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Abstract: The compliance modeling is one of the most significant issues in the stage of preliminary design for parallel kinematic 

machine(PKM). The gravity ignored in traditional compliance analysis has a significant effect on pose accuracy of tool center 

point(TCP) when a PKM is horizontally placed. By taking gravity into account, this paper presents a semi-analytical approach for 

compliance analysis of a 3-DOF spindle head named the A3 head. The architecture behind the A3 head is a 3-RPS parallel mechanism 

having one translational and two rotational movement capabilities, which can be employed to form the main body of a 5-DOF hybrid 

kinematic machine especially designed for high-speed machining of large aircraft components. The force analysis is carried out by 

considering both the externally applied wrench imposed upon the platform as well as gravity of all moving components. Then, the 

deflection analysis is investigated to establish the relationship between the deflection twist and compliances of all joints and links using 

semi-analytical method. The merits of this approach lie in that platform deflection twist throughout the entire task workspace can be 

evaluated in a very efficient manner. The effectiveness of the proposed approach is verified by the FEA and experiment at different 

configurations and the results show that the discrepancy of the compliances is less than 0.04 μm/N1 and that of the deformations is less 

than 10μm. The computational and experimental results show that the deflection twist induced by gravity forces of the moving 

components has significant bearings on pose accuracy of the platform, providing an informative guidance for the improvement of the 

current design. The proposed approach can be easily applied to the compliance analysis of PKM by considering gravitational effects and 

to evaluate the deformation caused by gravity throughout the entire workspace. 

 

Keywords: compliance modeling, gravity, spindle head 

 

 

 

1  Introduction 
 

High-speed machining of extra large aluminum aircraft 
parts with complex geometries(e.g. C-frame, wing rib, bow, 
spar, etc) is a challenging issue to the machine tool industry. 
The new demand would require a huge gantry 5-axis 
machine tool with tons of weight and large footprint in a 
traditional way. One promising solution to solve the 
problem is the use of a multiple-axis high-speed machining 
unit, composed of a 3-DOF PKM(parallel kinematic 
machines) spindle head plus the x-y movement 
capabilities[1]. This idea has already been demonstrated by 
very successful applications of ECOSPEED and 
ECOLINEAR[2] equipped with the Sprint Z3 Head[3–4] as a 
core component.  

Stiffness is one of the most important indicators in 
performance evaluation of the spindle head as it is designed 
for high-speed machining where high rigidity and high 
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accuracy are crucially required. These requirements lead to 
enthusiastic and extensive investigations into stiffness 
modeling, evaluation and optimization.  

The approaches for the stiffness modeling can roughly be 
classified into two groups: 1) the numerical approach by 
means of finite element analysis(FEA)[5–7] or matrix 
structural analysis(MSA)[8–10], and 2) analytical or 
semi-analytical approach based upon the fundamental of 
robotics and the technology of FEA or structure mechanics. 
Although the FEA is the most precise method, it requires 
high computational cost as the models have to be 
re-meshed repeatedly with the changing configuration. 
Thus the FEA is more suitable at the final stage for the 
verification. For this reason, it is expected that a 
semi-analytical model can be developed that allows 
stiffness evaluation to be made throughout the entire 
workspace in an effective manner either in the preliminary 
or in the final design.  

The early effort for analytical/semi-analytical stiffness 
modeling of parallel mechanisms can be traced back to the 
work[11] where the actuated joint stiffness was merely taken 
into account. By simultaneously accounting for component 
stiffness in terms of tensile/compression, bending and 
torsion, more extensive and comprehensive work is carried 
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out by ZHANG and GOSSELIN[12–14] in dealing with a 
stiffness analysis of the Tricept robots using an elegant 
concept of the “virtual joint” to formulate the bending 
compliance of a properly constrained passive limb, 
resulting in a simplified bending stiffness model represented 
by three lumped springs. Recently, the concept of “virtual 
joint” is significantly improved by PASHKEVICH, et 
al[15–18], resulting in a multidimensional lumped-parameter 
model formulated by the localized 6-DOF virtual springs to 
describe the link/joint compliances. Along this track, 
intensive and exhaustive investigations have been carried 
out in dealing with stiffness modeling of a variety of 
parallel mechanisms having different architectures[19–25]. 
Furthermore, the research interests have been placed to the 
technique of how to formulate the virtual joints precisely 
and effectively using FEA. i.e., the interface stiffness 
matrix of the components and the machine frame with 
complex geometry are evaluated by WANG, et al[26], using 
a commercialized FEA software. KLIMCHIK, et al[27], 
obtained the stiffness matrix of all the components by 
virtual experiment in FEA environment which was able to 
take into account the real shape of the joints and provided 
high accuracy. It should be pointed out that in the previous 
work dealing with analytical/semi-analytical stiffness 
modeling of parallel mechanisms, little attention has been 
paid to the deflections induced by gravity though they are 
no longer negligible especially when a device is 
horizontally placed in use. ZHAO, et al[28], and 
QUENNOUELLE, et al[29–30], extended the stiffness model 
by considering gravity as a lumped force. This treatment, 
however, is only valid when the components are assumed 
to be rigid, remaining an open issue to be investigated.  

