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Abstract: Many high-quality forging productions require the large-sized hydraulic press machine (HPM) to have a desirable dynamic 

response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the 

desirable low-velocity forging condition difficult to obtain. So far little work has been found to estimate the dynamic response of the 

forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic 

response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this 

complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the 

complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic 

response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these 

analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original 

movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The 

simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and 

these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the 

high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition. 
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1  Introduction 

 
The large-sized hydraulic press machine (HPM) is a 

crucial piece of equipment in industry. Its purpose is to 
forge a metal work piece to form a desirable shape in the 
dies. Generally, many high-quality productions need an 
isothermal forging[1–2], which is usually required to work 
under a desirable low-velocity condition. This condition 
depends on the dynamic response of the HPM. Thus, the 
estimation of the dynamic response of the HPM is very 
important to the high-quality forging.  

As the strength and size of a work piece increase, the 
deformation force becomes huge, which leads to a huge 
driving force from the HPM for forging[3–4]. This makes the 
forging process to involve many complex behaviors at low 
velocity. First, the deformation force of a work piece is 
complex[5–7]. On the one hand, since the shape of the work 
piece is often irregular, this leads to an irregular 
deformation during forging. This irregular deformation will 
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produce a complex deformation force of the work piece. On 
the other hand, there is a complex influence from the 
material property, stress, stress ratio, and temperature on 
this deformation force. Second, the coupling between 
mechanism dynamics and hydraulic dynamics are 
inevitable due to mutually transfer of both motion and force 
between the mechanism system and the hydraulic system[8]. 
Furthermore, the friction force is inevitable and its model is 
also complex at the low velocity[8–12]. All aforementioned 
factors bring a big challenge for the estimation of the 
dynamic response of the HPM. 

Little work has been contributed to the estimation of the 
dynamic response of the hydraulic equipments, except via 
experiment[13–15] and simulation[15–16]. But they lack 
generality since these results are only effective for their 
special conditions. They also never pay attention to the 
conditions of stable run, vibration, and creep. In other fields, 
many researchers have contributed to estimate the friction 
influence on the velocity vibration and creep[17–19]. 
However, their results are difficult to extend to this 
complex forging process. Further, little work was found to 
analyze the influence of the friction and the deformation 
force of the work piece on the dynamic response of the 
complex forging process, except Refs. [16, 20]. But Refs. 
[16, 20] are only from simulation to estimate this influence, 
whose results are only effective for their special conditions. 
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Thus, it is still necessary to estimate the dynamic response 
of this complex forging process. 

In this paper, an approximate-model based estimation 
method is proposed to estimate the dynamic response of the 
HPM around the low-velocity working point. First, an 
approximate model is developed to approximate this 
complex HPM system around the working point. On this 
basis, the conditions for stability, vibration, and creep are 
derived. All analytical results are further verified by both 
simulations and experiment. 

 
2  Modeling of the HPM 

 

The HPM studied in this paper is shown in Fig. 1. This 
hydraulic press system includes three driving cylinders and 
four return cylinders, which are located above and below 
the work plate respectively in order to drive the movement 
of the work plate. These cylinders are driven by their 
corresponding hydraulic systems, which consist of pumps, 
valves, and pipes. A control system is also required to 
adjust the servo valve of the hydraulic system to achieve a 
desirable velocity for the work plate to have the 
high-quality forging. 

 

 

Fig. 1.  Diagram of the HPM 

 
 

2.1  Dynamics of the forging process 
According to the Newton’s second law, the movement 

model of the work plate is the following: 
 

2
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d d
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dd
d Z f
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tt
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where M is the mass of both the work plate and all 
hydraulic cylinders respectively, and x is the displacement 
of the work plate, B is the viscous damping coefficient at 

the guide pillar and the cylinder seal, Fd is the driven force 
from the driven cylinders, FZ is the deformation force of the 
work piece, F2 is the support force from the return 
cylinders and may be regarded as a constant value, Ff is the 
friction at the piston-cylinder seal and guide, g is the 
acceleration of gravity. 

The driving force model of the hydraulic cylinder can be 
represented by[21] 

 
,dF Ap=                   (2) 
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where Q is the flow, p is the pressure, A is the area sum of 
all hydraulic cylinders, V0 is the initial volume, βe is the 
spring moment of medium. 

