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Abstract: The position synthesis of planar linkages is to locate the center point of the moving joint on a rigid link, whose trajectory is a 

circle or a straight line. Utilizing the min-max optimization scheme, the fitting curve needs to minimize the maximum fitting error to 

acquire the dimension of a planar binary P-R link. Based on the saddle point programming, the fitting straight line is determined to the 

planar discrete point-path traced by the point of the rigid body in planar motion. The property and evolution of the defined saddle line 

error can be revealed from three given separate points. A quartic algebraic equation relating the fitting error and the coordinates is 

derived, which agrees with the classical theory. The effect of the fourth point is discussed in three cases through the constraint equations. 

The multi-position saddle line error is obtained by combination and comparison from the saddle point programming. Several examples 

are presented to illustrate the solution process for the saddle line error of the moving plane. The saddle line error surface and the contour 

map presented to show the variations of the fitting error in the fixed frame. The discrete kinematic geometry is then set up to disclose the 

relations of the separate positions of the rigid body, the location of the tracing point on the moving body, and the position and orientation 

of the saddle line to the point-path. This paper presents a new analytic geometry method for saddle line fitting and provides a theoretical 

foundation for position synthesis.  
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1  Introduction 
 

The position synthesis of planar linkages is to locate the 
center points of their moving joints, whose trajectories are 
exactly or approximately circles, or straight lines. The 
center points can be taken as the moving hinges to 
construct the required planar linkages. The Burmester 
theory can be used to determine these characteristic 
points[1]. If several positions of a rigid link are prsecribed, 
the relative displacement pole can be introduced to locate 
the circle point and the Ball point.  

BAI[2] conducted the precision synthesis for a planar 
four-bar linkage with fewer than five positions, and a 
planar slider-crank linkage with fewer than four positions 
by means of the graphical method. The algebraic method 
has  aslo been employed to establish the constraint 
equations of a binary link in synethesis of linkages. ROTH 
[3–4] , SUH, et al[5], SANDOR, et al[6], FREUDENSTEIN, et 
al[7–10], VELDKAMP[11] developed the analytical 
expressions of the Burmester theory for planar motion and 
extended it to the higher order curvature, which provides 
the theoretical base for the synthesis of linkages. These 
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classical works address the following topics: (i) what 
linkage can trace the desired coupler curves, (ii) the 
existence of solution to the kinematic synthesis in planar 
motion with higher order, and (iii) the cognate linkages.  

Unfortnately the Burmester theory or the algebraic 
method is restricted to the position synthesis of planar 
linkages with the number of the prescribed positions of a 
rigid link not exceeding five. Naturally, the optimization 
method is applied to the approximate synthesis of planar 
linkages. Under the least square premise by AKHRAS et 
al[12], the construction error is taken as the objective 
function; the coordinates of the moving and fixed hinge 
points are regarded as the optimization variables. 
ANGELES et al[13], indicated that min-max optimization is 
more desirable in mechanism synthesis. LIU, et al[14],  
systematically studied the theory of saddle point 
programming and applied it to the geometric error 
evaluation. Based on the saddle point programming theory, 
considerable work has been done on modeling the min-max 
fitting error[15–19].  

In this paper, a novel geometric approach is proposed to  
demonstrate how the saddle point theory is used to evaluate 
the fitting error of a straight line defined by a set of  
discrete points. The error surface on the moving body 
evolves with increase in the number of positions of the 
rigid body. This provides a theoretical basis for solving the 
optimization problem and the characteristic points yielding 
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a minimum saddle line error. 
 

2  Error Evaluation and Saddle Line Fitting 
 
The path traced by point P of a rigid link or body in 

discrete planar movement is represented by a discrete point 
set R(i) 

P in the fixed frame {Of; if, jf}. If a straight line is 
taken to fit R(i) 

P , the normal distance from a point in R(i) 
P  to 

the fitting line is a measure of the fitting error. A straight 
line, determined by minimizing the maximum fitting error, 
is defined as the saddle line. The corresponding minimal 
maximum fitting error is defined as the saddle line error.  
The saddle line can be sought from the min-max principle 
or the saddle point programming. A point in R(i) 

P  with the 
maximum fitting error is called as the saddle line 
fitting-point, or the characteristic point. Points P(1), P(2) and 
P(3) in Fig. 1 are three characteristic points. 