Based upon our previous work[31], this paper presents a 
semi-analytical compliance modeling approach of the A3 
head by taking simultaneously into account for all 
significant joint/link compliances and the gravity of all 
movable components. Having consolidated by FEA and 
experiment at typical configurations, TCP deflections 
induced by gravity are evaluated throughout the entire 
workspace and the influence of each individual component 
gravity on the TCP deflections is investigated. The purpose 
of this investigation is to provide an informative guidance 
for the further improvement of the current design. 

 
2  System Description and Inverse 

Position Analysis 
 
Fig. 1 shows a CAD model of the A3 head. The 

topological architecture behind the A3 head is a 3-RPS 
parallel mechanism, which consists of a platform, a base 
and three identical RPS limbs. Here, R and S respectively 
represent a revolute and a spherical joints and the 
underlined P denotes an actuated prismatic joint. Driven by 
the actuated prismatic joints, the platform can achieve one 
translational and two rotational movement capabilities. For 
the detailed information of the A3 head, refer to Ref. [31]. 

 

 
Fig. 1.  CAD model of the A3 head  

 
Fig. 2 shows the schematic diagram of the A3 head. Let 

iB  be the centre of R joint connecting the ith limb with the 
base and iA  be that of the spherical joint connecting the 
limb with the platform. Thus, two equilateral triangles 

1 2 3B B B  and 1 2 3A A A  can be formed. Then, we set the 
reference frame { }R  attached to the base such that 

1 2 3z B B B^   and 2 3y B B^  with its origin O  being the 
intersection of three lines normal to the axes of the R joints. 
The same convention is adopted for the body fixed frame 

{ }R¢  attached to the platform with O¢  being the origin. 
For convenience in the definition of the component 
compliances within a limb, we place a set of limb reference 
frames { },j iR  attached to one of two elements of the jth 
joint in the ith limb with ,j is  being the unit vector of the 
joint axis. For this particular problem, { }1,iR  is attached 
to base with the 1,iz  axis having the same direction to the 
z  axis and the 1,ix  axis coincident with the axis of the R 
joint. { }2,iR  is attached to the shaft of the R joint with the 

2,ix  axis coincident with the 1,ix  and the 2,iz axis 
coincident with the axis of the prismatic joint; { }1,iR  and 

{ }2,iR  share the same origin .iB  In addition, { },j iR  
( j=3–5) are attached to three parts of the spherical joint 
with iA  being the origins and 3, 2,( ),i iz z  4, 3,( ),i iy y  

5, 4,( )i ix x  being the joint axes as shown in Fig. 3. 

 

 
Fig. 2.  Schematic diagram of the A3 head 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·3·

 
Fig. 3.  Schematic diagram of body fixed frames  

of the S joint 
 
As shown in Fig. 2, the position vector of the point O¢ , 

( )T
x y z=r , can be expressed by 

 

2,i i i iq= + -r b s a , i=1, 2, 3,           (1) 

 
where iq  is the length of the ith limb, ib  and ia  are the 
position vectors pointing from O  to iB , and from O¢  
to iA , respectively. And 

 

( )T
cos sin 0i i i ib  =b , 0i i=a Ra ,  

( )T
0 cos sin 0i i i ia  =a , ( ) 2π 1 3 π 2i i = - - ,  

 
where R  is the orientation matrix of { }R¢  with respect 
to { }R , and it can be formulated using three Euler’s angles, 
i.e. the procession angle  , the nutation angle  , and the 
spinning angle  . Then, given a set of  ,   and z , the 
inverse position problem can be solved: 

 

i i iq = - +r b a , ( )2, 3,i i i i iq= = - +s s r b a ,    (2) 

 

( )

( )

1
sin 2 1 cos ,

2
1

 cos 2 1 cos ,
2

.

x a

y a

 

 

 

= -

= -

=-

             (3) 

 
Utilizing the method available in Ref. [31], the angles of 

the revolute and spherical joints can also be determined. 
 

