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Abstract: Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all 

of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of 

joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop 

analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending 

moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint 

controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm 

based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and 

mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has 

pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping 

makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These 

findings are expected to improve the performance of dynamics simulation systems and model-based controllers. 
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1  Introduction 
 

Ever increasing demands for high-speed performance 
and low-energy consumption of robot system require 
light-mass designs in the aerospace field. As a result, the 
manipulators equipped with deployable joints and 
lightweight links have gained widespread application. The 
control performance of such flexible mechanisms is 
strongly dependent on a more accurate dynamics model. In 
recent years, many studies on the dynamics and control 
problem of flexible manipulator have been implemented[1–4]. 
To model a flexible manipulator, modal analysis in 
conjunction with the classical multibody dynamics theory 
is the most common approach[5–6]. In other words, the 
flexible modes have to be defined or evaluated in advance 
of the multibody dynamics analysis. Therefore, continuing 
researches on the modal characteristics of such flexible 
structure have been conducted over the past several decades 
to predict the modal parameters such as natural frequencies, 
mode shapes, and damping ratios[7–8]. 
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Mainly based on the consideration of mechanical 
component parameters, some efforts have been made to 
discover the effects of a hub-joint and an attached-payload 
on a flexible link. The frequencies and mode shapes of the 
flexible manipulator are parameterized in two ratios of link 
to joint: one is the moment of inertia and the other is the 
bending stiffness[9]. The study on the changes in link 
natural frequencies due to the changes in joint stiffness is 
performed to analyze the relationship between joint and 
link[10–11]. In addition, MEHREZ, et al[12], examined the 
vibrations of a flexible link affected by joint inertia. On the 
other hand, the vibration of a flexible manipulator carrying 
a payload is very different from the one without 
attached-payload. For this reason, more attention has been 
paid to discussing the influences of a tip payload[13–14], a 
time-varying end mass[15] and an attached mass in an 
arbitrary settling position[16] on a flexible link, and some 
explicit expression of the characteristic equation and 
parametric study are provided in relevant literature. 
However, almost all of the above-mentioned studies take 
the manipulator for a purely mechanical structure without 
considering the feedback action of joint controller. 

In the strict sense, the dynamics response of an active 
mechanism is decided by the interaction between controller 
and mechanical components[17]. When performing modal 
analysis of active flexible systems, a multidisciplinary 
challenge is to discuss the effects of controllers. As far as 
control of flexible manipulator is concerned, general 
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actuators can be partitioned into two types, namely, 
distributed actuator(e.g., piezoceramic, which is bonded on 
the surface of link) and centralized actuator (e.g., motor, 
which is arranged in the hub-joint). It has been shown that 
piezoceramic, as a smart material, is often utilized to add 
active stiffening and damping to improve the behavior of 
vibration control[18]. Modal analysis of an active flexible 
manipulator involving the action of collocated piezoelectric 
actuators has received expected attention in recent years, 
but still few results can be addressed. For example, the 
influences of active stiffening and damping introduced by 
collocated piezoelectric actuators on a composite beam are 
studied to implement vibration control[19]. The exact mode 
shapes and natural frequencies associated with the flexural 
motion of a flexible beam are computed for various 
piezoceramic distributed actuator arrangements[20–21]. As is 
well known, the finite element method (FEM) is one of the 
best tools for performing modal analysis of flexible 
structures due to its multidisciplinary modeling capabilities. 
For a comprehensive survey of the finite element modeling 
of active structures, interested readers can consult the paper 
written by BENJEDDOU[22]. The latest research reveals 
how a finite element model of an active mechanism can be 
modified by equivalent mechanical properties that represent 
the controller, and how a controller influences mechanical 
system properties[23]. Nevertheless, one major bottleneck in 
utilizing finite element models is the large number of state 
variables which in turn, contributed to an ill-condition 
control problem. Generally speaking, the analytical 
approach based on vibration partial differential equation 
(VPDE) is a widespread and efficient method in the 
analysis of flexible multibody systems. To the best of our 
knowledge, in the openly published literature there is no 
research on analytical modal analysis of active flexible 
manipulator involving the action of centralized actuator, 
which aims to perform rotational moments. 