The deformation force of a work piece is complex. It is a 
function of the displacement x, velocity v of the work plate, 
and the shape, material, and temperature of the work piece. 
For example, a long rectangular work piece with the 
Rosserd material model for aluminum alloy is expressed 
as[5–7, 20] 
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where a, h, l are the width, the height, and the length of this 
forging respectively, V=ahl is the volume, μs is the friction 
coefficient between the forging and the dies, S  is the flow 
stress, the parameters c, n, m, and y depend on the material 
and the temperature, x h = and ( )v h x= -  are the 
strain and the strain rate respectively, v is the velocity of the 
work plate. 

A well-known friction model is the Stribeck friction 
model since it is a well representation of the dynamic 
behavior of the friction at low velocity[20]. Its equation is as 
below:  

 
2
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where Fc and Fs are the Coulomb and static friction values, 
vs and 2 are the Stribeck velocity and the friction 
coefficient respectively.  

 
2.2  Approximate model  

Obviously, the dynamics of the forging process 
represented by Eqs. (1)–(4) is complex, which is difficult to 
solve analytically. To ease the complexity of the dynamic 
response estimation, an approximate model is developed. 
This developed model will also be easily used to design the 
controller. 

The forging distances of many work pieces are much 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·567·

smaller compared to the whole stroke of the work plate, 
which makes the volume Ax caused by their deformation 
quite smaller than the initial volume V0. In these real 
conditions, the driving force (Eq. (2)) may be approximated 
by  

 

2 0 d
.

d
d

e

V F
AQ A v

t
» +                (5)  

 
The integral of Eq. (5) gives the following: 
 

0 ,d d xF k t k x C= - +                (6) 

 
where 0 ,d ek AQ V= 2

0 ,x ek A V=  C0 is constant. 
Then, at a small forging distance, the deformation force 

may be also simplified as a linear function of the 
displacement x and the velocity v  

 

0 ,Z zx zvF K x K v F= + +               (7) 

 
where the parameters Kzx, Kzv and F0 may be obtained from 
the Taylor expansion via the deformation force model, such 
as Eq. (3), or via data identification. For a long rectangular 
work piece with the Rosserd material model for aluminum 
alloy, these parameters at the working point (x=x0, v=v0) 
can be expressed as follows: 
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We also approximate the Stribeck friction model (4) with 

a linear model at the working point v=v0: 
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Inserting Eqs.(6–8) into Eq. (1), the dynamic model of the 
HPM is rewritten as: 
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where ξ and n are the damping ratio and the natural 

frequency respectively. Eq. (9) may be rewritten as 
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where 1 0 0 2.F Mg C F F = - + - - Its solution can be 

easily derived as follows. 
When 0≤ξ<1, 
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When ξ>1, 
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When ξ=1, 
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where 2

1,2 1,n nr   =-  - 3 ,nr =- 21 ,d n  = -  
and the parameters C1, C2, C3, C4, C5 and C6 can be decided 
according to the initial conditions. For example, inserting 
the initial conditions (0)x and (0)v into Eq. (12), we have 
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Since these solutions include the exponential term and the 
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sinusoidal term, it is difficult to directly estimate the 
velocity response. 

 
3  Estimation of Velocity Response  

 

In this section, the dynamic responses of the forging 
process will be estimated from three aspects. 

 
3.1  When 0≤ξ<1 

Differentiating Eq. (12), we have 
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k
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where  and J0 may be derived from Eq. (12). The 
following two cases will be discussed. 

 
3.1.1  When ξ=0 

The system velocity may be rewritten as 
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k
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        (17) 

 
From Eq. (17), the velocity will have an undamped 
oscillation. When J0 is larger than one, the system will 
appear creep since the velocity may be equal to zero. 

 
3.1.2  When 0<ξ<1  

Obviously, from Eq. (16), the velocity response is fully 
dependent on the product of the exponential term and the 
sinusoidal term. Since the term ξωn is larger than zero, the 
exponential term converges to zero as t =¥ . This means 
the system can run in a stable configuration and the final 
velocity v¥  is equal to kd/(Kzx+kx).  