3  Compliance Analysis 
 

This section formulates a semi-analytical compliance 
model of the A3 head that accounts simultaneously for all 
significant component compliance and the deflections 
induced by gravity of all movable components. For 
convenience, the moving platform and base are treated as 
rigid bodies by assuming that their rigidities are much 
higher than other components within the system.  

 
3.1  Force analysis 

Force analysis of the A3 head is concerned with the 
formulation of a linear map between the externally applied 
wrench and the reaction forces at the spherical joints as 

shown in Fig. 4. By taking moment of all force about O¢ , 
the static equilibrium equations of the platform can be 
formulated by 

 

2 2 2

3 3 3
1, 2,

, , ,
1, 2,1 1 1

i iiA A A
x i y i z i

i i i ii ii i i

f f f
= = =

æ ö æ öæ öæ ö ÷ ÷÷÷ ç ççç ÷ ÷÷÷= + +ç ççç ÷ ÷÷÷ ç ççç ÷ ÷÷ ÷ç çç ç´ ´´è ø è øè ø è ø
å å å

s snf

a s a sa nc
, 

(4) 
 

where f  and c  are the externally applied force and 

moment(including the cutting force and the gravitational 
force of the platform) imposed upon at O¢ ; 2, 1,i i i= ´n s s ; 

2 ,
A

x if , 
2 ,
A

y if  and 
2 ,
A

z if  are the reaction forces at iA  along 

the 2,ix , 2,iy  and 2,iz  axes, respectively. In order to 

solve 
2 ,
A

y if , draw free-body diagram of the ith limb-body 

assembly as shown in Fig. 5 and take moment of all forces 
about iB . These implementations give 

 

( )( ) ( )

( )2 2 2

L 2, L L 2,

, 1, , ,

ˆ

0,

i i i i i

A A B
x i i y i i y i i

q l l m g q

f f 

¢- - ´ - + ´

+ + =

s n y s

s n n
       

(5)
 

 
where 

2 ,
B
y i  represents the reaction couple about the axis, 

Lm  is the mass of limb body assembly, and Ll ( Ll ¢ ) is the 
projection of the distance from mass center LC  of 
limb-body assembly to iA  along 2,is ( in ), Note that the 
so-called limb-body assembly here is exclusive of the part 
of the spherical joint rigidly connecting with the platform 
and the block of the R joint connecting the limb body via 
the prismatic joint. ŷ  is the unit vector placed in the 
direction opposite to the gravity field. 

 

 
Fig. 4.  Free-body diagram of the platform 

 

 
Fig. 5.  Free-body diagram of the ith limb-body assembly 

S joint 
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Then, taking dot product on both side of Eq. (5) with 

1,is  leads to 
 

( )
2

T TL
, L L 2, ˆA

y i i i i
i

m g
f q l l

q
é ù¢= - +ê úë ûn s y , i=1, 2, 3.    (6) 

 
Substituting Eq. (6) into Eq. (4) and rewriting in matrix 

form, results in 
 

T
w w=$ J ρ ,                   (7) 

 