The objective of this paper is to improve the accuracy of 
closed-loop modal analysis of rotational flexible 
mechanisms driven by joint controller. We investigated the 
analytical modal analysis of an active flexible manipulator 
with deployable joint. The joint controller is limited to be 
of type proportional derivative(PD), which is the most 
common type of joint controller in use today[24–25]. The 
derived results are compared to the modal parameters of a 
conventional clamped link so as to highlight the effects of 
joint controller. 

 
2  Vibration Model of Rotational 

Flexible Manipulator 
 
Fig. 1 shows a schematic illustration of a rotational 

flexible manipulator.  
The Euler-Bernoulli beam is selected as the dynamics 

model for the flexible link due to its dimension. M denotes 
the mass matrix, and K denotes the stiffness matrix. For an 
evident influence of joint controller in the latter analysis 

here, the damping of mechanism and material are both 
purposefully ignored and then u(x, t) can be assumed to 
satisfy the following VPDE: 

 

4 4

0,

,

.

u u

A

EI x


M K

M

K

ìï + =ïïï =íïïï = ¶ /¶ïî

               (1) 

Where ρ denotes the mass density, A cross-sectional area, E 
Young’s modulus, and I the geometrical moment of inertia.  

 

 

Fig. 1.  Configuration of rotational flexible manipulator 
 with joint controller 

On1n2n3—Global coordinate system; 
Ob1b2n3—Locally siamesed coordinate system added to the flexible 

link. The orientation of b1-axis is always tangential with 
deformed link at the point O’, where link attaching to the 
hub. Neglecting gravity, only transverse vibration is considered; 

      θ—Joint shaft angular position about n3-axis; 
     θd—Reference variable; 

e—Tracking error between θ and θd; 

     θJ—Hub position; 
     θm—Motor shaft position; 
     N—Reduction ratio; 
     KJ—Joint’s torsion stiffness coefficient; 
     τm—Controller output torque; 

  u(x, t)—Vibration displacement as a function of the link’s length 
coordinate x and time t; 

    mp—Tip payload. 

 

According to Ritz approach, u(x, t) and the ith order 
vibration displacement ui(x, t) are expressed as 

 

1

( , ) ( , ),

( , ) ( )sin( ).

i
i

i i i

u x t u x t

u x t x t 

¥

=

=

=

å             (2) 

 

Where φi(x) is the ith order mode shape and ωi is the thi  
angular frequency. Further more, the VPDE can be solved 
by the following function: 
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where ki=sqrt(ωi/γ) and γ=sqrt(EI/ρA). These four 
constants, Ai, Bi, Ci and Di, have to be evaluated using 
appropriate boundary conditions. The kinematical boundary 
conditions result from pure geometrical compatibility and 
describe geometrical constraints, while the dynamical 
boundary conditions express information on the internal 
forces or moments at the considered boundary. Quite often 
the appropriateness of these boundary conditions is a point 
of discussion[26], where the definition of constraint would 
lead to strictly different dynamics responses. The 
kinematical and dynamical boundary conditions 
supplement each other and their satisfaction ensures that 
the solution of the VPDE is unique. Thus, if the actions of 
joint controller are known, they can be expressed in the 
boundary equations. 

