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Abstract: As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering 

design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization 

problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently 

solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed 

by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the 

problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and 

engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and 

IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The 

comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence 

capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm 

optimization case using FEA simulation, SEO-SRBF further reduces 21% of the material volume compared with the solution from 

static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization 

problems. 
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1  Introduction 
 

Essentially, most optimizations for modern engineering 
designs are challenging tasks since very limited 
information on simulation models(e.g., continuity, differ- 
rentiability, convexity, etc.) is known a priori. Due to the 
lack of transparency, such simulation models are often 
referred to as black-box functions. Furthermore, complex 
systems consisting of several internally coupled subsystems 
frequently appear in modern engineering design. For 
example, in aircraft design process, aerodynamic, structure, 
propulsion, control, stealth, and some other disciplines need 
to be considered. Multidisciplinary design optimization 
(MDO) has been frequently employed to improve the 
design quality and reduce the probability of redesign. To 
enhance the accuracy and reliability of the design results, 
high fidelity analysis and simulation models have been 
widely applied in today’s engineering design. For instance, 

                                                                 
* Corresponding author. E-mail: bitryu@gmail.com  
Supported by National Natural Science Foundation of China(Grant Nos. 

51105040, 11372036), Aeronautical Science Foundation of China(Grant 
Nos. 2011ZA72003, 2009ZA72002), Excellent Young Scholars Research 
Fund of Beijing Institute of Technology(Grant No. 2010Y0102), and 
Foundation Research Fund of Beijing Institute of Technology(Grant No. 
20130142008) 
© Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014 

the aerodynamic and structure characteristics are usually 
evaluated by using computational fluid dynamics(CFD) 
models and finite element analysis(FEA) models, 
respectively. Although improvement of analysis accuracy 
can be achieved by using such expensive models, the high 
fidelity analysis models are computationally expensive, and 
the elapsed time required for simulation is dramatically 
increased. It generally takes several or even more than tens 
of hours to run a CFD aerodynamic simulation. Because of 
the iterative behavior of optimization process, analysis 
models have to be invoked more than thousands of times by 
using traditional global optimization algorithms, such as 
generic algorithm(GA)[1] and simulated annealing(SA)[2]. In 
addition, for each system-level analysis of coupled complex 
problems, all the analysis models of subsystems need to be 
repeatedly performed to meet interdisciplinary compatibility. 
Thus, it is rather time-consuming to perform modern 
engineering design optimizations by directly using the 
conventional global optimization algorithms and 
computationally expensive analysis models. For the 
purpose of alleviating the computational burden, surrogate- 
based design and optimization(SBDO)[3] has been developed. 

Through replacing computation-intensive models with 
surrogates, we can significantly reduce the computation 
cost for reaching the true global optimum. So far, various 
surrogate approaches have been developed, such as 
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Response Surface Method (RSM), Radial Basis Function 
(RBF)[4–5], Kriging(KRG)[6], and so on. Those surrogate 
technologies have been reviewed by WANG and SHAN[3], 
and YOUNIS and DONG[7]. JIN, et al[8], systematically 
compared the performance of RSM, RBF, KRG and 
Multivariate Adaptive Regression Splines(MARS) under 
different criteria including prediction accuracy, 
computational cost and robustness, and pointed out that 
RBF shows the good overall performance. RBF surrogate 
performs pretty efficiently in practice due to the easily 
adjustable smoothness and powerful convergence 
properties[7]. GUTMANN[9] summarized most kinds of 
RBF and proposed an adaptive RBF method for global 
optimization using P-algorithm. Furthermore, recently RBF 
surrogate have been applied in practical engineering 
designs and optimizations[10–11]. 

Because it is difficult to build an accurate static surrogate 
with small scale samples in large design space, especially 
for high dimensional functions with high nonlinear 
behavior, static surrogate-based optimization methods 
requires a large amount of samples to guarantee the global 
approximation accuracy and avoid missing the true global 
optimum[12–13]. To further improve the optimization 
efficiency, adaptive or dynamic surrogate-based 
optimization methods have drawn more and more attention. 
In recent years, many studies on adaptive surrogate-based 
optimization have been reported. A brief summary is 
presented as follows. JONES, et al[14], proposed an efficient 
global optimization(EGO) method that starts with a small 
scale of samples and positions the additional samples 
through maximizing the value of expected improvement. 
During the process, KRG surrogate is reconstructed by 
using the increasing samples until the expected 
improvement  becomes small enough. Several infill 
sampling criteria were discussed for EGO[15]. 
ALEXANDROV, et al[16], developed a surrogate 
management framework using trust region method to 
update surrogates according to predicted improvement of 
objective function during the optimization process. In 
variable fidelity optimization, GANO, et al[17], proposed a 
surrogate updating management scheme using trust region 
ratio(TR-MUMS) that compares the approximation to the 
true model to refine KRG scaling model. HAFTKA[18] 
introduced variable complexity modeling(VCM) method 
and applied it to optimize a high-speed civil transport. 
Adaptive response surface method(ARSM) using cutting 
plane approach for design space reduction has first 
proposed by WANG, et al[19]. An improved ARSM[20] using 
inherited LHD sampling method is then developed to 
reduce the number of expensive function evaluations. 
Based on ARSM, WONG and WANG[21] presented a DFP 
methodology to minimize production costs of industry 
products. PANAYI, et al[22], developed pseudo-ASRM 
using iteratively weighted least-squares to enhance the 
approximation accuracy, which was applied to optimize 
piston skirt profiles. WANG and SIMPSON[23] developed 