w w

æ ö÷ç ¢÷= +ç ÷ç ÷çè ø

f
$ $

c
, 

( )
3

T TL
w L L 2,

1

ˆ i
i i i

i iii

m g
q l l

q=

æ ö÷çé ù¢ ¢ ÷=- - + ç ÷ê ú çë û ÷ç ´è øå
n

$ n s y
a n

, 

( )TT T
a c=J J J , ( )TT T

w wa wc=ρ ρ ρ , 

( )T

a wa,1 wa,2 wa,3
ˆ ˆ ˆ=J $ $ $ , 

2,
wa,

2,

ˆ i
i

i i

æ ö÷ç ÷= ç ÷ç ÷ç ´è ø

s
$

a s
, 

( )T

c wc,1 wc,2 wc,3
ˆ ˆ ˆ=J $ $ $ , 

1,
wc,

1,

ˆ i
i

i i

æ ö÷ç ÷=ç ÷ç ÷ç ´è ø

s
$

a s
, 

( )T

wa wa,1 wa,2 wa,3  =ρ , 
2wa, ,
A

i z if = , 

( )T

wc wc,1 wc,2 wc,3  =ρ , 
2wc, ,
A

i x if = ,  

 
where w$  represents resultant of externally applied 
wrench imposed at O¢ , including the contributions from 
cutting force, gravity of the platform itself and that of the 
limb-body assemblies transmitted through the spherical 
joints to the platform. J  is the overall Jacobian with aJ
( cJ ) being the Jacobian of actuations(constraints), and its 
element wa, wc,

ˆ ˆ( )i i$ $  represents the unit wrench of 
actuations(constraints) imposed by the ith limb to the 
platform. wρ  is the joint force vector with waρ ( wcρ ) 
being the components corresponding to aJ ( cJ ), and its 
element wa,i ( wc,i ) can be understood as the magnitude 
of wa,

ˆ
i$ ( wc,

ˆ
i$ ). Thus, the physical meaning of Eq. (7) can 

be interpreted as the externally applied wrench must be 
equilibrated by all wrenches of actuations and constraints 
imposed by all limbs to the platform. 

 
3.2  Deflection analysis 

The purpose of deflection analysis of the A3 head is to 
formulate the linear map between deflection twist of the 
platform at O¢  and the linear deflections at iA  due to 
the components compliances within limbs. Thus, a simple 
first-order perturbation gives 

 

2 2 2, 1, , , 2,
A A A

i x i i y i i z i i    + ´ = + +r α a s n s , i=1, 2, 3,   (8) 

 
where  r  and α  are the linear deflection at O¢  and 
the angular deflection of the platform, 

2 ,
A
x i  and 

2 ,
A
z i  

represent respectively the bending deflection along 2,ix  
axis and extension/compression deflection along 2,iz  axis 
at iA  due to the limb component compliance. Whilst 

2 ,
A
y i  is the linear rigid-body displacement at iA  along 

2,iy  axis such that the compatibility can be satisfied 
because all limbs share the same platform. Then, taking dot 
production on both side of Eq. (8) with 2,is  and 1,is , and 
rewriting in matrix form, yields 

 

t t=$ Gρ ,                    (9) 

 

( )TT T
t  =$ r α , ( )1

a c
-= =G J G G , 

( )TT T
t ta tc=ρ ρ ρ , ( )T

ta ta,1 ta,2 ta,3  =ρ , 
2ta, ,
A

i z i = , 

tc tc tc¢ ¢¢= +ρ ρ ρ ,  

( )
2

T

tc tc,1 tc,2 tc,3 tc, , A
i x i    ¢ ¢ ¢ ¢ ¢ ¢= =ρ ， , 

( )
2

T

tc tc,1 tc,2 tc,3 tc, , A
i x i    ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢= =ρ ， ,  

 
where t$  represents the deflection twist of the platform at 
O¢ , tρ  is the joint deflection vector with taρ ( tcρ ) being 
those associated with aG ( cG ). It should be noted that the 
element tc,i  in tcρ  contains two components, i.e. tc,i ¢  
caused by wc,i  due to the compliance of the limb and 

tc,i ¢¢  caused by the distributed gravitational force of the 
limb itself due to its compliance. Further discussion will be 
made in Section 3.5 for the formulation of tc,i ¢¢ . 

 
3.3  Compliance modeling 

Having developed the force and deflection models at 
hand, little more effort is required to formulate the 
compliance model of the A3 head by taking into account 
the effect of gravitational forces in an unloaded equilibrium 
configuration. Assuming each component is linearly elastic, 
Hooke’s law gives 

 

ta a wa=ρ C ρ , tc c wc=ρ C ρ ,          (10) 

 

    
a,1

a a,2

a,3

c

c

c

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷çè ø

C , 
c,1

c c,2

c,3

c

c

c

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷çè ø

C , 

 
where aC ( cC ) is referred to as the component compliance 
matrix of actuations(constraints). Its elements, a,ic ( c,ic ) 
can be interpreted physically as the deflection along 2,iz
( 2,ix ) axis caused by unit joint force wa,i ( wc,i ) at iA , 
Note that a,ic  and c,ic  are usually not constants but 
configuration dependent. Substituting Eq. (7) and Eq. (10) 
into Eq. (9) and assuming the system is in a non-singular 
configuration finally results in the compliance model of the 
A3 head when gravitational effects are considered 
 

t w c tc¢¢= +$ C$ G ρ ,              (11) 

 
where a c= +C C C , T

a a a a=C G C G , T
c c c c=C G C G . 

