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Abstract: In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some 

limitations of the special contact model and stress model used for the theoretical study of the phenomenon, and this has prevented 

in-depth analysis of the associated friction, wear, and failure. This paper is particularly aimed at investigating the area of rolling contact 

between a sphere and a cone, for which purpose the boundary is determined by the Hertz theory and the geometries of the 

non-conforming surfaces. The phenomenon of stick-slip contact is observed to occur in the contact area under the condition of 

no-full-slip (Q < μ • P). Using the two-dimensional rolling contact theory developed by CARTER, the relative positions of the stick and 

slip regions and the distribution of the tangential force over the contact area are analyzed. Furthermore, each stress component is 

calculated based on the McEwen theory and the idea of narrow band. The stress equations for the three-dimensional rolling contact 

between the sphere and the cone are obtained by the principle of superposition, and are used to perform some numerical simulations. 

The results show that the stress components have a large gradient along the boundary between the stick and slip regions, and that the 

maximum stress is inversely proportional to the contact coefficient and proportional to the friction coefficient. A new method for 

investigating the stress during non-classical three-dimensional rolling contact is proposed as a theoretical foundation for the analysis of 

the associated friction, wear, and failure.   
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1  Introduction 
 

When two non-conforming solids come into non- 
deformation contact, an initial point or line of contact is 
formed. A limited contact area is thereafter generated under 
a normal force. The contact area is far less than the size of 
contacting objects, and the contact stress is highly 
concentrated. Although the contact area is very small, in the 
field of contact mechanics, it is essential to determine its 
scope and the stress state within it, and this has always been 
a hot issue in engineering[1]. 

The Hertz theory is usually used to determine the scope 
of the contact area and as a basis for analyzing the stress 
state within it[2–4]. However, one of the crucial constraints 
in the application of the Hertz theory is that it assumes that 
the contact between the two solids involves only a normal 
force, without the presence of tangential friction. This is not 
in conformity with the practical situation. Nonetheless, 
with properly consideration of the friction in the area, the 
Hertz theory can be widely applied to sliding and rolling 
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contact problems in a more practical way. SACKFIELD, et 
al discussed the Hertz contact problems under classic[5] and 
tangential load[6] conditions, and summarized the stress 
state under different contact forms. ZHUPANSKA, et al[7], 
investigated the effect of the tangential stress on the normal 
stress when a cylinder slides on a half-flat under friction, 
and presented the exact solution of the stress distribution in 
the contact region in the form of a hypergeometric function. 
GOODMAN[8] and SPENCE[9] posited that the interaction 
between the tangential and normal forces on the contact 
surface could be neglected. This proposition was deeply 
analyzed by JOHNSON[10], who proved that the mutual 
effect of the tangential and normal forces for the 
deformation and stress are very small and could be 
considered to be independent, thus enabling independent 
calculation of the total stress by superposition of the 
different stress components. SHCHERBAKOV[11] exactly 
derived the stress state by superposition of the stress fields 
induced by the normal and tangential contact loads, which 
were considered to be elliptically distributed. The idea of 
superposition is also employed in the stress calculation of 
this paper. 

CARTER[12] and FROMN[13], whose ideas and research 
methods founded and gave direction to the study of three- 
dimensional rolling contact theory, analyzed two-dimensional 
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elastic rolling contact using the Hertz and elastic half-space 
theories. The non-Hertz three-dimensional elastic rolling 
contact theory and the associated CONTACT program were 
later proposed by KALKER[14]. These have been widely 
used in the analysis of wheel/rail contact[15–21], in the 
process of which they have also been continuously 
improved. The finite element method and the corresponding 
software have been used by many researchers to analyze 
mechanical behavior[22–26]. Regarding the characterization 
of the relevant details, the simultaneous existence of the 
stick and slip regions was first experimentally discovered 
by Raynolds, and the slip region was thought to expand 
until the occurrence of gross sliding. The condition of 
partial-stick and partial-slip is also generated during the 
initial sliding contact of two solids. The basic principles 
and research methods for stick-slip contact were later 
proposed by JOHNSON[10], and the numerical solution was 
obtained by MAOUCHEN, et al[27]. The finite element 
model, which is based on the robust cyclic plasticity theory, 
was used by XU, et al[28] to simulate the elastic-plastic 
stresses of partial slip-line rolling contact. They showed 
that the partial slip condition significantly affected the 
stress in the rolling direction, but not that in the axial 
direction. LEE, et al[29], studied the steady-state and 
transient rolling contact problems of three-dimensional 
elastic bodies and the three-dimensional distribution of the 
tangential traction and contact stresses in the contact area, 
and explained the effect of the stick-slip region. ETSION, 
et al[30], experimentally demonstrated the process of the 
variation of the frictional force between initial partial 
sliding and gross sliding. 

Some limitations still exist in the analysis of the behavior 
of rolling contact. Firstly, the analysis models are mainly 
for contacts between a cylinder and a plane, between two 
cylinders, between a sphere and a flat, and between two 
spheres. There are no models for some special contact cases 
encountered in engineering practice. Secondly, in recent 
years, experiments and finite element methods have been 
mostly used to investigate stress, and the theoretical 
analysis of rolling contact is rarely undertaken. Based on 
the achievements of previous theoretical studies, 
three-dimensional elastic rolling contact between a steel 
ball and a control wheel, which is crucial to automatic 
detection equipment detecting steel balls, is investigated in 
this paper. The geometric size of the contact area is 
determined and some novel methods and ideas are used to 
analyze the stress state in the rolling contact area in a 
step-by-step manner. This is done to obtain analytic 
solutions of the stresses and determine the characteristics of 
each stress component. 