fuzzy c-mean clustering to reduce the design space, and in 
the reduced design space sequential samples were increased 
to update KRG surrogate until convergence. WANG, et 
al[24], proposed mode pursuing sampling(MPS) method to 
discriminatively produce more samples towards the global 
optimum. Furthermore, a discrete variable MPS(D-MPS)[25] 
using a double-sphere strategy to balance exploration and 
exploitation samples was developed for discrete variable 
optimization problems. SI-MO developed by MULLER, et 
al[26], iteratively evaluates the computationally expensive 
simulation at four chosen points from the groups to update 
RBF surrogate. To improve the accuracy of  RBF, 
KITAYANMA, et al[27], studied the width factor of basis 
functions and proposed a sequential approximate 
optimization(SAO) procedure. CONN and LE[28] applied 
quadratic models with mesh adaptive direct search for 
constrained black box optimization.  

Domestic researchers have also conducted some studies 
in SBDO field. LONG, et al[29] proposed an enhance 
adaptive response surface method(EARSM) using 
significant design space(SDS) method to identify the 
design space of interest, which probably contains the global 
optimum. And then EARSM is applied to solve 
aero-structure coupled optimization of a high aspect ratio 
wing[30]. ZHU, et al[31], developed a new global 
optimization method using successive local enumeration 
(SLE) and adaptive RBF based on fuzzy clustering. LI, et 
al[32], proposed a novel surrogate-based global optimization 
strategy using fuzzy clustering for design space reduction. 
Based on SBDO technology, PENG, et al[33], developed an 
efficient truss structure optimization framework using 
CAD/CAE integration. YOUNIS and DONG[7] reviewed a 
number of popular global optimization methods for 
black-box functions. More detailed information about 
SBDO can be found in the valuable surveys[3, 7, 34–35]. 

A novel surrogate-based efficient optimization strategy 
with sequential radial basis function(SEO-SRBF) is 
proposed for the purpose of improving the efficiency and 
capability of searching global optimum for engineering 
optimization problems involving both expensive objective 
function and constraints. 

The rest of this article is organized as follows. In section 
2, the algorithm and procedure of SEO-SRBF are presented 
in detail, especially for the significant sampling space(SSS) 
method. In section 3, the proposed SEO-SRBF is applied to 
solve several numerical benchmark problems and two 
practical engineering optimization problems, and 
comparative studies with other SBDO methods are also 
conducted to demonstrate the merits of SEO-SRBF. In 
section 4, further discussion on SEO-SRBF is presented. In 
the last section, concluding remarks. 

 
2  Sequential Radial Basis Function 

 
2.1  Design and analysis computer experiment 

Design and Analysis of Computer Experiment(DACE) is 
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a key technique for SBDO methods. For the purpose of 
improving approximation accuracy of surrogates, the 
DACE methods are desired to generate samples with good 
performances in both space-filling and the projective 
properties[36]. To meet the space-filling requirement, 
Maximin Distance design[37] has been developed to 
maximize the minimum distance among all samples. To 
achieve projective property, the Latin Hypercube Design 
(LHD) is proposed by MCKAY, et al[38]. And to make the 
samples evenly spread in the design space, several optimal 
LHD methods under various criteria including maximin 
distance, CL2 and p have been studied, such as optimal 
LHD method using simulated annealing algorithm[39], 
threshold accepting algorithm[40], enhanced stochastic 
evolutionary algorithm[41] and SLE[31]. 

SEO-SRBF employs lhsdesign function provided in 
MATLAB with maximin criterion to produce samples for 
the three reasons below: 1) More information within a 
design space would be offered by LHD; 2) The size of 
LHD samples is controllable[20]; 3) For adaptive SBDO 
methods, generation of sequential samples closer to the 
global optimum is more effective than producing evenly 
distributed initial samples by using the complicated optimal 
LHD methods. 

 
2.2  Radial basis function 

Radial basis function(RBF) is one of the multi- 
dimensional interpolation methods based on scattered data, 
which has been widely used as the surrogate for 
approximating the computation-intensive functions. The 
basic formulation of RBF is expressed as follows: 
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where radial function   is a set of functions based on 
Euclidean distance i-x x . r is the vector of linear 
weight coefficients. ns is the number of samples. r should 
satisfy the interpolation conditions as below: 

 

( )r s, 1, 2, , ,ii
f y i n= =               (2) 

 
where yi and (fr)i are the responses of the true function and 
RBF surrogate at the sample xi, respectively. Therefore, r 

can be determined as follows: 
 

r r ,y=A                     (3) 
1

r r ,y-= A                    (4) 

 
where Ar is a matrix given by Eq. (5): 
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 is the radial function, and Table 1 summaries the typical 
radial functions. 
 