 

3.4  Formulation of aC  and cC  
In order to formulate aC  and cC , we omit the limb 
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identifier for the time being. We assume that the 
compliance matrix of a component/joint evaluated in the 
local frame { }jR  with respect to the point D can 
approximately be formulated as 

 

,

,

D
j tD

j D
j r

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø

C
C

C
, ,

j

j

j

D
x

D D
j t y

D
z

c

c

c

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷=ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

C , ,

j

j

j

D

D D
j r

D

c

c

c







æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷=ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

C , 

(12) 
 
where ,

D
j tC ( ,

D
j rC ) denotes the linear(angular) compliance 

matrices with respect to D with its diagonal elements 
j

D
xc , 

j

D
yc , 

j

D
zc (

j

Dc , 
j

Dc , 
j

Dc ) being the linear(angular) 
compliance coefficients along(about) the jx , jy , jz  
axes. Note that all elements in aC  and cC  are evaluated 
in { }2R  with respect to A and thereby the matrix is of the 
form 

2

2

2

A
x

A

A
z

c

c

æ ö÷ç ÷ç ÷ç ÷ç ÷= ¥ç ÷ç ÷÷ç ÷ç ÷çè ø

C .             (13) 

 
Then the relationship between D

jC  and 2
AC  can be 

formulated by the principle of virtual work 
 

T T
2 2 , 2 2 , 2
A D D

j j t j j j r j= -C R C R pR C R p  ,       (14) 

 
where ( )2 2 2 2j j j j=R u v w  denotes the orientation 
matrix of { }jR  with respect to { }2R , and p  is the skew 
matrix of the vector p  pointing from A to D. 

For convenience to evaluate the component compliances, 
we group all the parts of the RPS limb into four 
sub-assemblies as shown in Fig. 6 and Fig. 7, including the 
S joint, the limb body assembly(including the lead-screw 
and its supporting bearing), the P joint and the R joint. 
Consequently, the elements in aC ( cC ) can be modeled by 

 

2 2 2 2

2 2 2 2

a ,S_joint ,L_body ,P_joint ,R_joint

c ,S_joint ,L_body ,P_joint ,R_joint

,

,

A A A A
z z z z

A A A A
x x x x

c c c c c

c c c c c

= + + +

= + + +
   (15) 

 
where 

2 ,S_joint
A
zc , 

2 ,L_body
A
zc , 

2 ,P_joint
A
zc  and 

2 ,R_joint
A
zc  

(
2 ,S_joint

A
xc , 2 ,L_body

A
xc , 2 ,P_joint

A
xc  and 2 ,R_joint

A
xc ) represent the 

extension/compression(bending) compliance coefficients of 
the S joint, the limb-body assembly, the P joint and the R 
joint at A along the 2z ( 2x ) axis. Utilizing Eq. (15), these 
compliance coefficients can further be detailed as follows 
in order to closely related to the mechanical components: 

 

( )

( )

2

2

5
T T T

,S_joint ,S_joint 2 2 ,S_joint 2 2 ,S_joint 2 2
3

5
T T T

,S_joint ,S_joint 2 2 ,S_joint 2 2 ,S_joint 2 2
3

3,3 ,

1,1 ,

j j j

j j j

A A A A
z x j j y j j z j j

j

A A A A
x x j j y j j z j j

j

c c c c

c c c c

=

=

æ ö÷ç ÷ç= + + ÷ç ÷ç ÷çè ø
æ ö÷ç ÷ç= + + ÷ç ÷ç ÷çè ø

å

å

u u v v w w

u u v v w w

  (16) 

 
Fig. 6.  Free body diagram of RPS sub-assemblies 

 

 
Fig. 7.  Schematic of RPS limb-body  
under the gravitational field at θ=0° 

 

( )