 
3  Analytical Modal Analysis with the Effects 

of Joint Controller 
 

3.1  Controller feedback constraint 
and boundary conditions 

 
For a rotational manipulator, common control design is 

to perform trajectory planning, trajectory tracking and 
set-point regulation, etc. In most cases, an expected 
continuous trajectory can always be divided into a limited 
number of discrete points and every corresponding position 
is as the reference input to the controller. Thus, an 
important task for the controller is to track all the input 
variables during the servo process. Let us first investigate 
the dynamic adjustment in controller based on state 
feedback. To implement a large-scale motion, the 
deployable joint reaches each discrete reference position 
with the occurrence of link vibration due to its flexibility. 
At this time, the joint position tracking error e emerges as a 
result of the bending moment at link root, and therefore 
joint controller has to output a torque τm to rectify the 
deviation and locate the link root. It needs to be pointed out 
that m is produced by e and ė in PD type position 
controller, as shown in Fig. 2. For position feedback 
controller, the proportional gain Kp affects the stiffness, 
whereas the derivative gain Kd affects the damping of the 
closed-loop system. Hence, the flexible link is really a 
cantilever-like model driven by the control torque τm at root 
rather than a static clamped beam. In this section, we 
revealed how the servo stiffness and damping from 
controller are introduced into the constraint equation of 
flexible link boundary conditions.  

 

 

Fig. 2.  Block diagram for rotational flexible manipulator  
with joint controller 

Firstly, the joint position tracking error e can be 
expressed as 
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Where ξ is the torsional spring deformation in reducer and 

(0, )u t¢ represents the additional angle at the link root 
induced by transverse vibration. At each discrete relative 
equilibrium position, there exists the equation θd=θJ. Hence, 
the resulting equation by Eq. (4) is given by 
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Considering the internal moment, the balance formula 

can be obtained as 
 

m m m J( ) ,N J K  - =               (6) 

 
where Jm is motor shaft inertia. For a feedback PD-type 
controller shown in Fig. 2, the controller output torque τm 
can be written as 

 

m p d .K e K e = +                 (7) 

 
It is implied that the controller gains Kp and Kd are both 

positive. In what follows, we sought the kinematical and 
dynamical boundary conditions of the flexible link. 

For x=0 (i.e., at the root of the link): 
 

(0, ) 0,u t =                    (8) 

 

J J[ (0, ) ] (0, ),J u t K EIu t¢ ¢¢+ = +           (9) 

 
where JJ is hub inertia. 

For x=L (i.e., at the end of the link): 
 

( , ) 0,EIu L t¢¢ =                 (10) 

 

p( , ) ( , ),EIu L t m u L t¢¢¢ =              (11) 

 
where L is link length. 

In an actual system, since both Jm and JJ are relatively 
infinite-small parameters, the terms including these two 
variables are all neglected. Combining Eqs. (5)–(9) yields a 
new equation as 
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Thus, Eqs. (8), (10)–(12) describe the exact boundary 
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conditions, which are specially used to solve the 
above-mentioned four constants Ai, Bi, Ci and Di. 

 
3.2  Modal analysis in frequency domain 

As for all the terms including (0, )u t ¢  and (0, )u t ¢¢  in  
Eq. (12), it is implied that a secular term, i.e., cos(ωit), 
which is an obstacle for solving the VPDE in time domain, 
would inevitably appear in the frequency equation. That is 
due to the resulting equations by Eq. (2): 
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Therefore, here the Laplace transforming method is 

employed in order to convert Eq. (2) from time domain to 
frequency domain, and the Laplace description of Eq. (2) is 
given as  
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where s is the Laplacian. Substitute Eqs. (3) and (13) into 

Eq. (1), then the following formula can be obtained: 
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Setting a new variable λi=kiL, and combining Eqs. (3), 

(8), (10)–(13) yields the corresponding consistent linear 
equations with respect to the four constants Ai, Bi, Ci and Di 
as 
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Where  f11=–sinλi, f12=–sinhλi, f13=cosλi+coshλi,  
 

f21=–EIλi
3cosλi/L3–mps

2 sinλi,  
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2(coshλi–cosλi),  
 

f31=(Kp+Kds)λi/L, f32= f31,  
 

f33=–2EI [(Kp+Kds)/KJ+1/N]λi
2/L2.  

