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Abstract: The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or 

whiskers. However, the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the 

agglomeration; although a new in-situ two-step sintering process can solve the above problems to some extent, yet the problems of low 

conversion ratio of the raw materials and the abnormal grain growth exist in this process. In this paper, an in-situ one-step synthesis 

technology is proposed, which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by 

one time in furnace. A kind of Ti(C, N)-based ceramic cutting tool material synergistically toughened by TiB2 particles and whiskers is 

fabricated with this new process. The phase compositions, relationships between microstructure and mechanical properties as well as the 

toughening mechanisms are analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite 

which is sintered under a pressure of 32 MPa at a temperature of 1700℃ in vacuum holding for 60 min can get the optimal mechanical 

properties. Its flexural strength, fracture toughness and Vickers hardness are 540 MPa, 7.81 MPa • m1/2 and 20.42 GPa, respectively. The 

composite has relatively high density, and the in-situ synthesized TiB2 whiskers have good surface integrity, which is beneficial for the 

improvement of the fracture toughness. It is concluded that the main toughening mechanisms of the present composite are whiskers 

pulling-out and crack deflection induced by whiskers, crack bridging by whiskers/particles and multi-scale particles synergistically 

toughening. This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers 

synergistically toughened ceramic tool materials. 
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1  Introduction 
 

Ceramic cutting tool materials have great advantages in 
the field of high-speed machining compared to the 
traditional high-speed steel and cemented carbide cutting 
tools, due to the high hardness, excellent wear and 
corrosion resistance of ceramics as well as good chemical 
stability. However, the brittleness and poor damage 
tolerance have limited the wide application of ceramics. Up 
to now, several useful methods have been proposed in order 
to improve the fracture toughness and flexural strength of 
ceramic materials, such as micro/nano-scale particles 
strengthening and toughening method[1], 
whiskers/fibers/nanotubes or plate-like grains toughening 
method[2−5], phase transformation toughening process and 
self-toughening technology[6]. 
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By separately adding nano-scale particles or whiskers 
with high strength and high elastic modulus into the 
ceramic matrix, the strength and toughness can be greatly 
improved[7−9], especially when adding whiskers the high 
temperature mechanical properties of ceramics can be 
higher[10]. The strengthening and toughening effects get 
remarkable with the increased content of reinforcing phase; 
however, when the content of nano-scale particles is high, 
the nano-particles tend to agglomerate, thus during the 
sintering process, the agglomerate particles grow fast and 
develop into large grains, and the fast moving grain 
boundaries lead to mass of pores entrapped into the grown 
grains, which results in poor densification and is harmful to 
mechanical properties[1]. Similarly, when the whisker 
content is higher, whiskers are hard to be dispersed, and it 
is easier to form three dimensional rigid network skeletons, 
this skeleton structure can produce bridging and springing 
effects during sintering, leading to the poor density and 
mechanical properties[11]. Compared with separately adding 
particles or whiskers, simultaneously adding both particles 
and whiskers can weaken the agglomeration phenomenon 
to some extent, thus the unique strengthening and 
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toughening effects of nano-scale particles and whiskers can 
be well developed, and the mechanical properties of 
ceramic cutting tool materials can be improved[12−14]. But 
the process of adding whiskers or nanoparticles still has the 
disadvantages of high cost and health hazard because of the 
flexible preparation process of whiskers with small 
production[11, 15] In-situ synthesis technology can be used to 
directly fabricate reinforcing whiskers or particles in 
ceramic[2, 16] or metal matrix[17−19] and can be seen as an 
alternative strategy to overcome the above disadvantages. 
However, there are few reports about the in-situ synthesis 
of particles and whiskers toughened ceramic tool 
materials[20−22]. 

Although the in-situ two-step sintering process (i.e., first 
step for fabricating whiskers or nanoparticles in matrix and 
the second step for sintering the compact) [20−21] can solve 
the above problems to some extent, yet the problems of low 
conversion ratio of the raw materials and the abnormal 
grain growth exist in this process. In the present work, an 
in-situ one-step synthesis technology is proposed, which 
means the growth of whiskers or nanoparticles and the 
sintering of the compact can be accomplished by one time 
in furnace. With this process, an in-situ TiB2 
particle-whisker toughened Ti(C, N)-TiB2 ceramic cutting 
tool material was fabricated. The morphology and 
toughening mechanisms of whiskers were discussed. 