2 2 2

2 2 2 2

2

2
,P_joint ,P_joint ,P_joint

,P_joint ,bearing ,nut ,screw

,screw n

,

,

,

A B
x x

A
z z z z

z

c c q c

c c c c

c l l q EA

= +

= + +

= - -

        (17) 

 

2 2 2

2 1 1

2 1 1

2
,R_joint ,R_joint ,R_joint

2 2
,R_joint ,R_joint 1 ,R_joint 1

2 2
,R_joint ,R_joint 1 ,R_joint 1

,

cos sin ,

cos sin ,

A B
x x

A B B
z z y

c c q c

c c c

c c c



  

 

 

= +

= +

= +

  (18) 

Limb-body 

P joint and R joint
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where ,S_jointj

A
xc , ,S_jointj

A
yc  and ,S_jointj

A
zc  are the linear 

compliance coefficients of the ( j2)th revolute joint within 

the spherical joint along the jx , jy , jz ( j=3–5) axes; 

2 ,P_joint B
xc (

2 ,P_joint
Bc ) is the linear(angular) compliance 

coefficients of the P joint evaluated at B along the 2x  

axis(about the 2y  axis); 
2 ,bearingzc , 

2 ,nutzc  and 
2 ,screwzc  

are the compliance coefficients of rear support bearing, nut 

and lead-screw along the 2z  axis; EA  is the tensile 

modulus of the lead-screw[31]. 
2 ,R_joint

B
xc  and 

2,R_joint
B
zc

(
2 ,R_joint

Bc ) are the linear(angular) compliance coefficients 

of the R joint evaluated at B along the 2x  and 2z  

axes(about the 2y  axis); 1,R_jointc  and 1,R_jointc (
1,R_joint

B
yc  

and 
1,R_joint
B
zc ) are the angular(linear) compliance 

coefficients of the R joint about the 1y  and 1z  axis. 
 

3.5  Formulation of tc¢¢ρ  
According to Eq. (11), 

2tc, ,
A

i x i ¢¢ ¢¢=  denotes the elastic 

deflection caused by the distributed gravitational forces of 

the limb due to its compliance. For convenience, this 

deflection can be divided into two parts, i.e. 
2 , ,1

A
x i ¢¢  caused 

by the compliance of R joint and P joint under the action of 

the gravity of limb-body, 
2 , ,2

A
x i ¢¢  caused by the compliance 

of limb-body under the effect of its own gravitational field. 

These considerations lead to 
 

(
( )( ))

2 2 2

2 2 2

2 2

2 2

, , ,1 , ,2

, ,1 L , ,P_joint , ,R_joint

T
L L , ,P_joint , ,R_joint 1,

T
, ,2 , ,L_body 1,

,

ˆ,

ˆ ,

A A A
x i x i x i

A B B
x i x i x i

i i i i

A A
x i x i i

m g c c

l q l c c 

  



 

¢¢ ¢¢ ¢¢= +

¢¢ = + +

- +

¢¢ =

s y

s y

     (19) 

 
where 

2 , ,L_body
A
x i denotes the linear deflection of the ith 

limb-body itself at iA  along the 2x  axis under the action 

of its own gravitational field when T
1, ˆ 1i =s y , which can be 

formulated as a function of iq by an interpolation 

technique using the data obtained from FEA. 
 

4  Example 
 

Now we take the A3 head shown in Fig. 1 as an example 

to investigate the TCP deflection caused by gravity. The 

dimensions and workspace of A3 head are given in Table 1. 

Tables 2–4 show the compliance coefficients of the S joint, 

P joint and R joint, all are evaluated by means of FEA and 

data from handbooks. The compliance coefficients of the 

nut, rear bearing and limb-body along the 2,iz  axis, and 

the tensile modulus EA  of the lead-screw are given in 

Table 5. The masses and their locations of limb-body and 

platform are given in Table 6. Fig. 8 shows the bending 

compliance 
2 ,L_body

A
xc  of the limb-body at iA  along the 

2,ix  axis and its linear deflection 
2 ,L_body
A
x  due to the 

gravitational field versus q. 