Table 1.  Typical RBF functions 

Classical RBF Equation 

Linear  r cr =  

Cubic    3
r r c =  

Thin plate spline    2 2lnr r cr =  

Gaussian   2exp( )r cr =  

Multiquadratic    1 22 2r r c =  

 
The radial distance r in Table 1 is the Euclidean distance 

i-x x , and the best value of constant c in Table 1 is 
problem-dependent. In SEO-SRBF, c is set in terms of the 
empirical formula in Eq. (6):  
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where X is the matrix of all the samples, and nv is the 
dimension of design space. 

 
2.3  Procedure of SEO-SRBF 

SEO-SRBF is proposed for adaptive surrogate-based 
optimization on engineering optimizations involving 
expensive models. In general, an engineering optimization 
problem can be considered as a typical nonlinear 
optimization problem with a general formulation as shown 
in Eq. (7): 
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The fitting quality of RBF in the entire design space can 

be gradually improved as the number of samples increases. 
Besides, RBF provides more accurate approximation at the 
neighborhood of the existing samples. In terms of the 
preceding features of RBF, the novel SEO-SRBF is 
developed to sequentially add new samples in the 
significant sampling space(SSS) during the optimization 
process. By use of the gradually increasing samples, the 
fitting quality of RBF in significant regions is improved, 
furthermore, the global optimum of engineering 
optimization problem could be obtained through running 
RBF surrogate based optimizations. 

The flowchart of SEO-SRBF is shown in Fig. 1. First, 
designers have to set the initial conditions including design 
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variables, objective function, design space, number of 
initial samples Ninitial and number of newly-added samples 
Nadd at each iteration. The choice of Ninitial and Nadd depends 
on the complexity of the optimization problem, such as the 
dimension of design space and nonlinearity. The approach 
of setting will be discussed in the following sections. Once 
the initial conditions are configured, global optimization 
using SEO-SRBF is executed in terms of the following 
steps. 
 

 

Fig. 1.  Flowchart of SEO-SRBF 
 

Step 1. The initial samples Ninitial are generated in the 
entire design space through LHD sampling with maximin 
criterion. 

Step 2. The responses of true objective function at those 
initial samples are evaluated by calling the expensive 
analysis models, and then the initial samples and 
corresponding objective responses are stored in the design 
sample database for constructing RBF surrogate in 
following steps. 

Step 3. The RBF surrogate is constructed based on all the 
samples in current design sample database. During the 
optimization process, when the size of samples increases, 
the approximation accuracy of RBF surrogate is enhanced 
successively. 

Step 4. Based on current RBF surrogate, global 
optimization is performed by using GA to obtain the 
potential optimum, which is regarded as the best solution 
under current acquired information about the optimization 
problem. The response of true objective at the potential 
optimum is then calculated by evaluating the expensive 
analysis models, which is stored in the potential optimum 
database and design sample database, respectively. 

Step 5. The termination criterion is used to determine 
whether the optimization process should be continued. If 
satisfied, SEO-SRBF optimization is terminated. Otherwise, 
the process turns to step 6. 

Step 6. New samples are generated by using significant 
sampling space(SSS) method and sequential LHD sampling 

method. The new samples and their true objective 
responses are also stored in design sample database to 
improve the accuracy of RBF. Optimization process goes 
back to step 3. The SSS method and sequential LHD 
sampling method are respectively detailed in the following 
section. 

 
2.4  Significant sampling space method 

SSS is a unique technique in SEO-SRBF for enhancing 
the optimization efficiency and global convergence 
performance. Significant sampling space is a sub-region 
around the current potential optimum that probably 
contains the true global optimum[42]. SSS is beneficial to 
improving the approximation accuracy of RBF in the 
region near to the true global optimum through sequentially 
increasing new samples. The procedure of SSS to construct 
kth significant sampling space is given in Algorithm 1.  
 

Algorithm 1: SSS 
  Input: kth potential optimum k

*x ; objective response at 
kth potential optimum ky* ; current design samples set X; 
objective responses set Y; relative error of objective at the 
(k–1)th potential optimum k–1; length of (k–1)th significant 
sampling space Bk–1; coefficient for determining the length 
of SSS ; coefficient for minimum design space  ; entire 
design space S0. 
  Output: kth significant sampling space Sk. 

1 Begin 
2   if * *

1k ky y -<  or k == 1 then 
3     Bk ←EvalLengthSSS( k

*x , 1k
*
-x , X) 

4     k ←k–1 
5     Scenter← k

*x  
6   else 
7     

k
 ← LeaveOneOut(X, Y, k

*x , ky* ) 
8     If k <  k–1 then 
9       Bk←Bk–1/ 
10     else 
11       Bk←Bk–1 
12     end 
13     Scenter ← 1k

*
-x  

14   end 
15   Bk←CheckMinBound(Bk,  , S0) 
16   Sk←EvalSSS(Scenter, Bk, S0) 
17 End 

 
The current information ( k

*x , ky* , X, Y, k–1, Bk–1, , , 
S0) is used as inputs and the kth significant sampling space 
Sk is returned. Five steps of this algorithm can be 
summarized as follows. 