 

 
Fig. 1.  Points with the extreme normal fitting errors 

 

Based on the saddle point programming, the saddle line 
of R(i) 

P  is determined by a finite number of characteristic 
points. Once the characteristic points are found, the saddle 
line error can be obtained through the analytic geometry 
method. The properties of the saddle line error can be 
investigated further. 

 
3  Saddle Line of Three Points 

 
Point P of a rigid body has the coordinates (xPm, yPm) in 

the moving Cartesian coordinate system {Om; im, jm}. Let  
(x(i) 

P , y(i) 
P ) be a discrete displacement vector of P. The 

relationship between (xPm, yPm) and (x (i) 
P , y (i) 

P ) can be 
represented by the following coordinate transformation: 
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M(i) is the displacement matrix of the rigid body[20]; (x(i) 
Om, y(i) 

Om) 
are the coordinates of origin O(i) 

m  of {Om; im, jm}; γ(i) is the 
rotation angle relative to the point O(i) 

m , shown in Fig. 2. 

 
Fig. 2.  Moving Cartesian coordinate systems 

 

For geometric error evaluation, the number of 
characteristic points is three. These points distribute on 
both sides of the saddle line. It means, the parameter of the 
saddle line can be determined as long as we find the 
positions of the three characteristic points. 

In the case that three positions, P(1), P(2) and P(3) are the 
discrete points in the fixed frame traced by the point P, 
there are totally three cases corresponding to three 
distributing lines L12,3, L13,2 and L23,1, shown in Fig. 3. 
These lines have some common properties: the slopes can 
be obtained by two of the three characteristic points. The 
fitting error for each distributing line is half of the normal 
distance from a characteristic point to the distributing line. 

 

 
Fig. 3.  Three distributing lines based on 

the three characteristic points 

 

Let line Lij,k and its corresponding fitting error ij,k 
represent the distribution case in which points P(i) and P(j) 
lie on one side of the line, and point P(k) lies on the other 
side. Then the fitting error ij,k, equals the normal distance 
from P(i)， P(j) or P(k) to Lij,k. Take 12,3 for example, we 
have 

 

( ) ( )(1) (2) (1) (3)
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The following algebraic equation of the line through 

points P(1) and P(2) can also be obtained: 
 

(2) (1) (2) (1) (2) (1) (2) (1)( ) ( ) 0.P P P P P P P Px x y y y x y x x y- - - + - =  (3) 

 
The fitting error 12,3 may be written as 
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From Eq. (1), the coordinates of points P(1), P(2) and P(3) 

can be obtained and then substituted into the above 
equation. We may obtain the following quartic algebraic 
equation, which implies the relationship between xPm, yPm 

and 12,3, that is 
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Errors 23,1 of L23,1 and 13,2 of L13,2 can be obtained in 

a similar way. The three-points saddle line error  of the 
set R(i) 

P (i=1, 2, 3) is the minimum of the three distributing 
line errors, or 
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The above relation may be written as follows: 
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For a point in the moving Cartesian coordinate frame, the 

saddle line error can be derived from Eq. (7) with the given 
parameters γ(i), x(i) 

Om, y(i) 
Om, of the three positions. Meanwhile, 

considering the symmetry of the coefficients a5-a8 in Eq. 
(6), if 12,3, 13,2 and 23,1 equal zero at the same time, the 
three quartic algebraic equations yield a single sliding point 
circle, consistent with the Burmester theory. 

 

4  Change Incurred by the Fourth Point 
 

For the four separate positions, point P  traces a planar 
discrete point set R(i) 

P (i=1, 2, 3, 4), which comprises four 
points, P(1), P(2), P(3) and P(4). The saddle line obtained by 
saddle point programming is called a four-point saddle line. 
When the fourth discrete point P(4) is added, the 
relationship between the three-points saddle line and 
four-points saddle line needs to be established. Depending 
upon the position of P(4), it is discussed in three cases. To 
facilitate discussion, we assume that L12,3 is the three-point 
saddle line and 12,3 is the saddle line error. 

Case 1. The fourth point P(4) is not a characteristic point; 
the saddle line does not change.  