 
Table 1.  Dimensions and workspace of A3 

Parameter Value 

Radius of platform a/mm 250 
Radius of base b/mm 250 
Minimum distance between platform and  
base at origin configuration dmin/ mm 

540 

Maximum stroke of A3 head smax/mm 200 
Maximum nutation angle of platform θmax/(°) 40 

 
Table 2.  Linear compliance coefficients 

of the components of S joint 

Linear compliance coefficient /(nm·N1) Value 

The 1st revolute joint along x3 axis 
3 ,S_joint

A
xc  42.890 

The 1st revolute joint along y3 axis 
3 ,S_joint

A
yc  42.616 

The 1st revolute joint along z3 axis 
3 ,S_joint
A
zc  1.605 

The 2nd revolute joint along x4 axis 
4 ,S_joint

A
xc  8.921 

The 2nd revolute joint along y4 axis 
4 ,S_joint

A
yc  4.664 

The 2nd revolute joint along z4 axis 
4 ,S_joint

A
zc   9.965 

The 3rd revolute joint along x5 axis 
5 ,S_joint

A
xc   1.479 

The 3rd revolute joint along y5 axis 
5 ,S_joint

A
yc   2.241 

The 3rd revolute joint along z5 axis 
5 ,S_joint
A
zc  2.877 

 
Table 3.  Linear compliance coefficients of the components 

of P joint and R joint 

Linear compliance coefficient /(nm·N1) Value 

P joint at B along x2 axis 
2 ,P_joint

B
xc  8.090 0 

P joint at B along z2 axis 
2 ,P_joint

B
zc  2.158 0 

R joint at B along x2 axis 
2 ,R_joint

B
xc  0.852 5 

R joint at B along y2 axis 
2 ,R_joint

B
yc  0.770 6 

R joint at B along z2 axis 
2 ,R_joint

B
zc  0.656 9 

 
Table 4.  Angular compliance coefficients 
 of the components of P joint and R joint 

Angular compliance coefficient /(rad·(GN·m)1) Value 

P joint at B about y2 axis 
2 ,P_jointc  117.110 

R joint at B about y1 axis 
1,R_jointc  5.162 

R joint at B about z1 axis 
1,R_jointc  7.295 

 
Table 5.  Parameters to determine the compliance 

coefficients of nut, rear bearing, limb-body 
and lead-screw 

                Parameter Value 

Compliance coefficient of nut 

ca,nut/(nm·N1) 
3.289 5 

Compliance coefficient of rear bearing  

ca,bearing/(nm·N1) 
0.588 2 

Compliance coefficient of limb-body  

ca,L_body/(nm·N1) 
2.416 5 

Tensile modulus EA/MN 90.1 

Length of limb-body l/mm 1105 

Half length of P joint ln/mm 125 
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Table 6.  Masses and their locations of the platform  

and limb-body 

Parameter Value 

Distance from C to O lC/mm 490 
Distance from the gravity center of platform  
to O lg/mm 

86.3 

Distance from CL to Ai lL/mm 800 

Distance from CL to z2,i Ll/mm 19 

Mass of platform mM/kg 148.56 

Mass of limb-body mL/kg 123.37 

 

 

Fig. 8.  Linear deflection 
2 ,L_body
A
x  and bending compliance 

2 ,L_body
A
xc  of the limb-body assembly versus q 

 
Then, the TCP deflection, t,G

C$  can be divided into three 
components: 

 
m

t,G t t t
C ¢ ¢¢= + +$ $ $ $ ,               (20) 

 

where m m
t wC=$ T C$  is the deflection due to the gravity of 

the platform, and t wC¢ ¢=$ T C$  and t c tcC¢¢ ¢¢=$ T G ρ  
represent the deflections of TCP due to the gravity of 
limb-body assembly. CT  is the adjoint matrix of { }CR  
from O¢  to C as Fig. 9. And we denote t, ( )C

G i$ (i=1–6) as 
the ith element of t,G

C$ , i.e. x , y , z , x , y and z , 
sequentially representing the linear/angular deflection 
along/about the three orthogonal axes of the frame { }CR . 

 

 
Fig. 9.  Schematic of tool tip frame 

 
4.1  Deflection analysis 

Figs. 10(a)–(f) show the distributions of x , y , z , 

x , y  and z  in three layers(θ=0–40°, ψ=0–360°, 
z=540 mm, 640 mm, 740 mm) of workspace tW  due to 
gravitational field. It can be seen that y , z  and x  are 
symmetrically distributed with respect to the y-z plane, 
while x , y  and z  are anti-symmetric distributed 
with respect to that same plane. The distribution of y  
increases with the increase of z, while others almost keep 
unchanged. y  is much higher than x  and z  in 
value, meaning that the deflection caused by gravitational 
field is mainly dominated by y  as predicted. 