Step 1(lines 1–5): If the objective response at the 
current potential optimum is less than that at last iteration 
(i.e., 1k ky y* *

-< ) or the iterative counter k equals to 1, the 
length of kth SSS is calculated at line 3 by using function 
EvalLengthSSS() in Eq. (8). In that equation, if 2k≥ , 
the length is updated in terms of the last two optima, and 
the kth relative error k is set to the (k–1)th relative error 
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k–1. At the first iteration( 1k = ), the length of SSS is 
calculated in terms of the first potential optimum and the 
sample xmax with the maximum relative error among all 
initial samples. The relative error is evaluated by using 
leave-one-out cross validation scheme[34]. The center of kth 
SSS is set to the kth potential optimum k

*x  at line 5. The 
process goes to step 4. 
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-
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Step 2(lines 67): If the objective response at the current 

potential optimum is larger than the that at last iteration 
(i.e., 1k ky y* *

-≥ ), the relative error k at the current potential 
optimum is evaluated by using leave-one-out cross 
validation.  

Step 3(lines 814): If k ＜k–1, the increasing length of 
kth SSS is set to Bk–1/, otherwise, the length is reduced as 
Bk–1. And the center of kth SSS is set to the last potential 
optimum 1k


x .  

Step 4(line 15): In function CheckMinBound(), if the 
length in any dimension get less than the minimum allowed 
length(i.e., Bk＜|S0|), it is adjusted to the minimum length 
|S0|. The procedure goes to step 5. 

Step 5(line 16): Through calling function EvalSSS(), the 
kth trial SSS is expressed by t (L) (U)[ , ]k k k=S B B . (L)

kB  and 
(U)
kB  respectively indicate the lower and upper boundary 

vectors with nv elements, which are identified in Eq. (9). To 
avoid SSS exceeding the boundary of the initial design 
space when the current potential optimum locates close to 
the boundary, the final Sk is defined as the intersection part 
between t

kS  and S0, namely 0
t

k k S= S S , as illustrated 
in Fig. 2. 
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Fig. 2.  Illustration of determining SSS 

 
2.5  Termination criterion 

In this article, when the relative difference of two 
consecutive potential optima is less than a predefined 

tolerance factor, SEO-SRBF process is terminated and 
outputs the last potential optimum as the final solution. The 
termination criterion is shown in Eq. (10), where ky*  and 

1ky*
-  are respectively the values of objective function at 

thk  and ( 1)thk   potential optimum:  
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2.6  SEO-SRBF for constrained optimization problem 

In certain engineering cases, both of the objective 
function f(x) and the constraints g(x) and h(x) may depend 
on expensive analysis models. In this subsection, SEO- 
SRBF for optimization problems with expensive constraints 
is presented. Incorporated with augmented Lagrangian 
multiplier method, SEO-SRBF converts a constrained 
expensive problem into an equivalent unconstrained 
optimization problem whose expensive augmented 
Lagrangian function is approximated by RBF. During the 
optimization procedure, the RBF surrogate of augmented 
Lagrangian function is gradually upgraded in terms of the 
increased samples until both of the constraints and the 
convergence criterion are satisfied. Fig. 3 shows the 
flowchart of the proposed constrained SEO-SRBF method, 
which are detailed as follows.  

 

 
Fig. 3.  Flowchart of constrained SEO-SRBF for optimization 

problems with expensive constraints 
 
Step 1. Initial conditions are configured, such as 

Lagrangian multipliers i and j for inequal and equal 
constraints respectively, and the penalty factor M and the 
upper bound of the penalty factor Mmax. 

Step 2. The initial samples are generated in the entire 
design space by using LHD, and then the responses at those 
samples are calculated by calling expensive objective and 
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constraints respectively. The initial samples and corre- 
sponding responses including objective and constraints are 
stored in the design sample database to construct RBF of 
augmented Lagrangian function. 

Step 3. The normalization parameters in Eq. (11) are 
evaluated for the objective function and constraints, which 
is used to normalize the objective and constraints at the aim 
of improving the convergence property: 
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Step 4. The objective function and constraints are 

combined to create the augmented Lagrangian function as 
shown in Eq. (12): 
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y, pi and uj are respectively the normalized responses of 
objective and constraints. The values of augmented 
Lagrangian function at the samples in the design samples 
database can be calculated, and then RBF is constructed to 
approximate augmented Lagrangian function  

Step 5. The potential optimum k
*x  is obtained by using 

GA. Next, the responses at the potential optimum are 
evaluated by invoking the expensive objective and 
constraints, which are also added to the samples database. 

Step 6. If current potential optimum satisfies all the 
constraints, the process turns to step 8, otherwise, go to 
Step 7. 

Step 7. Update the augmented Lagrangian multipliers by 
Eq. (14), then the process returns to step 4. In this work, set 
the constant =2 and the upper bound of magnification 
factor Mmax=1000.. 

Step 8. Termination criterion in section 2.5 is employed 
to check whether the optimization converges. If the 

termination criterion is met, SEO-SRBF is terminated and 
outputs the current potential optimum. Otherwise, the 
process goes to step 9. 
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Step 9. SSS method is used to generate new samples, and 

then response of expensive objective and constraints are 
collected. The new samples and corresponding responses 
are stored in the design samples database. Next, the process 
goes back to step 4. 