 
The complex expression of Laplacian s in Eq. (15) can 

be derived from Eq. (14), that is 
 

2 2 2j j ,i is k L = = /            (16) 

 
where j  is the imaginary unit. By selecting s=–jγλi

2/L2, 
the frequency equation can be given as 

det 0.F =                   (17) 
 

Solving Eq. (17) with respect to λi gives λi as a complex 
number owing to the introduction of j. Suppose that the 
ith-order complex frequency eigenvalue λi can be written as 
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Where the imaginary part represents the frequency of 
vibration, and the real part represents the constant in the 
exponent of the vibration amplitude envelope. If the real 
part is positive, the vibration is growing, which means that 
the system is unstable. This can occur as a result of setting 
inappropriate gains in the joint controller design, for 
example, a negative proportional gain or derivative gain. 
Since the real part of λi, which leads to vibration 
attenuation, is really introduced by the controller term Kdė, 
it is certain that the damping is completely produced by the 
joint controller. For a general expression, the ith-order 
damped angular frequency ωi and equivalent damping ratio  
ζi are given by 
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where ω0i is the undamped natural frequency. It is worth 
mentioning that the equivalent damping ratio ζi in Eq. (19) 
is different from the conventional damping ratio owing to 
the different constraint types and boundary conditions. ζi is 
only used to reflect the effect of joint controller on modal 
frequency, and the damped frequency ωi has consequently 
lowered. After solving the frequency eigenvalue, 
substituting λi into Eq. (3) yields the mode shape function. 

For mp=0: 
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In addition, the same format for i can be obtained. 

From Eq. (20) it is clearly shown that φi(x) is plural and its 
general expression can be described as 
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Therefore, based on Eqs. (19) and (21), Eq. (2) can be 
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revised as  
 

( , ) 2exp( ) Re( ) cos( ) Im( )sin ( )),i i i i i iu x t t t t    = - -(  

(22) 
 

where the real and imaginary part represents the vibration 
magnitude and the phase, respectively. 

Theorem. When involving the effects of joint controller, 
the vibration of rotational flexible manipulator is not 
synchronized. 

Proof. Fig. 3 shows the variation curves of output torque 
m from PD feedback controller by two subgraphs, i.e., 
subgraph (a) is an illustration of the detached torque by Kpe 
and Kdė, subgraph (b) is an illustration of the synthetic 
torque described by solid green lines. Let [–emax,+emax] 
denote the mutative interval of e, where emax is the limit 
position of e. The solid line, which is used to describe the 
term Kpe, represents the servo stiffness of controller; the 
dotted line, which is used to describe the term Kdė, 
represents the servo damping of controller. Subgraph (a) 
shows the contrary trend between Kpe and Kdė with Kpe 
reaching zero while Kdė reversely reaching positive or 
negative maximum value, or Kdė reaching zero while Kpe 
reversely reaching positive or negative maximum value. 

 

 

Fig. 3.  Output torque of joint controller 

 
As is well known, the phase difference of conventional 

real mode shape is either 0° or 180°, which means that all 
points on the link reach their equilibrium or maximum 
position at the same time. However, the effects of joint 
controller make the phase difference inconsistent. As 
shown in Eq. (22), the vibration phase with controller gains 
can be given by 
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arctan
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i
i
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Ω .

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Since the controller gains Kp and Kd are uncorrelated 
with each other, the changes of servo stiffness and servo 
damping are not synchronized. Hence, the internal damping 
force is not proportional with the local inertial force and 
elastic force, meaning that not only the mode shape 
magnitude fluctuates but the phase changes, i.e. the 
vibration of rotational flexible manipulator is not 
synchronized. 

 
3.3  Modal analysis in complex domain 

Using inverse Laplace tranform method, and combining 
Eqs. (1), (21) and (22), yields the general VPDE of 
rotational flexible manipulator as  

 
0u u u , M C K+ + =              (23) 

 
where C is the damping matrix induced by joint controller, 
i.e., it is a non-proportional matrix and can not be 
decoupled by conventional orthogonal shape approach. 
Considering the identical equation 0,u u - =M M  then 
Eq. (23) is rewritten as 
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Solving Eq. (24) with respect to the vector y gives y as 

 
exp( ),ty Ψ=                (25) 

 
where λ is the eigenvalue and Ψ is the eigenvector as 
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Combining Eqs. (24) and (25) yields the eigenvalue 

equation as 
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and I is an identity matrix. 
Let 
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where 1 1 2 2( ),i i     Φ=  