Of course, the velocity v will fluctuate before converging 
to the final velocity .v¥  To make a prediction of the 
dynamic response, the maximal overshoot of the velocity 
should be estimated. The velocity v reaches its maximal 
value when sin(ωdt+ψ)=1 due to two reasons: 

(1) Since the frequency ωd is large, the maximal value of 
the sinusoidal term is taken at near zero time. 

(2) The exponential term reduces with time and reaches 
its maximal value at the zero time. 

So the required time of the maximal overshoot may be 
estimated as  
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When 0 (3π / 2 ) ,dt  = -  the maximal overshoot is 

larger than v¥  and may be calculated as  
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When 0 (π / 2 ) ,dt  = - the maximal overshoot is 

smaller than v¥  and may be calculated as  
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If max 0,nv > then the system will not appear creep. 

Otherwise, it will appear creep. 
 

3.2  When ξ>1 
Differentiating Eq. (13), we have 
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Since r1 and r2 are smaller than zero, the system can run in 
a stable configuration and the final velocity v¥  is equal to 
kd/(Kzx+kx) as t = .¥  Thus, when ξ>1, the system can 
also run stably.  

Then, differentiating Eq. (21), we have 
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The extreme of the velocity is gained at 
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that is calculated from d ( ) d 0.v t t =   

If 0≤t0< ,¥  that is 2 2
3 1 4 2 ,C r C r≥- the minimal velocity 

is obtained by  
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If t0<0, that is 2 2

3 1 4 20 / ( ) 1,C r C r<- < d ( ) / dv t t is a 
monotonic increasing function when t>0. Thus, the 
minimal velocity is obtained by 

 

min (0).v v=                 (24) 

 
If 0 ,t =¥ that is C4=0, the minimal velocity is 

           due to the monotone increasing function of Eq. 
(21) when C3<0. When C3>0, then minimal velocity is 

min ( )v v= ¥  due to the monotone decreasing function of 
Eq. (21). 

Thus, when the minimal velocity is smaller than zero, the 
system will appear creep. Otherwise, it will not appear 
creep. 

 
3.3  When ξ=1  

Differentiating Eq. (14), we have 
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According to the limit theorem, the system will converge to 
a constant velocity and this final velocity may be expressed 
as ( ).d zx xv k K k¥ = / +  Then, differentiating Eq. (25), we 
have 

 

5 6 6
d ( )

exp( )( 2 ).
d n n n n
v t

t C C C t
t

   = - - +    (26) 

 
The extreme of the velocity is gained at 

0 6 5 6(2 )n nt C C C = -  that is calculated from
d ( ) d 0.v t t =  Similarly, the minimal velocity is obtained 
by  

 

min 0min[ ( ), (0), ( )].v v t v v= ¥           (27) 

 
Thus, when the minimal velocity is smaller than zero, the 
system will appear creep. Otherwise, it will not appear 
creep. 

 
4  Simulation and Experiment Verification 

 

Both simulation and experiment are used to check the 
validity of the analytical results.  

 
4.1  Simulation verification 

The basic parameters of the HPM in the simulations are 
set as {Fs=11 742.98 N, Fc=10 419.54 N, 2=82 298.41  
N/(m • s–1), V0=3 m3, βe=0.7´109 N/m2, B=6.85´105 

N/(m • s–1), M=54 474 kg, A=0.53 m2, l=500 mm, a=50 
mm, h=44 mm}. 

 
4.1.1  Model verification 

In this model verification, a long rectangular work piece 
is forged. Its material is aluminum alloy (AL-1100) and the 
deformation force model is represented by Eq. (3). The 
original system (Eqs. (1)–(4)) is used to verify the 
approximate model (11). As shown in Fig. 2, under 
different forging conditions, both the original system and 
the approximate model always have the same dynamic 
responses, due to very small approximate error. Thus, this 
modeling is effective. 

 

 
Fig. 2.  Comparison of modeling performance 

4.1.2  Verification of estimation performance  
In the following verifications, all simulations are 

conducted on the original system (Eqs. (1)–(4)). Then, 

these simulations are used to verify the analysis results on 

section 3. The simulation parameters are set to satisfy the 

conditions derived in the section 3.  

