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Abstract: Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar 

platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation of the floating structure in ocean. 

The geometry modeling of the spar is created using finite element methods. The submerged part of the spar bears the buoyancy, 

hydrodynamic drag force, and effect of the added mass and Froude-Krylov force. Strip theory is used to sum up the forces acting on the 

elements. The geometry modeling of the cable is established based on the lumped-mass-and-spring modeling through which the cable is 

divided into 10 elements. A new element-fixed local frame is used, which is created by the element orientation vector and relative 

velocity of the fluid, to express the loads acting on the cable. The bottom of the cable is fixed on the seabed by spring forces, while the 

top of the cable is connected to the bottom of the spar platform by a modified spherical joint. This system suffers the propagating wave 

and current in the X-direction and the linear wave theory is applied for setting of the propagating wave. Based on the numerical 

modeling, the displacement-load relationships are analyzed, and the simulation results of the numerical modeling are compared with 

those by the commercial simulation code, ProteusDS. The comparison indicates that the numerical modeling of the spar platform 

tethered by a mooring cable is well developed, which provides an instruction for the optimization of a floating structure tethered by a 

mooring cable system. 
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1  Introduction 
 

The exploitation and utilization of marine resources and 
the development of the marine industry have always been 
international concerned[1–2]. These processes are closely 
connected with the development of computer technology. 
Virtual simulations based on the mathematical modeling 
and computer technology are becoming more and more 
popular in the fields of mechanical and marine 
engineering[3–5] in recent decades. A tethered buoy system 
is widely used for meteorology monitoring and navigation 
systems in the marine engineering domain. It is a typical 
multibody system, and the dynamic behavior of spar 
platform with catenary mooring system was analyzed by 
AGARWAL and JAIN[6]. A theoretical analysis on the 
unstable oscillation of moored buoy was reported by IDRIS, 
et al[7]. With the development of computer-aided 
engineering, more extensive numerical modeling has been 
established and analyzed. Theoretical and experimental 
analyses of a tethered spherical buoy were reported by 
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RADHAKRISHNAN, et al[8] , and spar platforms have 
been widely used for oil and gas production facilities[9–10]. 
Moreover, a spar platform tethered by a cable system was 
studied for designing floating offshore wind turbines by 
ZHU and JONKMAN, et al[11–12] in recent years. Generally, 
this system can be simply divided into three parts: the spar 
platform, mooring cable, and constraints. Cable modeling 
was also proposed, in which a new reference frame was 
created for each cable element by ZHU, et al[13–14]. This 
new reference frame was established based on the element 
orientation vector and relative velocity of the fluid. The 
formulations of both the rotational transformation matrix 
and external forces are effectively expressed with the 
application of the new reference frame. To complete the 
system of a three-dimensional spar platform tethered by a 
mooring cable, the spar modeling and constraint modeling 
are put forward in this paper. The spar platform is 
assembled using 20 cylinder elements placed head-to-tail in 
the vertical direction. It is assumed that the relative velocity 
and acceleration do not change within one element, and the 
external loads are acting on the central points of the 
elements. The loads are composed of the buoyancy, 
hydrodynamic drag forces, effect of the added mass, and 
the Froude-Krylov force. The buoyancy is carried out by 
integrating the submerged volume. The rest external forces 
are determined by summing up the loads acting on each 
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element with respect to the local frame of the spar. The 
relative moment forces are added during the summation. 
The bottom of the cable is connected to the seabed by 
spring forces with respect to the X-, Y-, and Z-directions. 
These spring forces are linear functions of the relative 
positions and velocities between the bottom node of the 
cable and anchor point on the seabed. A three-by-three 
coefficient-matrix is applied to determine the spring forces. 
The top of the cable is connected to the bottom of the spar 
platform by a spherical joint which is modified to be 
appropriate for the connection between a mass point and a 
three-dimensional body. The linear wave theory is applied 
to express the X-directional wave[15]. The current is set as a 
constant speed of fluid in the X-direction. Finally, the 
displacement-load relationship is analyzed and the 
simulation results for this numerical modeling are verified 
by comparing them with those from the commercial 
simulation code ProteusDS, which is widely used for 
simulating the floating platform and cable systems[16–17]. 
This numerical modeling of the spar platform tethered by a 
mooring cable is well developed which is illustrated by the 
simulation results. 