 
2  Experimental Procedures 

 
2.1  Precursor materials and preparation procedures 

Commercially available Ti, B4C, BN and Ni powders 
were used as the precursor materials, of which Ni only acts 
as a sintering additive. The purity, particle size, 
manufacture and the main impurities of the precursor 
powders were shown in Table 1. The molar ratio of the 
precursor materials were listed in Table 2. 

 
Table 1.  Purity, particle size, manufacture and impurity   

of the precursor materials 

Substance 
Purity  
wt.% 

Particle 
size d/µm 

Manufacture 
Main impurity 
and comment

wt.% 

Ti ~99.0 ~48 
GRINM,  

China 

CaO<0.05, 
MgO<0.05, 
SiO2<0.01, 

TiO2<0.005, 
Fe2O3<0.005

BN ~99.0 ~1 YPFC, China 

B2O3>0.28, 
N3Na>0.14, 
CaO>0.02, 

Fe2O3>0.05, 
Al2O3>0.006

B4C ~99.5 ~1 YPFC, China 
Fe<0.05,  
Si<.05, 

C<0.5, O<0.3

Ni ~99.8 ~48 
GRINM, 

China 

Co<0.05,  
C<0.03,  
Fe<0.03, 

Pb<0.003,  
S<0.003,  

Mg<0.002 

 
Table 2.  Mol ratio of the precursor materials 

Samples No.
Mol ratio of the precursor materials /mol.% 

Ti BN B4C 

TBCN 2.9 0.7 0.3 

 
The mixed slurries were ball-milled, and then dried in a 

vacuum dry-type evaporator (Moder ZK-82A, China). After 
that, the dried powders were sieved through a 100-mech 
sieve for further use. The dried powders were placed into a 
graphite die and in-situ hot-pressed with an applied 
pressure of 32 MPa at 1700℃ with the holding time of 60 
min in vacuum in a sintering furnace. 

 
2.2  Characterization 

The sintered compacts were cut, ground and polished 
into specimens with a dimension of 3 mm´4 mm´30 mm. 
The flexural strength was tested using the three-point 
bending tester (Model WD-10, China) with a span of 20 
mm and a loading velocity of 0.5 mm/min. The Vickers 
hardness was measured on the polished surface using a 
Vickers diamond pyramid indenter (Model 120, China) 
with a load of 196 N and a loading holding time of 15 s. 
The fracture toughness measurement of materials was 
determined by the Vickers indentation method proposed by 
EVANS, et al[23]. The relative density of specimens was 
measured by the Archimedes’ method with the distilled 
water as medium. The fractured surfaces and cracks on the 
polished surfaces were observed by scanning electron 
microscopy (SEM, SUPRA-55, ZEISS, Germany). Phase 
identification was carried out by X-ray diffraction analysis 
(XRD, RAX-10A-X, Hitachi, Japan) with copper Kα 
radiation. 

 
3  Results and Discussion 

 
3.1  Phase composition and microstructure 

Fig. 1 showed the XRD pattern of the sample. It revealed 
that TiC0.3N0.7 and TiB2 were the major phases synthesized 
by reaction (1) in the sintering process, and there were no 
other intermediate phases or impurities. 

 
(1+2x+0.5y)Ti + xB4C+yBN=TiCxNy+ (2x+0.5y) TiB2,  

x+y =1,               (1) 
 

 
Fig. 1.  XRD pattern of Ti(C,N)-TiB2 ceramic tool material  
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The SEM morphology of fractured surface of the 
sintered composite was shown in Fig. 2(a). It revealed that 
the diameter, length and aspect ratio of TiB2 whiskers were 
about 0.5−1 µm, 20 µm and 20, respectively. The TiB2 
whiskers synthesized by in-situ reaction had complete and 
clean surface, and the whisker section presented regular 
hexagon or quadrangle. Fig. 2(b) showed the SEM 
morphology of polished surface of the composite. The 
black phase was TiB2 and the grey phase was TiC0.3N0.7. It 
was found that the whiskers are uniformly distributed 
among the matrix, and the pores were hardly observed on 
the polished surface, which indicated that the composite 
had high density. Therefore, the integrated fabrication 
process of whisker synthesis and composite densification 
was achieved by one step.  