 1 1 2 2diag( ).i i     Λ=  

 

The coordinate transforming matrix Ψ for decoupling Eq. 
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(25) is written as 
 

T( ) .Ψ Φ ΦΛ=              (26) 
 

It is implied that Ψi is orthogonal about A and B, that is 
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where both αi and βi are nonzero variables, and therefore 

the following equation can be derived: 
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combining Eqs. (24) and (29), the thi  decoupled equation 
can be derived as 
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Solving Eq. (30) with respect to iq  gives iq  as 
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Finally, combining Eqs. (24), (26), (29) and (31) yields 

the vibration displacement as 
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4  Numerical Simulations 
 

To verify the theory derived in the previous paragraphs 
and illustrate the effects of joint controller with various 
controller gains, some numerical examples for a single-link 
rotational flexible manipulator, as shown in Fig. 1, are 
performed. The link and joint mechanical parameters of the 
rotational flexible manipulator are listed in Table 1, from 
which it is clearly seen that the damping of mechanism and 
material are both purposefully ignored. The intention 
behind the simulations was to have a simple and verifiable 
model for verification of the derived theory, as well as to 
highlight the interaction between controller and mechanical 
components. All the numerical examples are intended as 
the illustrative simulations only; therefore, it is deliberately 
not an exact replication of a real physical product. Because 
of this, the parameter values used for the manipulator are 
not of importance in this context.  

Table 1.  Mechanism parameters of the rotational 
flexible manipulator 

Mass density  
ρ/(kg·m–3) 

Cross-sectional area 
A/m2 

Young’s modulus  
E/GPa 

2710 0.0300.008 71 

Link length  
L/m 

Stiffness coefficient  
KJ/(Nm·rad–1) 

Reduction ratio  
N 

1.0 7500 100 

 

Modal analysis of conventional static clamped beam 
model is given here as a comparison with the rotational 
flexible manipulator. To perform modal analysis of the 
manipulator, two different approaches are used: 

(1) Unchanged tip-payload with variable controller gains: 
The tip-payload is a given constant, but the proportional 
gain and derivative gain are both variables. This approach 
is mainly used to obtain the modal analysis results from the 
effects of controller gains. 

(2) Variable tip-payload with unchanged controller gains: 
The proportional gain and derivative gain are both given 
constants, but the tip-payload is variable. This approach is 
mainly used to obtain the modal analysis results from the 
effects of tip-payload. 

The objective of the examples with tip-payload is to 
further illustrate the effects of joint controller. A comparison 
of the calculated eigenfrequencies derived from clamped 
link and from rotational flexible manipulator is shown in 
Table 2. As can be seen, there are evident differences in the 

 
Table 2.  Comparison of modal frequency under different 

tip-payload and joint controller gains 

Tip 
pay- 
load 

mp/kg

Clamped  

link 

Rotational flexible manipulator  
with joint controller 

Frequency 
f/Hz 

Controller 
gains 

Freq- 
uency 
f/Hz 

Decline 
rate 
/% 

Damping 
ratio 
ζi Kp Kd 

0 

1st 6.615
1 0.01 3.033 54.14 0.889 
10 0.01 5.560 15.95 0.542 
50 0.10 6.247 5.56 0.329 

2nd 41.454

1 0.01 31.286 24.53 0.656 
10 0.01 36.406 12.18 0.478 
50 0.10 39.542 4.61 0.300 

0.65 

1st 2.931
1 0.01 1.472 49.78 0.865 
10 0.01 2.541 13.30 0.498 
50 0.10 2.798 4.52 0.297 

2nd 30.573

1 0.01 22.108 22.69 0.277 
10 0.01 26.715 12.62 0.126 
50 0.10 29.110 4.79 0.048 

1.3 

1st 2.180
1 0.01 1.107 49.20 0.861 
10 0.01 1.897 13.00 0.493 
50 0.10 2.084 4.42 0.294 