 
2  Modeling 

 
The origin of the global reference frame lies at the still 

water level. The X-axis points to the east, while the Z-axis 
points vertically upward. Thus, the Y-axis points to the 
north according to the right hand rule, as shown by Fig. 1. 
This system is developed based on the numerical modeling, 
which includes the spar modeling, cable modeling, and 
constraint modeling. These are described separately in the 
following sections, and the modeling of the cable and wave 
can be found in detail in Refs. [13–15, 18–22]. 

 

 

Fig. 1.  Floating spar platform fastened by a cable 

 
2.1  Spar modeling 

The origin of the local frame of the spar is located at the 

geometric center of the spar platform, and the directions of 
the axes coincide with those of the global reference frame 
system at the initial condition. The initial position of the 
spar is chosen as its undisplaced position in the wave. The 
spar modeling is axially-, radially- and angularly-divided in 
ProteusDS, as shown in Fig. 2. While, it is evenly divided 
into 20 elements axially in the numerical modeling, as 
shown in Fig. 3. The geometry data of the spar modeling is 
listed in Table 1. 

 

 
Fig. 2.  Spar modeling in ProteusDS 

 
Table 1.  Properties of spar 

Parameter Value 

Diameter bD /m 0.4 

Mass bM /kg 500 

Length bL /m 5 

Center of mass CM/m –2 

Drag coefficient b
DC  1 

Added-mass coefficient b
AC  0.5 

Cross-area bA /m2 0.126 

 
The external forces acting on the spar platform are 

denoted by bF , as shown in Eq. (1). They are composed 
of three parts: the buoyancy and gravity force b

BF , the 
effect of the added-mass and Froude-Krylov force b ,AF and 
the hydrodynamic drag forces b

DF : 
 

b b b b .B A DF F F F= + +               (1) 

 

2.1.1  Buoyancy 
The buoyancy comes from the pressure acting on the 

surface components contacting with the fluid. The 
magnitude is equal to the weight of the displaced fluid, and 
the center of the gravity is collinear with the center of the 
buoyancy in the vertical direction. Therefore, the gravity of 
the spar is expressed together with the buoyancy in this 
paper. In view of the continually changing of the center of 
the buoyancy and the column shape of the platform, the 
buoyancy and gravity of the spar are expressed as Eq. (2): 

 
b b b b

f 0 3 .B iF gV M g C q = - +         (2) 
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The first term on the right-hand side represents the 
buoyancy at the initial position, which is equal to the 
weight of the displaced fluid. The vector 3i  indicates the 
X- and Y-components of the vector 0 3igV   being zero. 
The second term is the weight of the spar platform. Finally, 
the last term represents the change of the buoyancy and 
restoring moments as the spar is displaced. Matrix bC  
depends on the geometry of the spar and is shown by 

 

3
b
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 1.26 10 0 0 0
.

0 0 0 9.52 10 0 0

0 0 0 0 9

    

    

    

    

.52 10 0
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 0   
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æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ´ ÷ç ÷ç ÷= ç ÷ç ÷ç - ´ ÷ç ÷ç ÷÷ç ÷ç - ´ ÷ç ÷ç ÷ç ÷÷çè ø  

(3) 
 

2.1.2  Added-mass and Froude-Krylov effect 
The added mass represents the effects coming from the 

relative acceleration between the wave particles and spar, 
and the Froude-Krylov force represent the pressure effects 
of the undisturbed incident waves as shown in 

 

( )b b b b
s f s f .•1 f

A A g A gF C V V C V q  = + -         (4) 

 
where b

AC  is the coefficient of the added-mass normal to 
the geometry of the cable, sV  denotes the submerged 
volume of the spar platform and is carried out by summing 
the submerged spar elements, f

gV  is the acceleration of 
the surrounding fluid particles, and b

gq represents the 
acceleration of the spar elements. 

 
2.1.3  Hydrodynamic drag force 

According to the definition, the drag forces are a 
quadratic function of the relative velocity of the fluid. The 
hydrodynamic drag forces are expressed by 

 

b b b1
.

2
R R

D D f g gF C A V V=-              (5) 

 
Strip theory is used to sum up the hydrodynamic 

pressure, effect of the added mass and Froude-Krylov force 
acting on the total surface of the spar elements. These 
forces are expressed with respect to the local frame of the 
spar and concentrated at the center of each element. The 
moment forces, as shown by Eq. (6), are added to translate 
the forces acting on the elements to the origin of the spar 
frame: 

 

( )b ,1 b ,3 b ,1 b ,3 b

1

• .•
M

j j j j
A A D

j

M F q F q
=

= +å         (6) 

 
where ,1 bj

AF  is the 1st value of the jth vector b
AF , and 

,3 bj q  is the z-directional component of the bq , which is 

the position vector of the jth element of the spar with 
respect to the spar frame. The added moment b

AM  is valid 
only when the jth element of the spar is submerged in fluid. 