(1) Result verification at ξ=0 

The other simulation parameters are set as {x(0)=0, 

v(0)=0.01´10–3 m/s, Fd(0)=0.886×105 N, vs=0.450 938´10–3 

m/s, F2=1.389 8´105 N, Q=0.409 34´10–4 m3/s, n=2.5, 

us=0.8, c=2.327 1, y=11.998 9, m=0.13}. By calculation, ξ 

and J0 are equal to 0 and 1.022 6. Thus, according to the 

analysis result in section 3(A), the system should appear 

undamped oscillation and creep. Also, the mean velocity is 

estimated equal to 0.06 mm/s. These points will be further 

verified with the simulation using these actual parameters. 

The simulation result is shown in Fig. 3. From this figure, it 

is clear that the system appears undamped oscillation and 

creep (v=0 in the circle), and the mean velocity is equal to 

0.061 mm/s. This proves the effectiveness of the condition 

of the undamped oscillation and creep. 
 

 
Fig. 3.  Undamped oscillation and creep at ξ=0 

 

(2) Result verification at 0<ξ<1 
Two cases are used to check the result derived at 0<ξ<1. 

At the case 1, the simulation parameters are set as {x(0)=0, 

v(0)=0.011´10–3 m/s, Fd(0)=0.886 5´105 N, vs=0.8´10–3 

m/s, F2=1.550 5´105 N, Q=0.359 95´10–4 m3/s, n=2.2, 

us=0.85, c=4.194 8, m=0.14, y=11.392}. By calculation, ξ 

is equal to 0.718 6, and the final velocity and the minimal 

velocity are predicted equal to 0.05 mm/s and -0.001 

mm/s, respectively. Thus, according to the analysis result 

in section 3(A), the system should run stably and appear 

creep. These points will be further verified with the 

simulation using these actual parameters. This simulation 

result is shown in Fig. 4, which shows that the system can 

run stably and appear creep, and the final velocity and the 

minimal velocity are equal to 0.051 mm/s and 0 mm/s. 

This proves the effectiveness of the condition of the stable 

run and creep. 
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Fig. 4.  Stable run and creep at 0<ξ<1 

 
At case 2, the simulation parameters are set as {x(0)=0, 

v(0)=0.01´10–3 m/s, Fd(0)=0.886 7´105 N, vs=1´10–3 

m/s, F2=1.344 75´105 N, Q=1.163 1´10–4 m3/s, n=2.4, 
us=0.6, c=1.677 7, m=0.15, y=13.018 8}. By calculation, 
ξ is equal to 0.505 9, and the final velocity and the maximal 
overshoot are predicted equal to 0.2 mm/s and 0.32 mm/s 
respectively. Thus, according to the analysis in section 3, 
the system should run stably and does not appear creep. 
These points will be further verified with the simulation 
using these actual parameters. This simulation result is 
shown in Fig. 5, which shows that the system can run 
stably and the final velocity and the maximal overshoot are 
equal to 0.2 mm/s and 0.35 mm/s. This proves the 
effectiveness of the condition of a stable run. 

 

 
Fig. 5.  Stable run at 0<ξ<1 

 

(3) Result verification at ξ>1 

The simulation parameters are set as {x(0)=0, 
v(0)=0.08´10–3 m/s, Fd(0)=1.1´105 N, vs=1.8´10–3 m/s, 
F2=1.33´105 N, Q=1.718´10–4 m3/s, n=2.4, us=0.75, 
c=1.069, m=0.1, y=12.89}. By calculation, ξ is equal to 
1.133 1, and the final velocity and the maximal overshoot 
are predicted equal to 0.3 mm/s and 0.351 mm/s, 
respectively. Thus, according to the analysis in section 3(B), 
the system may run stably and does not appear creep. This 
point will be further verified with the simulation using 
these actual parameters. This simulation result is shown in 
Fig. 6. From this figure, it is clear that the system runs 
stably, and the final velocity and the maximal overshoot are 
equal to 0.301 mm/s and 0.36 mm/s, respectively.  

 

 
Fig. 6.  Stable run at ξ>1 

 
Another simulation parameters are set as {x(0)=0, 

v(0)=0.025´10–3 m/s, Fd(0)=1.196´105 N, vs=1.2´10–3 

m/s, F2=1.325 3´105 N, Q=0.650 87´10–4 m3/s, n=2.4, 
us=0.9, c=1.133, m=0.1, y=12.473}. By calculation, ξ is 
equal to 1.252 7, and the final velocity and the minimal 
velocity are predicted equal to 0.1 mm/s and -0.024 mm/s. 
Thus, according to the analysis in section 3(B), the system 
may run stably and appears creep. This point will be further 
verified with the simulation using these actual parameters. 
This simulation result is shown in Fig. 7. From this Figure, 
it is clear that the system runs stably and appears creep, and 
the final velocity and the minimal velocity are equal to 0.1 
mm/s and -0.02 mm/s, respectively.  