 

Fig. 10.  Distributions of the deflection of TCP under the gravitational field: θ=0–40°, ψ=0–360°, z=540 mm, 640 mm, 740 mm 
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Figs. 11(a)–(c) shows the distributions of y  due to 

gravitational forces of the platform, the limb body 
assemblies transmitted to the platform and the compliances 
of the limbs under actions of the their own distributed 
gravitational forces, as marked by m

t (2)$ , t (2)¢$  and 

t (2)¢¢$ , respectively. Compared to t (2)¢$  and t (2)¢¢$ , 
m
t (2)$  is much greater, meaning that a light weight design 

is required platform is too heavy in weight. It can also be 
observed that the deflections caused by gravity of the 
platform and limb-body are opposite to each other in 
direction, leading the deflections to be reduced to some 
extent. Meanwhile, the significant difference between the 

t (2)¢$  and t (2)¢¢$  also indicates that there remains room 
for optimization and mass of the limb-body. 

 

 

Fig. 11.  Distributions of the deflection of TCP (a) m
t$ ; (b) t$ ; (c) t$  along y axis: θ=0–40°, ψ=0–360°, z=540 mm, 640 mm, 740 mm 

 
 
 

4.2  FEA and experimental verification 
In order to validate the semi-analytical model developed, 

FEA is carried out to verify y  obtained by the 
semi-analytical approach at four orientations(θ=0°; θ=40°, 
ψ=0°; θ=40°, ψ=90°; θ=40°, ψ=180°) in z=540 mm and 
z=740 mm. It can be seen from Table 7 and Figs. 12–13 
that the results match very well. 

 

Table 7.  Comparison of the deformation of Theory  
                  and FEA by gravity             μm  

Stroke z/mm Orientation Analytical FEA 

540 

θ = 0° 68.8 54.8 
θ = 0°, ψ = 0° 72.0 71.6 
θ = 40°, ψ = 90° 84.2 71.9 
θ = 40°, ψ = 180° 79.2 80.9 

740 

θ = 0° 160.4 151.3 
θ = 0°, ψ = 0° 122.5 121.1 
θ = 40°, ψ = 90° 164.8 155.1 
θ = 40°, ψ = 180° 157.3 162.3 

 
 

 
Fig. 12.  Deflection of four orientations by gravitational field in z=540 mm 
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Fig. 13.  Deflection of four orientations by gravitational field in z=740 mm 

 
Meanwhile, the compliance is carried out using 

experimental method at five configurations(z=540 mm, 
590 mm, 640 mm, 690 mm, 740 mm and θ=0°). Fig. 14 
shows the experimental set-up where a vertical force is 
applied by a jack mounted on the spindle flange and its 
value is read by a force gauge. The deflection at the point 
where the force is applied is measured by the dial indicator 
1. The base deflections are measured by dial indicators 2 
and 3 to eliminate the deflection due to compliance of the 
base. In order to eliminate random errors, the 
measurements are averaged by ten times. Deflection 
analysis is also carried out by FEA at the corresponding 
configurations. Fig. 15 shows the deflections obtained by 
the semi-analytical method, FEA and experiment. It can be 
seen that the results obtained by the experiment are slightly 
higher than the two others. 

 
Fig. 14.  Compliance measurement experiment 

 
Fig. 15.  Results of experiment, FEA and analytical 

 
5  Conclusions 

 

(1) Force analysis shows that the linear map between the 
externally applied wrench in the operation space and the 
reaction forces in the joint space is nothing but the overall 
or generalized Jacobian since the gravity of the moving 
components can be expressed as an equivalent wrench 
imposed upon the platform. 

(2) The resultant deflection twist of the platform of the 
A3 head contains two components, i.e. the deflection 
caused by resultant externally applied wrench, and that 
transmitted from the joint deflection due to the distributed 
gravitational forces of the limb-body.  

(3) The compliance model of the A3 head allows the 
distribution of the TCP deflection caused by various 
components to be evaluated in a very efficient manner as 
validated by FEA and experiment.  
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(4) Both computational and experimental results of the 
A3 head show that the gravity has significant bearing on 
the pose accuracy. Thus, room remains for the lightweight 
yet rigidity design of the system as a whole.  
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