 
2.2  Cable modeling 

Based on the research by ZHU, et al[13–14], the cable is 
simplified using the lumped-mass-and-spring modeling 
scheme, wherein the cable is divided into N  elements 
ordered from the top to the bottom, as shown in Fig. (1). 
The previous paper developed a new element-fixed frame 
by which the formulations of both the rotational 
transformation matrix and the external forces are 
effectively expressed. Element position vector i

gE  is 
expressed by the positions of the terminal nodes, as given 
by Eq. (7). Relative velocity R

gV  is the mean value of the 
relative velocities acting on the terminal nodes, as given by 
Eq. (8). i

gN  is the velocity of the ith node: 
 

1 ,i i i
g g gE N N+= -                 (7) 
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Fig. 3.  Element modeling of spar 

 
Unit axis iz  directs the orientation of the ith element 

and is obtained by unitizing the element position vector 
i
gE , as illustrated in Fig. 4. Unit axis ix  is perpendicular 

to plane 1P , which is composed of unit axis iz  and 
relative velocity R

gV . According to the right-hand principle, 
unit axis iy  is perpendicular to plane 2P , which is 
composed of unit axes iz  and ix . The unit axes of the 
ith element are given specifically by Eq. (9). 
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Fig. 4.  Element-fixed reference frame 

 
The forces acting on the cable include the stiffness of the 

cable i
bT , damping of the cable i

bD , hydrodynamic drag 
forces i

zF  and i
yF , and apparent weight i

WF . These 
forces are expressed in detail in references[13–14] and are 
briefly listed in Eq. (10): 
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where i

b  is the axial strain, il  represents the length of 
the ith cable element, and the masses of the cable and the 
displaced fluid for the ith element c

im  and f
im  are given 

by 
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The mass matrix of the ith element with respect to the 

element-fixed frame is given by Eq. (12). The added mass 
effect along the cable axial is ignored. 

 

c f

c f

c

0 0

0 0 .

0 0

i i
A

i i i
b A

i

m C m
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m
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       (12) 

 
Mass matrixes of the nodes with respect to the global 

reference frame are expressed by mass matrixes of the 
elements with respect to the local reference frame. Here, 

the mass matrix of the ith node i
IM  is composed of the 

element-mass matrixes 1i
bM -  and i

bM , and is given by 
 

1 1 1 T T1 1
.

2 2
i i i i i i i
I b bM A M A A M A- - -= +        (13) 

 

Finally, the forces acting on each cable element are 
shared equally by the element-terminal nodes. The 
governing equation for the ith node is defined by the forces 
acting on the ( 1)thi-  and ith element, as given by Eq. 
(14). The bottom of the cable is fixed to the seabed with 
spring forces sprT  and the first node of the cable is 
connected to the bottom of the floating platform with a 
spherical joint. The properties of the cable in this modeling 
are shown in Table 2. 

 

1 1 1 11 1

2 2
i i i i i i i i i i
I g b b D b b DM N A T D F A T D F- - - -æ ö æ ö÷ ÷ç ç= + + - + - +÷ ÷ç ç÷ ÷ç çè ø è ø


( )11

2
i i

W WF F -+                          (14) 

 

Table 2.  Properties of cable 

              Parameter Value 

Diameter cd /m 0.03 

Density c /(kg • m–3) 1570 

Elastic modulus E/GPa 2.38 

Damping dC /(N • s • m–1) 1800 

Drag coef. in transversal direction nC  1 

Drag coef. in longitudinal direction fC  0.5 

Added-mass coefficient AC  1 

Position of top node 1
gN /m (0, 0, –4.5) 

Position of bottom node N
gN /m (0, 0, –30) 

 

2.3  Constraint Modeling 
The constraint modeling defined here is used for 

connecting two independent bodies. 
 