 
2.7  Analysis of variable study of SSS method 

As discussed in section 2.4, two parameters(i.e., Ninitial 
and Nadd) are required to tune SSS. To assess the sensitivity 
of the two parameters, the analysis of variance(ANOVA) 
study on the BR function is carried out in this section. Each 
parameter has three levels, and the values of each 
parameter are listed in Table 2. Ten runs are performed for 
each setting. The total number of function evaluations and 
the optimal solution are the output in each run, and then, 
the average values in ten runs of each setting are used for 
ANOVA study. The ANOVA results including the mean 
squares and p value with 95% confidence are listed in Table 
3. Fig. 4 and Fig. 5 show the parameter interactions(nfe: 
number of function evaluations). 

 
Table 2.  Variables for ANOVA study 

Factor No. level Value 

Ninitial 3 3, 6, 12 
Nadd 3 2, 4, 8 

 
Table 3.  ANOVA results for parameters 

Source 
Mean square p 

Func. Eval. Func. Opt. Func. Eval. Func. Opt.

Ninitial 61.220 0.295 0.000 0.000 
Nadd 258.040 0.366 0.000 0.000 
Ninitial Nadd 0.548 0.218 0.000 0.000 

 

 

Fig. 4  Parameter interaction plot of average nfe 
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Fig. 5  Parameter interaction plot of average solved optimum 

 
As can be found in Table 3, the number of newly-added 

samples Nadd is more sensitive with respect to both nfe and 
optimal solution compared with the number of initial 
samples Ninitial. When the number of newly-added samples 
increases, the number of total samples increase and the 
approximation accuracy of RBF becomes higher, which 
leads the process to reach the global optimum. To reduce 
the computation cost, smaller parameter Nadd is suggested 
(e.g., Nadd=4). However, if Nadd is too small, the 
SEO-SRBF might miss the true global optimum. From Fig. 
5, five pairs of Ninitial and Nadd obtain the true global 
optimum of BR. Among those settings, the least 
computation cost is achieved when Ninitial is set to 6 and 
Nadd  is set to 4, as shown in Fig. 4. Although the 
parameter study is conducted on BR function, it is helpful 
to identify the sensitivity of different parameters, and 
provides a guideline of parameter setting for numerical 
examples and engineering applications. 

 
3  Numerical and Engineering Examples 

 
In this section, SEO-SRBF is tested on several numerical 

benchmark problems and two practical engineering design 
problems. And the optimization results are compared with 
those from static RBF based optimization, IARSM-Ⅱ[20], 
EGO[14], MPPIEGO[43], MSEGO[44] and MPS[25] to show 
the merits of SEO-SRBF. The setup of SEO-SRBF in this 
study is given as follows: 1) LHD method provided by 
lhsdesign function in MATLAB with “maximin” criterion 
(150 iterations) is used for sampling; 2) The multiquadratic 
function with better accuracy and moderate cost[3] is 
selected as the basis function to build RBF; 3) Due to good 
capability of searching global optimum[7], GA implemented 
by ga function in MATLAB is employed in RBF surrogate 
based optimization. 

 
3.1  Numerical examples with SEO-SRBF 

SEO-SRBF method is tested on several well-known 
numerical benchmark problems, and the formulations of 
them are listed in the Appendix. In this work, the 
parameters of SEO-SRBF were set as [Ninitial, Nadd]=[6, 4] 
for low dimension problems (the number of variables is 
less than 3). For the other problems, the parameters were 

set as Ninitial=5nv and Nadd= nv.  
The computational cost of SEO-SRBF consists of 

expensive function evaluations and algorithm execution 
overhead. All the numerical examples were run on a PC 
with an Intel Core 2 processor(2.66 GHz), and 5 seconds 
delay was imposed in invoking each numerical function to 
measure the time for executing SEO-SRBF. 

For each problem, ten runs were performed to reduce 
random variation in the numerical results and validate the 
robustness of proposed method. The minimum and the 
maximum of optimization results were recorded for ten 
runs, and the median values of optimization results were 
also reported. To indicate the computation cost, the average 
CPU time of SEO-SRBF and number of function 
evaluations were reported. Table 4 shows the average 
computational cost of ten runs on all the numerical 
examples. In numerical examples, the average computation 
cost of SEO-SRBF is less than 1.5% of that for calling 
functions. In other words, compared with running 
expensive functions, the algorithm execution time of 
SEO-SRBF can be totally ignored. Thus, for computation- 
intensive design optimization problem, computation cost 
using SEO-SRBF is mainly determined  by the number of 
function evaluations. Similar conclusion has also been 
given by WANG and SIMPSON[23]. 

 
Table 4.  Computational cost of SEO-SRBF  

Func.
Avg. No. of 
func. eval. 