 

 
Fig. 7.  Stable run and creep at ξ>1 

 

(4) Result verification at ξ=1 
The simulation parameters are set as {x(0)=0, 

v(0)=1´10–3 m/s, Fd(0)=1.359´107 N, vs=2.223 9´10–3 

m/s, F2=1.003´107 N, Q=18´10–4 m3/s, n=2.1, us=0.95, 
c=0.460 9, m=0.12, y=96.65}. By calculation, ξ is equal 
to 1, and the final velocity and the maximal overshoot are 
predicted equal to 1 mm/s and 1.6 mm/s, respectively. 
Thus, according to the analysis result in section 3(C), the 
system may run stably and does not appear creep. This 
point will be further verified with the simulation using 
these actual parameters. This simulation result is shown in 
Fig. 8, which shows that the system runs stably, the final 
velocity and the maximal overshoot are predicted equal to 
0.99 mm/s and 1.59 mm/s, respectively.  
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Fig. 8.  Stable run at ξ=1 

 
 
4.2  Experiment verification 

An experiment on the practical 4000T HPM is used to 
verify the effectiveness of these derived results. The 
schematic of the experimental setup is shown in Fig. 9. The 
entire system is powered by a pump station. The oil 
pressures of three driving cylinders located above the work 
plate are controlled by servovalves. These servovalves 
receive control signals from a control panel equipped with 
a PC, a PLC (SIMATICS7-300) and a data acquisition 
board for pressure, displacement and velocity measurement. 
The pressure data are collected using the pressure sensors 
installed at the inlet of the driven cylinders. The 
displacement sensors are installed at the vertical columns. 
In this verification, a long rectangular aluminum alloy work 
piece is forged. The work pieces at the before- and 
after-forged are shown in Figs. 10(a) and 10(b), 
respectively.  

 

 
Fig. 9.  Practical 4000T HPM 

 

 
Fig. 10.  Work piece at the before- and after-forged 

 
In this experiment, the pressure is shown in Fig. 11(a). 

According to the practical or calculated parameters in Table 
1 and Eqs. (7), (8), and (10), the parameter ξ is calculated 
equal to 0.029 2, and the final velocity and the maximal 

overshoot are estimated equal to 0.1 mm/s and 0.162 
mm/s, respectively. This system should run in a stable 
condition according to the analysis result in the section 
3(A). The practical velocity response in the Fig. 11(b) 
clearly checks this point since it can run stably around 
0.095 mm/s and its maximal overshoot is equal to 0.148 
mm/s. Thus, this performance analysis is effective. 
 

Table 1.  System parameters  

Description Value 

Mass of work plate M/kg 54 474 
Area sum of hydraulic cylinders A/m2 0.53 
Viscous damping coefficient B/(N • (m • s–1) –1) 6.85´105 
Spring moment of medium βe/(N • m–2) 0.7´109 
Initial volume V0/m3 3 

Stribeck velocity vs/(m • s–1) 0.5´10–3 
Static friction value Fs/N 11 742.98 
Coulomb friction value Fc/N 10 419.54 
Friction coefficient σ2/(N • (m • s–1) –1) 82 298.41 
Parameter Kzx 1´105 
Parameter Kzv 3.602´105 

  

 
Fig. 11.  Forging response 

 

 

5  Conclusions 
 

(1) An approximate model based dynamic response 
estimation method is proposed for the high-quality forging. 
It is an effective solution to achieve the desirable 
low-velocity forging condition.  

(2) The developed approximate model can represent the 
system response well at low-velocity working point. This 
may greatly ease the complexity of the estimation of the 
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dynamic response. 
(3) The dynamic responses of the forging process can be 

predicted well. The conditions for stability, vibration, and 
creep are also derived effectively, which will benefit the 
design of the controller for a satisfactory dynamic 
performance. 

(4) The correctness of all analytical results has been 
confirmed by both experiment and simulations. 
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