2.3.1  Spherical joint 
A rigid body has DOFs(six degree of freedoms) in three 

dimensions, while a mass point only has three translational 
DOFs. Three-dimensional spherical joint modeling was 
well developed in references[23–24], but an applicable 
modification is needed for connecting the spar and cable, 
because the cable is composed of nodes that only have 
three translational DOFs. The constraint equation sph  is 
expressed by 

 
sph b b b 1,kq A s q ¢= + -             (15) 

 
where bq  denotes the origin of the local frame of the spar 
with respect to the global frame, and bA  denotes the 
rotational transformation matrix of the spar. The vector 

b
ks ¢  denotes the position of a joint point with respect to the 

local frame of the spar platform. Because it is the 1st node 
of the cable that connects to the spar platform, 1q  denotes 
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the position of the 1st node of the cable with respect to the 
global reference frame. 

sph
q  denotes the Jacobian matrix of the constraint 

equation and is shown by 
 

( )sph b b b
q kI A s G I¢ ¢= - - ，           (16) 

 
where bG ¢  is used to express the relation between the 
angular velocities and Euler angles, as instructed by 
SHABANA[24]. The Z-Y-X Euler angle set is adopted in this 
paper, where bG ¢  can be carried out according to the 
research by GREENWOOD[25]; and b

ks¢  represents the 
skew symmetric of the body vector b

ks¢ . 
  is used to satisfy the derivation of the constraint 

equations according to NIKRAVESH[23]. It is composed of 
the displacements and first derivation of the displacements 
with respect to time, and is given by 

 

( )b b b b b b b b .k kA s G A s G     ¢ ¢ ¢ ¢ ¢= +         (17) 

 

2.3.2  Spring forces 
The spring forces are linear function of the relative 

positions and velocities between the bottom node of the 
cable 1Nq +  and the anchor point anchorP  on the seabed. 
They are used to fix the cable on the seabed. The spring 
forces are carried out using three-by-three coefficient 
matrixes K and C, as shown by  

 

( ) ( )spr 1 anchor 1 anchorN NT q P q P+ += - + -K C     (18) 

 
where K and C are three-by-three coefficient matrixes of 
the stiffness and damping, respectively. Both of them are 
diagonal matrixes and are composed of coefficients sk  
and sc , respectively. The values are listed in Table 3.  

Finally, the equation of motion of the constrained system 
can be expressed by 

 

( )Tsph

sph
,

0

q

q

M q Q

 

æ ö÷ç æ ö æ ö÷ç ÷ ÷ç ç÷ç ÷ ÷=ç ç÷ ÷ ÷ç ÷ç ç÷ ÷ç çç è ø è ø÷ç ÷è ø




           (19) 

 

where M  is the mass matrix of the system, and Q  is the 

external forces of the system. The matrix ( )Tsph
q  denotes 

the transposed Jacobian matrix. 
 

Table 3.  Parameters of spring forces 

              Parameter Value 

Stiffness sk /(MN • m–1)  87.0 

Damping sc /(MN • s • m–1) 33.0 

 

2.4  Ocean Modeling 
The linear wave theory by JOURNEE[15] is used to 

express surface waves in this paper. The amplitude of the 
surface waves is a function of the time and positions as 
shown in 

 

a = ( )cos .gkX t-                (20) 

 
With the assumption of an infinite water depth, the 

velocities and accelerations of the water particles can be 
found according to Eqs. (21), (22), respectively. Therefore, 
the velocities and accelerations of water particles matching 
positions of both the cable and spar elements can be found 
for the calculation of the hydrodynamic loads.  

 

( )
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• •

• • sin ,
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  
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• • .
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g a g

u kX t

w kX t

  
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= -

=- -




       (22) 

 
In addition, the wave length  , wave numbers k , and 

circular wave frequency   can be found according to  
 

2
22

; ; ,
2

g T
k k g 

 


= = =          (23) 

 
where T  is the wave period, and a  denote wave 
amplitude. All the parameters for the sea state are listed in 
Table 4. 

 
Table 4.  Sea state parameters 

              Parameter Value 

Wave amplitude a /m 0.7 

Wave period T /s 6.4 

Current c
gV /(m • s–1) (0.5, 0, 0) 

Water density f /(kg • m–3) 1025 

 
In this paper, the current is set as a constant velocity. 

Finally, the velocity of the fluid f
gV , is composed of the 

wave velocity w
gV  and current velocity c

gV  as given by  

 
f w c

g g gV V V= +                (24) 

 

where ( )Tw 0g g gV u w=  

 
3  Simulation Results 

 
This numerical modeling scheme was coded using 

MATLAB 2012 and verified in comparison with the 
commercial simulation code ProteusDS. The Runge-Kutta 
algorithm was chosen as the integrator, and the total 
simulation time was set as 200 s in here. All the simulation 
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conditions were consistent with those in ProteusDS. The 
simulation results from the numerical modeling are 
compared with those from ProteusDS. In view of the 
limitation that all the external loads were applied in 
X-direction, the surge, heave and pitch motions are 
important parameters in analyzing the motions of the 
floating spar. This paper also analyzes the forces acting on 
the spar and the tensions within the cable. Finally, the 
frequency of the tension within the cable and frequency of 
the spar motions are illustrated. Measure point is the origin 
of the local reference frame of the spar. 