Avg. CPU time t /s 

Total Obj. Algorithm

BR 28.5 144.3 142.5 1.8 

RS 44.5 225.4 222.5 2.9 

SC 31.5 159.3 157.5 1.8 

HN 35.6 179.8 178 1.8 

 
The algorithm overhead of SEO-SRBF was also 

compared with that of other methods including EGO[14], 
MPPIEGO[43], MSEGO[44] and MPS[25]. For a fair 
comparison, two stopping criteria were provided for EGO, 
MPPIEGO and MSEGO. Optimization process stopped 
once the theoretical global optima were found, or maximum 
number of cycles reached. The number of initial samples of 
EGO-like methods equals to that of SEO-SRBF for higher 
dimensional problems, and the maximum number of cycles 
is set to 50. Ten runs of MPS are performed on each 
numerical functions. However, since EGO, MPPIEGO and 
MSEGO are rather time-consuming for solving the high 
dimensional problems, those methods are performed only 
once on high dimensional cases. Table 5 and Table 6 
summaries the computational cost of the various methods. 
From comparison of algorithm running time in Table 4 and 
Table 6, SEO-SRBF is most efficient on all the benchmarks. 
One possible explanation for that result is that EGO, 
MPPIEGO and MSEGO employs global optimization 
subroutines for maximizing the expected improvement to 
increase samples, which is more time-consuming especially 
for high dimensional problems. Whereas, SEO-SRBF 
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directly generates sequential samples in the signification 
sampling space. Another possible reason for the high 
efficiency of SEO-SRBF is use of different stopping 
criteria. SEO-SRBF terminates once the relative error 
between last two potential optima satisfies the tolerance. In 
contrast, EGO, MPPIEGO and MSEGO set the maximum 
number of cycles as stopping criterion, if global optimum 
can not be obtained within the maximum cycles. Besides, 
MPS needs to produce a large number of cheap samples to 
calculate the cumulative probability distribution function 
for discriminatively sampling, which is still more 
time-consuming than SEO-SRBF. 

 
Table 5.  Number of function evaluations  

for different methods 

Func. EGO MPPIEGO MSEGO MPS 

BR 50 102 42 33 
SC 42 18 27 30 
HN 56 180 180 441 
F16 230 230 230 1385 

 
Table 6.  CPU Time for executing different methods(s) 

Func. EGO MPPIEGO MSEGO MPS 

BR 139 1622 32 5 
SC 109 76 21 4 
HN 233 7217 472 63 
F16 416 20568 978 149 

 
Those benchmark functions have been solved by 

IARSM[20]. The comparisons of optimization results on all 
numerical examples are summarized in Table 7 and Table 8. 
The first column in Table 7 shows the name of the test 
function and the theoretical global optimal solutions are 
given in the third column. As can be seen, the solutions 
obtained by using SEO-SRBF is better than those from 
other techniques for each problem. Since the computational 
expense of RBF surrogate based optimization is negligible 
compared with that for running expensive functions, the 
number of function evaluations was used as the indicator of 
optimization efficiency. Fig. 6 shows a comparison of 
number of function evaluations of different methods, where 
y-coordinate indicates the percentages with respect to 
maximum average number of function evaluations in 10 
runs. From Fig. 6, SEO-SRBF uses fewer nfe compared 
with those of other methods for BR and F16. In addition, 
the higher efficiency of EGO, MPPIEGO and MSEGO on 
SC and HN is achieved due to the unfair termination 
criterion. The true global optima are priori told those 
method, and once one point close to the true global 
optimum is found, optimization process is terminated 
immediately. Whereas, without any priori information on 
the analytical global optimal solutions, even when current 
potential optimum gets very close to the true global 
optimum, SEO-SRBF may still continue to iterate until the 
tolerance termination criterion is met. In fact, for general 
engineering applications, it is impossible for designers to 
know the true global optimum a priori, which makes the 

unfair termination criterion of EGO, MPPIEGO and 
MSEGO no sense for practice. Moreover, the original 
termination criterion on maximum iteration cycles for 
EGO-like methods is quite ineffective and inefficient. Thus, 
the proposed SEO-SRBF is believed to be more efficient 
than EGO-like methods for real-world applications. 
Moreover, for HN, the function evaluations for SEO-SRBF 
are still comparable to the best results. Furthermore, for SC, 
SEO-SRBF obtains better solutions compared with those of 
MPPIEGO. Note that for F16 SEO-SRBF shows much 
better performance on optimization efficiency in 
comparison with those of other competitors. 

 
Table 7.  Summary of optimal solutions obtained 

 by using SEO-SRBF 

Func.
# of 
var. 

Anal. solu.
Optimal solution 

Range of variation Median

BR 2 0.398 [0.398, 0.399] 0.398 
SC 2 –1.032 [–1.032, –1.004] –1.030 
HN 6 –3.320 [–3.305, –2.857] –3.248 
F16 16 25.875 [26.260, 27.850] 26.890 

 
Table 8.  Summary of optimal solutions obtained  

by using other methods (N/A: not available) 

Func. IARSM-II MPS EGO MPPIEGO MSEGO

BR 0.398 0.399 0.398 0.418 0.406 
SC –1.029 –1.030 –1.031 –1.027 –1.024 
HN –2.456 –3.305 –3.318 –3.028 –2.400 
F16 N/A 27.969 33.200 35.300 27.920 

 

 

Fig. 6  Number of function evaluations of various  
methods on numerical examples 

 
Through the tests on numerical optimization problems 

above, SEO-SRBF shows the satisfactory performance in 
both optimization efficiency and global convergence 
capability. The solutions are generally robust. Note that 
since all the samples are independent, the CPU time 
required for running SEO-SRBF can be further reduced by 
using parallel computation technologies. 