If P(4) lies in the containing area by the parallel dotted 
line of L12,3 (it is called as “the parallel area of L12,3” for 
short in the following paragraphs), it is obvious that the 
first three points P(1), P(2) and P(3) are still characteristic 
points, which meets the first case.  

If P(4) is out of the parallel area, it should be the point 
with the maximum error if L12,3 is the four-point saddle line, 
which is in contradiction with the hypothesis. As a result, 
P(4) needs to meet the following inequalities to indicate the 
parallel area of L12,3: 
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(8) 

 
Case 2. The fourth point P(4) is not the characteristic 

point; the saddle line changes. That is to say, P(1), P(2) and 
P(3) are still characteristic points, while the four-points 
saddle line transforms from L12,3 to L13,2 or L23,1. Take the 
situation that L12,3 changes to L13,2 for instance, the 
requirement P(4) needs to meet is discussed in further detail 
below. 

Any three of the four points P(i)(i=1, 2, 3, 4) can be 
grouped together to obtain three fitting lines. It means, 
there are C3 

4 ×3=12 distributing lines in total. Define (n) 
ij,k  as 

the distance of the n-th point P(n) to ,ij kL
, and M 

ij,k as the 
maximum value of the set  (n) 

ij,k (n=1, 2, 3, 4). Each 
distributing line corresponds to one M 

ij,k according to the 
subscript of Lij,k while there are 12 M 

ij,k in total. When the 
saddle line changes from L12,3 to L13,2, it is obvious that all 
M 

ij,k need to be greater than the saddle line error 13,2 except 
M 

13,2. There are two conditions that P(4) needs to satisfy at 
the same time. 

Condition 1: For M 
13,2, that is 

 

13,2 13,2 .M =                 (9) 
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Condition 2: For the other 11 M 
ij,k, that is 

 

, 13,2{ }.M
ij k >               (10) 

 
From the geometric approach, Eq. (9) means that P(4) is 

in the parallel area of L13,2, while the equation set in Eq. (10) 
means that P(4) is in the intersection of the 11 areas 
corresponding to the 11 equations. 

In a similar way, when the saddle line changes from L12,3 
to L23,1, we also have an equation and an equation set, that 
is 

23,1 23,1,M =                  (11) 

 

{ }, 23,1 .M
ij k >                 (12) 

 
Case 3. The fourth point P(4) is one of the three 

characteristic points; the saddle line changes. Apparently, 
P(4) will meet case 3 so long as the point dissatisfies  cases 
1 and 2. Fig. 4 shows the three different cases discussed 
and illustrate the relationship between the position and the 
effect of the fourth point. 

 

 
Fig. 4.  Three cases incurred by the fourth point 

 

 

5  Solution for Saddle Line Error 
of Multi-points 

 

From sections 3 and 4, the way to find the multi-point 
saddle line can be concluded. For multiple positions, point 
P traces a planar discrete point set R(i) 

P (i=1, 2, 3, , n). Any 
three of the discrete points can be grouped together to 
obtain three distributing lines and three fitting errors. There 
are C3 

n  groups in total. If the other discrete points are in the 
parallel area of a fitting line, the fitting error is a valid error, 
otherwise, an invalid error. 

For example, there are three distributing lines L12,3, L13,2 

and L23,1, three fitting errors 12,3, 13,2 and 23,1 with the 
group consists of P(1), P(2) and P(3). If all the other discrete 
points P(1)–P(n) are in the parallel area of L12,3, the 
corresponding fitting error 12,3 is a valid error. On the 
other hand, so long as one discrete point of P(1)–P(n) lies out 
of the parallel area, 12,3 is an invalid error. 

In this way, 3×C3 
n  fitting errors from the multi-points are 

obtained. The number of valid errors can be one or more 
based on the positions of the points. According to the 
definition of the saddle line error, the line which can make 
the maximum fitting error minimum needs to be revealed, 
so the minimum of the valid errors is apparently the 
multi-points saddle line error corresponding to the saddle 
line.  

 
6  Numerical Examples 

 
To validate the theory of saddle line error, a rigid body 

with three positions, four positions and ten positions is 

studied as numeral examples.  