 
 

 
Fig. 2.  SEM morphology of fractured surface and      

polished surface of Ti(C, N)-TiB2 composite 

 

 
3.2  Mechanical properties and toughening 

mechanisms 
The mechanical properties of the sintered composite 

ceramic tool material were shown in Table 3. The fracture 
toughness of the whisker-toughened composite synthesized 
by in-situ reaction was improved markedly. Due to the high 
elasticity modulus and high strength of TiB2 whiskers, 
when the external load was applied on the material, the 
TiB2 whiskers could well undertake and transfer the load, 
thus the flexural strength of the composite was enhanced. 
Additionally, instant high temperature induced by the 
exothermic reaction (1) promoted the densification, leading 
to the higher density, which is beneficial for the increase of 
flexural strength.  

 
 

Table 3.  Mechanical properties of Ti(C, N)-TiB2 composite 
ceramic tool material 

Composite 
Flexural strength

f/MPa 

Vickers 
hardness 
HV/GPa 

Fracture 
toughness 

KⅠC/(MPa • m1/2)

Ti(C,N)-TiB2 540 20.42 7.81 

 
 
The fracture toughness of the composite was much 

higher than that of monolithic Ti(C, N) or TiB2. The 
increased fracture toughness was ascribed to the synergistic 
toughening effects of the in-situ synthesized whiskers and 
particles. The main toughening mechanisms were analyzed 
combining with the SEM morphologies shown in Fig. 3(a) 
to Fig. 3(e). Firstly, the nano-scale phases formed from the 
in-situ reaction were uniformly distributed at the surfaces 
of whiskers and particles, which made the interfaces much 
coarser as shown in Fig. 3(a). Thus, it was believed that the 
coarse surface could enhance the frictional force when 
whiskers pulling-out from the matrix. Secondly, Fig. 3(b) 
showed the left holes after the whiskers pulling-out. 
Whisker pulling-out would consume much more fracture 
energy, so the fracture toughness would be promoted. 
Moreover, the effects of whiskers pulling-out could relax 
the stress of crack tip, and then the stress intensity factor of 
crack tip reduced. So, the effects of whisker pulling-out 
were beneficial for the increase of fracture toughness. 
Thirdly, cracks were bridged by a portion of TiB2 whiskers 
and particles located at particular places as shown in Fig. 
3(c) and Fig. 3(d). The crack bridging whiskers and 
particles connect two surfaces of a crack and provide with a 
force which makes two surfaces of a crack draw close. This 
results in the increase of stress strength factor of the 
composite with the extension of crack. Fourthly, Crack 
deflection was also observed in Fig. 3(e). Due to the high 
strength of TiB2 whisker, when the cracks encounter TiB2 
whisker, the cracks tended to be deflected and propagated 
along the TiB2 whisker. Thus the crack propagation path 
extended, which was beneficial for improving the 
toughness by the increased consumption of fracture energy. 
Moreover, the particle size ranging from nano-scale to 
micro-scale had the multi-scale synergistically 
strengthening and toughening effects. 
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Fig. 3.  SEM morphology showing different toughening 

mechanisms 

 

4  Conclusions 
 

(1) A type of Ti(C, N)-based ceramic cutting tool 
material synergistically toughened by TiB2 particles and 
whiskers was fabricated by in-situ synthesis technology, 
with this process the whisker synthesis and composite 
densification were carried out by one step. The composite 
had relatively high density, and the TiB2 whiskers 
possessed good surface integrity.  

(2) The fracture toughness of the new Ti(C, N)-TiB2 

composite was markedly improved up to 7.81 MPa • m1/2. 
The flexural strength and Vickers hardness were 540 MPa 

and 20.42 GPa, respectively. 
(3) The main toughening mechanisms of the present 

composite were crack bridging by whiskers and particles, 
whiskers pulling-out, crack deflection and multi-scale 
particles synergistically toughening. 
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