 
3.2  Engineering examples with SEO-SRBF 

Two engineering design problems were used to validate 
SEO-SRBF: 1) an internal combustion engineering design 
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problem, and 2) a torque arm design problem. The latter is 
a constrained optimization problem involving expensive 
constraints. For each problem, ten runs were carried out by 
using the SEO-SRBF and static RBF based optimization 
method(named Static-RBF), respectively. For the 
engineering optimization problems, the parameters of 
augmented Lagrangian are set as 1 1i = , 1 1j = , 1 1M = , 

2 =  and Mmax=1000.. 

3.2.1  Internal combustion engine design 
The internal combustion engine design problem as 

shown in Fig. 7, was introduced by the Ford Motor 
Corporation, and was also solved by GANO, et al[17]. The 
objective of the optimization is to maximize the specific 
power under the packaging and efficiency constraints. The 
design variables consist of the cylinder bore b, the 
compression ratio cr, exhaust value diameter dE, intake 
value diameter dI, and the revolutions per minute at peak 
power w1000. The problem is formulated as in Eq. (15). 

 

 

Fig. 7.  Illustration of internal combustion engine  
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the bounds of design variables are given as 70 90b≤ ≤ ; 

r6 10c≤ ≤ ; E30 40d≤ ≤ ; I35 45d≤ ≤ ; and 4 8w≤ ≤ .  
The analytical optimum for this engineering problem is 

55.67[17]. SEO-SRBF was applied to solve this problem 10 
times. To indicate the efficiency of SEO-SRBF, the 
static-RBF based on augmented Lagrangian multiplier 
method was also used to optimize this problem. The 
number of initial samples of static-RBF equals to the mean 
value of nfe of SEO-SRBF. Table 9 summarizes 
optimization solutions obtained by using SEO-SRBF and 
static-RBF methods. The initial parameters of SEO-SRBF 
are set as follows, [Ninitial, Nadd]=[35, 6]. As can be seen 
from Table 9, the best and median values obtained by our 
proposed SEO-SRBF method are much closer to the 
theoretical optimum. Moreover, the SEO-SRBF exhibits a 
superior performance to static-RBF in terms of optima- 
zation efficiency. Although static-RBF uses more samples 
uniformly distributed in the entire design space, the 
optimum solution is still inferior to that of SEO-SRBF. 

 
Table 9.  Optimization solutions of internal combustion 

engine design problem 

Method 
Objective value No. of obj. eval. 

Best Median Mean Median 

SEO-SRBF 54.47 51.40 140 102 

Static-RBF 53.69 47.98 162.9 162.5 

 
3.2.2  Torque arm design 

A torque arm(shown in Fig. 8), typical mechanical part 
in mechanical engineering, was selected to test SEO-SRBF. 
The objective of this design problem is to minimize the 
volume of material subject to the maximum stress 
constraint(i.e., less than 190 MPa).  

 

 
Fig. 8  Geometry and parameterization of torque arm 

 
The force P1 = 8 kN and P2 = 4 kN act at the center of 

the smaller end. The boundary condition is that the torque 
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arm is fixed at the hole of the bigger end. Young’s modulus 
and Poisson’s ratio are 200 GPa and 0.3 respectively. This 
problem involves six design variables , b1, D1, h, t1 and t2 
as depicted in Fig. 8, and the design space is defined as 
follows, 3.0≤≤4.5 (°), 25.0≤b1≤35.0 (mm), 90.0≤D1 
≤120.0 (mm), 20.0≤h≤30.0 (mm), 12.0≤t1≤22.0 (mm) 
and 8.0≤t2≤10.0 (mm). 

In this problem, UG and MSC.Patran/Nastran were used 
to build an automatic integration system for solving this 
torque arm optimization through script programming. The 
problem is a nonlinear constrained problem involving 
computation-intensive objective and constraint, and thus 
reduction of expensive analysis model evaluations is our 
concern. The SEO-SRBF method and static-RBF based on 
augmented Lagrangian method were applied to solve this 
problem. The number of initial samples of static-RBF 
equals to the number of model evaluations needed by 
SEO-SRBF. 

Table 10 shows the comparative results between 
SEO-SRBF and static-RBF. It can be seen that the number 
of model evaluations required by SEO-SRBF is the same as 
that of static-RBF. However, SEO-SRBF further reduces  
21% of the material volume of torque arm compared with 
static-RBF. But for Static-RBF, some more samples are 
needed to get a comparable result. The results shows that 
the computation cost can be reduced by SEO-SRBF for 
real-world engineering optimization problems with 
expensive objective and constraints. Fig. 9 shows the 
iteration history of the objective in the course of SEO- 
SRBF optimization process. Fig. 10 depicts the shape and 
stress contour of the optimal design obtained by using 
SEO-SRBF. The optimum shape results in the more 
uniform stress distribution in the body of the torque arm. 