2nd 29.840

1 0.01 21.394 28.30 0.283 
10 0.01 26.022 12.79 0.128 
50 0.10 28.393 4.85 0.048 

3.0 

1st 1.480
1 0.01 0.758 48.81 0.859 
10 0.01 1.291 12.79 0.489 
50 0.10 1.416 4.34 0.291 

2nd 29.381

1 0.01 20.938 28.74 0.287 
10 0.01 25.586 12.92 0.129 
50 0.10 27.943 4.90 0.049 
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frequency results from the various controller gains(i.e. 
different given values combination of Kp and Kd) and from 
the various tip-payload(i.e. different given values of mp). 
All eigenfrequencies derived from clamped link are higher 
than those from active manipulator with joint controller. 
For the 1st frequency, under mp=0, the difference between 
clamped link and active manipulator is 3.528 Hz 
(corresponding Kp=1, Kd=0.01), 1.055 Hz(corresp-onding 
Kp=10, Kd=0.01) and 0.368 Hz(corresponding Kp=50, 
Kd=0.1), respectively. For the 2nd frequency, under mp=0, 
the difference between clamped link and active manipulator 
is 10.168 Hz (corresponding Kp=1, Kd=0.01), 5.048 Hz 
(corresponding Kp=10, Kd=0.01) and 1.912 Hz 
(corresponding Kp=50, Kd=0.1), respectively. From the 
above variation law, it can be speculated that the frequency 
of active manipulator would be close to the static clamped 
link with the continuous increment of Kp and Kd. But for an 
actual servo system, it is impossible to unrestrictedly 
enlarge the controller gains, and usually, Kp is defined as a 
comparatively large variable to ensure the instantaneous 

action and Kd is defined as a comparatively small variable 
to regulate the oscillation. Hence, the frequencies of active 
manipulator would be lower than those of clamped link. 
The decline-rate in Table 2, which is calculated by 
(ω0i–ωi)/ω0i, implies the relative degree of frequency 
change and reflects the action of active control to a 
mechanism. The damping ratio in Table 2, which is 
calculated by Eq. (19), reveals the effect of joint controller 
on modal frequency and is favorable for the stability of 
oscillation. 

The mode shapes of interest(i.e. the first two–order 
modes) with various controller gains are sketched in Fig. 4, 
compared with clamped link. In the 1st and 2nd mode 
shape with joint controller gains(i.e. the red, green and blue 
solid lines), both the real part deformations have similar, 
but different, shape with clamped link(i.e. the purple 
dashed line), whereas the imaginary part deformations have 
1st U-shaped and 2nd S-shaped form, respectively. In 
contrast, the imaginary part of an undamped clamped link 
is zero, as shown in Fig. 4.  

 

 

Fig. 4.  The 1st and 2nd order mode shapes of rotational flexible manipulator with joint controller, compared with clamped link 
 
In addition, Fig. 5 is an illustration of the 1st and 2nd 

phases, Ω1 and Ω2, derived using formula arctan[Im(φi)/ 
Re(φi)]. These phase diagrams reflect the existence of 
non-proportional damping in an active system, which is a 

further proof of the above proposition. As mentioned in 
Section 3.2, it is certain that the non-proportional damping 
is completely produced by the joint controller. Meanwhile, 
one can see from Figs. 4–5 that as for both the mode shapes 
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and phases of active manipulator, the lower controller gains, 
the more obvious differences. 

 

 

Fig. 5.  The 1st and 2nd order phases of rotational flexible 
manipulator with joint controller, compared with clamped link 
 
From the above comparison, it is confirmed that, as for 

all the points on the link, there is no instant of reaching 
equilibrium of maximum position simultaneously, and the 
vibration displacement ratio is mutative. Thus, the vibration 
response of active manipulator with joint controller is 
significantly different from the conventional clamped link. 
As is well known, modal analysis in conjunction with the 
classical multibody dynamics theory is the most common 
approach to modeling a flexible multibody system. Before 
performing a closed-loop feedback control simulation, 
more accurate dynamics equations for an active system are 
necessary to preview the validity of designed control 
strategy. Although only PD type controller is introduced in 
this article, the controller gains Kp and Kd can still be 
equivalent general terms of other types of controller. 