The comparisons of the surge and heave motions are 
shown in Figs. 5, 6, respectively. Even though the results 
are consistent at the end of the simulation, the reaction of 
the numerical modeling is quicker than that by ProteusDS. 
In addition to the forces listed in the front part of this paper, 
it is predicted an additional damping is applied to counter 
the motion of the spar platform in ProteusDS. The 
load-displacement relationships are also analyzed by this 
paper according to the results of the numerical modeling. 
The restoring moment is directly related to the rotational 
motions of the spar such as the pitch motion, as illustrated 
in Figs. 7, 8. The entire external loads are calculated by 
adding up loads acting on the cylinder elements in 
numerical modeling, while the small tetrahedron elements 
are used in ProteusDS. The numerical modeling is more 
efficient than the ProteusDS. The efficiency comes from 
the assumption that the wetted cross curve is a plane, and 
this assumption is available with small pitch angles, as 
shown in Fig. 7. This simplification will be verified further 
with a real experiment. 

 

 
Fig. 5.  Surge motion of the spar 

 

 
Fig. 6.  Heave motion of the spar 

 

 
Fig. 7.  Pitch motion of the spar 

 

 
Fig. 8.  Restoring moment of the spar about Y-axis 

 
The restoring moments are sensitive to the geometry of 

the spar platform, especially, the position of the center of 
mass. The propagating wave forces the hydrodynamic drag 
forces oscillating with an amplitude of 200 N, while the 
current has a constant effect and enables the mean value of 
the hydrodynamic drag forces being about 300 N, as shown 
in Fig. 9. Hydrodynamic drag forces have dominant effect 
on the surge and heave motions of the spar. The crest of the 
buoyancy is limited to a value of 6318N, as shown in Fig. 
10. This phenomenon indicates that the spar is fully 
submerged at that time. This unsmooth change causes 
oscillations at the crest of the tensions as shown in Fig. 11. 
Because the cable is fixed on the bottom of the spar, the 
cable tension is directly affected by the pitch motion of the 
spar. This effect is reflected in the numerical modeling 
rather than in ProteusDS. The prediction of additional 
damping in ProteusDS also hold true in here. The pitch 
motion and restoring moment oscillate heavily when the 
simulation time ranges from the 10th second to the 20th 
second. This phenomenon indicates that the system is 
reaching equilibrium under the constraint of cable and 
effects of wave and current. The effects of wave and 
current is much larger than the constraint of cable at the 
beginning, and the spar is accelerated in the X-direction. 
With the X-directional moving of the spar, the tension 
within the cable increases and tends to balance the effects 
of wave and current. This phenomenon is also obviously 
reflected in the surge and heave motions and tensions 
within the cable. The surge and heave motions decelerates 
as shown in Figs. 5, 6, respectively, and the tension rapidly 
increased, as shown in Fig. 11. 
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Fig. 9.  Hydrodynamic drag force of the spar along X-axis 

 

 
Fig. 10.  Buoyancy of the spar 

 

 
Fig. 11.  Tension within cable 

 
Because the period of the X-directional wave is 6.4 s, the 

frequency of the wave is 0.156 HZ. The frequencies of the 
surge motions are similar with those of the heave motions, 
only the frequency of the surge motions are shown in Fig. 
12 which is greatly influenced by the frequency of the 
propagating wave. The frequency of the pitch motion is 
also affected by the frequency of the wave and tension 
forces, as shown in Figs. 13, 14, respectively. 

 

 
Fig. 12.  Frequency of surge motion of the spar 

 
Fig. 13.  Frequency of pitch motion of the spar 

 

 
Fig. 14.  Frequency of tension within cable 

 

4  Conclusions 
 

(1) The numerical modeling of a platform tethered by a 
mooring cable through a spherical joint is well developed 
and verified with ProteusDS. This numerical modeling 
contributes to the development of virtual simulation 
software in mechanical engineering. 

(2) The dynamic responses of the spar with the wave and 
current are analyzed, and these responses are significate for 
the optimization design of the floating structure.  

(3) The wave load has the dominant influence on the 
surge and heave motions of the spar, and the pitch motion 
has an obvious effect on the tension within the cable.  

(4) The phenomenon of achieving dynamic equilibrium 
has an obvious effect on the pitch motion, while it has less 
effect on the heave and surge motions.  

(5) The phenomenon of being fully submerged has an 
obvious effect on the pitch motion and tension within the 
cable. 
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