 
Table 10.  Optimization results of torque arm design problem 

Method 
Optimum 

[, b1, D1, h, t1, t2] 

Volume 
V/cm3 

Stress 
S/MPa 

No. of 
model 
eval. 

SEO-SRBF 
[4.25, 27.22, 90.00, 
24.38, 12.75, 8.24] 

455 173 80 

Static-RBF 
[4.02, 30.28, 97.58, 
29.08, 19.97, 9.55] 

576 128 80 

 

 
Fig. 9  Objective iteration history of torque arm 

 optimization by using SEO-SRBF 

 
Fig. 10  Stress contour of optimal design of torque arm 

 obtained by using SEO-SRBF 
 

4  Discussion 
 
For engineering design optimization problems, designers 

usually desires to reach the actual global optimum with the 
least computational burden. The proposed SEO-SRBF 
features the high optimization efficiency and good 
capability of searching true global optima by using 
significant sampling space(SSS) method. Fig. 11 details the 
sampling and optimization process of SEO-SRBF is 
illustrated on Branin function(BR) to reveal the 
characteristics of SEO-SRBF and SSS method. 

In Fig. 11, the green square and black points indicate the 
true global optimum (3.141 5, 2.274 9) and design samples 
respectively, and red rhombus points represent the potential 
optima during the optimization procedure. Twenty-two 
function evaluations are required by SEO-SRBF to 
optimize BR. From Fig. 11, it can be observed that the 
SEO-SRBF has the following three properties: 1) It can 
converge to the true global optimum of BR; 2) More 
sequential samples trends to concentrate around the true 
global optimum of BR as iteration continues; 3) The 
potential optima gradually  approach to the true global 
optimum and finally almost overlaps with it at the last 
iteration. 

 

 

Fig. 11  Optimization process of SEO-SRBF on BR  
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Fig. 12 shows the graphics of BR and RBF surrogates 
from SEO-SRBF and Static-RBF in the entire design space. 
Twenty-two evenly distributed samples in the entire design 
space are used to build static RBF. Although global 
approximation accuracy of static RBF is apparently much 
better than that of SEO-SRBF, both RBF surrogates cannot 
well approximate the true BR in the entire design space.  
Fig. 13 depicts the contours of BR and RBF surrogates in 
the neighborhood of the true global optimum. From Fig. 13, 
it can be seen that the contours SEO-SRBF are almost 
identical with those of BR around the global optimum, 
which is much better than static RBF. During SEO-SRBF 
optimization process, all of the new sequential samples are 
positioned in relative small region towards the true global 
optimum, whereas for static RBF, plenty of samples are 
wasted in the unconcerned regions far from the true global 
optimum. 

 

 
Fig. 12  Graphics of BR and RBF surrogates  

in entire design space 
 
One challenge for RBF modeling is that matrix Ar might 

become ill-condition or even singular when samples get 
very close to some others. In this case, the fitting problem 

usually appears difficulties in calculating 1
r
-A . For that 

issue, the method proposed by JONES, et al[14], was used to 
conduct singular value decomposition of R  when huge 
condition number of Ar appears . 

 

 
Fig. 13  Contours of BR and RBF surrogates 
 in the neighborhood of true global optimum 

 
5  Conclusions 

 
(1) A novel surrogate-based efficient optimization 

method using sequential radial basis function, notated as 
SEO-SRBF is proposed for constrained expensive 
engineering optimizations. SSS method is developed to 
generated sequential samples towards the global optimum 
for updating RBF surrogate.  

(2) For constrained optimization problems, SEO-SRBF 
employs the augmented Lagrangian multiplier method to 
handle expensive constraints. 

(3) Through several numerical benchmark problems and 
two engineering problems, SEO-SRBF is compared with 
some other optimization methods including static RBF 
based optimization, IARSM-II, EGO, MPPIEGO, MSEGO 
and MPS. The comparison results demonstrate that 
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SEO-SRBF exhibits satisfactory performance in 
optimization efficiency, global convergence capability, and 
robustness. 

(4) The sequential sampling and optimization process are 
visually illustrated on a two dimensional problem to discuss 
the features of SEO-SRBF.  
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Appendix 
Six-hump came back function (SC), n=2: 
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Branin function (BR), n=2: 
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Hartman function (HN), n=6: 
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Where the value of and p are listed in Table A1 and Table 
A2 respectively. 

 
Table A1.  Parameter  value in HN 

i ij, j = 1, 2, 3, 4, 5, 6 ci 

1 10 3 17 3.5 1.7 8 1 
2 0.05 10 17 0.1 8 14 1.2 
3 3 3.5 1.7 10 17 8 3 
4 17 8 0.05 10 0.1 14 3.2 

 
Table A2.  Parameter p value in HN 

i pij, j = 1, 2, 3, 4, 5, 6 

1 0.131 2 0.169 6 0.556 9 0.012 4 0.828 3 0.588 6
2 0.232 9 0.413 5 0.830 7 0.373 6 0.100 4 0.999 1
3 0.234 8 0.145 1 0.352 2 0.288 3 0.304 7 0.665 0
4 0.404 7 0.882 8 0.873 2 0.574 3 0.109 1 0.038 1

 
A function of 16 variables (F16), n=16: 
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1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0

=a .

0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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