To clearly observe the vibration responses of active 

manipulator with joint controller, several typical time 

responses in three–dimensional space for the 1st and 2nd 

deformation about position x and time t are performed. The 

time simulation ran for 5 s with a time increment of 0.1 s, 

and the surface plots are given in Fig. 6. One can see that 

there is an obvious difference in the results of vibration 

frequency, amplitude, deformation shape and convergence 

time, etc. due to different combinations of controller gains, 

namely, the red-surface of Kp=1 and Kd=0.01, the 

green-surface of Kp=10 and Kd=0.01 and the blue surface 

of Kp=50 and Kd=0.1. 

 

 

Fig. 6.  The 1st and 2nd order vibration deformation surfaces  
of rotational flexible manipulator with joint controller 

 
 

5  Experimental Results 
 

In order to evaluate the analytical results obtained in the 
previous sections and draw a conclusion on the accuracy of 
the modeling theory adopted, a single rotational flexible 
manipulator is built. A SGMAH-04AAA41 AC servo motor 
and a SGDM-04ADA servopack are used as a rotational 
joint. A PCB 333B32 accelerometer and LMS SCADAS 
data acquisition are used to collect sets of data and 
experimentally obtain the natural frequency response of the 
flexible-link by LMS Test.Lab software package. We 
purposefully removed the reducer from joint mechanism in 
order to highlight the effects of joint controller gains, i.e., 
flexible-link is directly driven by motor. Fig. 7 shows the 
experimental setup used in this study. 
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Fig. 7.  Experimental setup of rotational flexible manipulator  
 
We first defined different controller gains(i.e. proportional 

gain Kp and derivative gain Kd) in the servopack, and then 
obtained different boundary constraints. The modal tests 
were performed through hammer percussion method. Fig. 8 
shows the amplitude-frequency response of rotational 
flexible manipulator with different joint controller gains 
and Table 3 gives the first two–order corresponding 
identified frequency. 

 

Table 3.  Comparison of modal frequency of manipulator 

under different joint controller gains 

Modal order 

Modal Frequency f /Hz 

Kp=40, 
Kd=40 

Kp=160, 
Kd=240 

Kp=260, 
Kd=540 

Clamped 
link 

1st 4.60 4.88 5.01 5.48 
2nd 22.98 29.81 30.74 32.31 

 

 
Fig. 8.  Modal test for the amplitude-frequency response of rotational flexible manipulator with different joint controller gains 

One can see that the experimental results are consistent 
with the previous theoretical analysis: the frequencies of 
active manipulator are lower than those of clamped link. In 
addition, the experimental mode shapes of interest are 
similar to the numerical simulation results in Fig. 4. It is 
worth mentioning that only the real part of mode shape can 
be identified in LMS Test.Lab, and the imaginary part is 
generally neglected in the commercial software packages. 
The experimental results demonstrate a significant 

difference in the accuracy of the modal analysis of an 
active system and non-active system. 

 

6  Conclusions 
 

(1) According to Ritz approach, the closed-loop vibration 
partial differential equation of rotational flexible 
manipulator is derived. Considering the feedback action of 
joint controller, the kinematical and dynamical boundary 
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conditions are obtained.  
(2) The joint controller stiffness and damping gains are 

both included in the boundary conditions of VPDE. Joint 
controller stiffness reduces the manipulator natural 
frequency, and joint controller damping makes the 
manipulator shape phase non-zero. 

(3) By using Laplace transform and complex modal 
approach, the analytical algorithm for modal analysis is 
developed to provide accurate eigenfrequency and mode 
shape calculations. The simulation and experiment results 
show a good agreement with theoretical analysis. 
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