 
6.1  Three positions  

As the parameters are defined by the first three positions 
in Table 1, the saddle line error of any point in the rigid 
body can be solved by the coordinate transformation matrix 
introduced in section 3. With the coordinates (xPm, yPm) as 
the independent variables and the three-points saddle line 
error 123 as the function value, the error surface and the 
contour map are depicted by matlab[21], shown in Fig. 5 and 
Fig. 6. 

 
Table 1.  Ten separated positions of the rigid body  

in planar movement 

Position No. x(i) 
Om  y(i) 

Om γ(i)/(°) 

1 0 0 0 

2 1.5 0.8 10 

3 1.6 1.5 20 

4 2.0 3.0 60 

5 

6 

7 

8 

9 

10 

3.0 

4.5 

5.0 

7.5 

9.0 

12.0 

3.5 

5.0 

5.2 

6.4 

7.5 

8.8 

80 

90 

120 

150 

160 

180 

 
Fig. 5 shows the saddle line error of any point in the 

moving plane and Fig. 6 shows the variation trend of the 
error. In particular, if the saddle line error is zero, there is 
an intersection curve of the error surface and the plane 
defined by =0. The circular curve is the sliding point 
circle according to the definition, shown in Fig. 6 with the 
thick line.  
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Fig. 5.  Saddle line error surface with three positions 

 

 

Fig. 6.  Contour map with three positions 

 

6.2  Four positions 
As to the first four separate positions listed in Table 1, 

the moving plane is divided into three types of areas based 
on the different impact incurred by the fourth point, shown 
in Fig. 7. Consistent with the three cases discussed in 
section 4, when point P is in area A, the first three-points 
saddle line is the same as the four-points saddle line, 
corresponding to case(1); When P is in area B, the 
four-points saddle line changes but the three characteristic 
points are still P(1), P(2) and P(3), corresponding to case(2); 
When P is in area C, P(4) becomes one of the characteristic 
points, as the saddle line error is defined by P(4) and any 
two of the first three points, corresponding to case(3). 

Similarly to the three separate positions, the contour map 
of the saddle line error surface with four positions are 
constructed and shown in Fig. 8. Based on the different 
groups of the characteristic points, the moving plane can be 
separated into four parts from I to IV. Part I corresponds to 
the group with the characteristic points P(1), P(2) and P(3), 
part II to 124, part III to 134 and part IV to 234. Particularly, 
when P lies at the intersection point of the four parts (the 
black dot in Figure 8, the four discrete points P(1)–P(4) need 

to meet the requirement of all the four parts at the same 
time, which means the four points are collinear and the 
saddle line error is zero. The intersection point was defined 
as the sliding point in classical theory. The conclusion can 
also be verified according to the variation trend of contour 
lines. 

 

 
Fig. 7.  Areas based on the three cases 

 

 

Fig. 8.  Four-position saddle line errors  
with different parts 

 

6.3  Ten positions 
For the ten separated positions listed in Table 1, the error 

surface is depicted by combination and comparison, shown 
in Fig. 9.  

In a way to similar to the four positions, the error surface 
consists of several quartic surfaces corresponding to 
different three-point groups can be constructed.  

 
7  Conclusions 

 
(1) The fitting straight line with the three characteristic 

points is determined for the planar discrete points traced by 
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a moving body. Based on the saddle point programming, a 
new analytic geometry method for saddle line fitting is 
developed. The saddle line error is solved with three 
separate points and the effect of the fourth point is 
discussed in three cases. The analysis agrees with the 
Burmester theory for fewer than four given positions. 

(2) By combination and comparison, the way for the 
multi-point saddle line error is revealed. Several examples 
are presented to illustrate the error of a point in the rigid 
body with saddle line error surface of the moving plane. 

(3) Based on the saddle line error surface with several 
discrete positions, the point which corresponds to the 
minimum fitting error of the moving body needs to be 
searched. It is necessary to find the boundaries of the 
different parts corresponding to the different three-point 
groups, while the minimum fitting error for all parts can be 
solved 

(4) The discrete kinematic geometry is set up to disclose 
the relations of the separated positions of the rigid body. It 
provides a theoretical foundation for the position synthesis 
of planar binary P-R link, and the solution of saddle line 
error in the paper can be extended in many other open 
kinematic chains like planar binary R-R link and spatial 
binary S-S link. 

 

 
Fig. 9.  Saddle line error surface with ten positions 
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