonstrated in Fig. 11. The image 
in the left shows that two vehicles have been successfully 
detected, and one was missed due to far distance and 
smudges on the windshield on a cloudy day. However, at 
the same time, the missed vehicle was still tracked by a 
particle tracker despite being missed in detection module. 

Fig. 12 shows the performance of the presented system at 
rush hour in the urban traffic environment under different 
weather condition. With good illumination, all of the front 
vehicles were detected as shown in Fig. 12(a). However, on 
a cloudy day, three vehicles were detected and two were 
missed due to long-distance and poor illumination. 
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Fig. 11.  A complementary operation between detection  

module and tracking module 

 

 
Fig. 12.  System performance under different weather conditions 

 

In these experiments, the presented system exhibited 
stable adaptability to variety of vehicles, as shown in Fig. 13. 

 

 
Fig. 13.  Varieties of vehicles tested by the proposed system 

 
The proposed framework has made full use of the 

information from different color space, as shown in Table 3, 
thus improved the performance of the system even if the 
target vehicles had different color, size, velocity and types.  

 
Table 3.  Analysis of the average processing time 

Step Color space 
Average time 

t/ms 

Segmentation of pavement area RGB 2.04  

Vehicle detection module Gray-Level 25.41 

Vehicle tracking module HSV 22.55 

Total – 47.98 

6.5  Comparative analysis  
The performance criteria include precision, robustness 

and efficiency. Precision and robustness can be quantified 
by the true positive rate and false detection rata. 

The true positive rate (TPR) is the percentage of vehicles 
in camera’s view that are detected correctly. It is defined as 
follows: 

 

   
true detected vehicles

.
total number of vehicles

TPR =         (17) 

 
The false detection rate (FDR) is the proportion of false 

detected vehicles to totally detected vehicles. FDR is a 
measure of precision and robustness. FDR is defined as 
follows: 

 
false positives

.
true detected vehicles+false positives

FDR =    (18) 

 
The proposed algorithms were compared with two 

typically algorithms as shown in Table 4 using the same 
test database. As a feature matching method, the active 
learning based vehicle recognition and tracking system[1] 
(ALVeRT) is constructed using query and archiving 
interface with conventional supervised learning method for 
active learning. While maximum posteriori estimation 
based vehicle detection method[22](Map-based-method), as 
a knowledge-based method, employs shadows, textures, 
symmetry and other characteristic information to recognize 
vehicle objects. 

 
Table 4.  Performance comparison study  

Algorithm
Testing 
database

TPR 
(original)

FDR 
(original) 

TPR 
(this paper)

FDR 
(this paper)

ALVeRT[1]

LISA-Q
FrontFOV

Urban 
99.8% 8.5% 91.2% 2.6% 

Map-based-
method[22] 

PETS 
2001 

95.4% 5.2% 92.7% 3.1% 

 
As shown in Table 4, compared to the other two methods, 

TPR of the proposed method drops by about 2.7%–8.6%. 
Using the active learning approach, the ALVeRT system 
achieves higher detection rate, but it brings cumulative 
error to classifiers and results in high FDR. The map-based 
method occasionally suffers from unsteadiness due to 
dynamic backgrounds, which contribute a high FDR. 

The FDR of the proposed system is reduced nearly by 
half compared to the other two systems. The proposed 
method is more immune to false positives because the 
background noise is reduced by pavement segmentation, 
and moreover, candidates’ generation and verification 
mechanism with a layered machine learning method can 
ensure reliable detection. 
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7  Conclusions 

 

A simultaneous multi-vehicle detection and tracking 
framework using monocular vision technology was 
proposed to improve efficiency, robustness and accuracy of   
the on-road vehicle recognition system. 

(1) Benefiting from the proposed pavement segmentation 
method, the unnecessary process time is eliminated, and 
background noise is reduced.  

(2) A novel layered vehicle detection method based on 
AdaBoost learning algorithm is proposed that combines 
coarse-search and fine-search together to obtain the optimal 
target in the heartbeat detection cycle. At the same time, the 
detector also calibrates the tracking reference for better 
tracking performance. 

(3) An object tracking algorithm based on target state 
management and particle filter is proposed to successfully 
maintain multiple vehicles tracking and enter-exit 
management. 
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