 
2  Scope of Rolling Contact Area 

 
2.1  Analytic model  

Tractive rolling contact between a steel ball and a control 
wheel is crucial to automatic detection equipment detecting 

steel balls, and is a typical example of three-dimensional 
non-conforming rolling contact between a sphere and a 
cone. The contact is depicted in Fig. 1. Under the normal 
force ,P¢  the steel ball and bilateral cones of the control 
wheel are brought together. Under the driving torque, the 
steel ball rotates about the axis AB, thereby causing the 
control wheel to rotate about the fixed axis CD. It is 
assumed that P is a normal force between the sphere and 
the one-side cone, with its direction passing through the 
center of the sphere (point O¢  in Fig. 1) and the initial 
contact point (point o in Fig. 1).  

 

 

Fig. 1.  Tractive rolling contact between  
 steel ball and control wheel 

 
The contact surface is generated between the sphere and 

one side of the cone under the normal force P, and is 
considered to be an ellipse based on Hertz theory. The 
contact area is exaggerated in Fig. 1, and its actual 
dimensions in engineering practice are quite small, based 
on which the coordinate system is established. Following 
are descriptions of how to determine the geometric 
dimensions of the contact area and the analysis formulas of 
the stress. 
 
2.2  Calculation of contact area  

The general elliptical shape of the contact area was 
proposed by Hertz based on experimental observation of 
the interference fringes. He also introduced the 
simplification of each of the contacting bodies being an 
elastic half-space, and of the force acting on a flat surface 
in the small elliptical contact area. Based on these 
simplifications, the distribution of the normal pressure p(x, y) 
in the contact area can be expressed as 

 

( )1 22 2 2 2
0( , ) 1 .p x y p x a y b= - -         (1) 

 
The boundary equation of the elliptical contact surface is 

as follows: 
 

2 2 2 2 1 0,x a y b+ - =             (2) 

 
where p0 is the maximum contact pressure and a and b 
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respectively denote the minor and major semi-axes of the 
ellipse. Analysis based on the Hertz theory shows that the 
eccentricity ratio of the ellipse is independent of the loads 
and only depends on the relative radii of the surface 
curvatures of the two contacting bodies at the initial contact 
point. The relative radii of the curvatures can be calculated 
based on the geometry of the smooth non-conforming 
contact surface. Based on the geometry, the initial gap 
between the two curved surfaces can also be expressed as 
follows in terms of the relative radii of the curvatures near 
the initial contact point: 
 

2 21 1
,

2 2
h x y

R R
= +

¢ ¢¢
             (3) 

 
where R' and R" are the relative radii of the curvatures of 
the sphere and the cone at the contact point, respectively. 
According to the geometrical characteristics of a sphere and 
a cone, the relative radii can be obtained as 
 

1 1 1,R R R¢ ¢¢= =                  (4) 
 

2 2 2 ,R R R¢ ¢¢=¥ =，                (5) 
 
where R1 is the radius of the sphere; 1R¢  and 1R¢¢  are 
respectively the main radii of the curvatures of the sphere 
and the cone at the initial contact point; R2' is a main radius 
of curvature of the cone, the value of which tends to 
infinity; and 2R¢¢  is another radius of curvature of the cone, 
and is defined as R2 for convenience. Eq. (4) can be 
obtained based on the symmetry of a sphere. For a cone 
angle of π/2, R2 is numerically equal to the distance 
between the contact point and the vertex of the cone in the 
bus direction. The relevant relationships are as follows: 
 

1 21 1 1 ,R R R¢ ¢ ¢= +                (6) 

 

1 21 1 1 ,R R R¢¢ ¢¢ ¢¢= +                (7) 
   

From Eqs. (4)(7), the relative radii of curvature of the 
sphere and the cone can be obtained as 
 

1,R R¢ =                     (8) 
 

( )1 2 1 2 ,R R R R R¢¢ = +               (9) 

   
From Eqs. (8) and (9) and the Hertz theory, the 

parameters b, a, and p0 can be obtained as 
 

( )
1 61 3 2

1 1 2
2

2

3
,

4

R R RP
b

E R*

é ù+æ ö ê ú÷ç= ÷ç ê ú÷çè ø ê úë û
         (10) 

 

( )

1 6
1 3 2 2

1 2
3

1 2

3
,

4

R RP
a

E R R
*

é ùæ ö ê ú÷ç= ÷ç ê ú÷çè ø ê ú+ë û
          (11) 

1 31 32
1 2

0 3 2
1 2

6
,

π

R RPE
p

R R

* æ öæ ö + ÷÷ çç ÷÷ ç=ç ÷÷ çç ÷÷ ÷ç çè ø è ø
          (12) 

where 

2 2
1 2

1 2

1 11
.

E EE

 
*

- -
= +             (13) 

 
Where ν1, E1, ν2, and E2 are respectively the Poisson’s ratio 
and Young’s modulus of the materials of the sphere and the 
cone, from which the equivalent modulus of elasticity E* is 
obtained.  

It should be emphasized that the computer mode 
proposed by JOHNSON[10] is used for Hertz theory 
calculations. This eliminates the need to evaluate integrals 
or rather complicated functions. That is, the relationship 
between the correlative ellipse integral functions and the 
value of R2/R1 is expressed by several curves, which can be 
used to obtain the required values. 

 

3  Calculation of Stress State  
 
3.1  Distribution of forces 

Based on the rolling contact theory, the tangential force 
at the boundary of the contact area tends to infinity while 
the normal force tends to zero. Hence, the contact condition 
(Q < μ • P) cannot be satisfied and gross sticking could not 
occur, resulting in relative sliding even if the tangential 
force is very small. Between the boundary and the center of 
the contact area, the normal force (based on the distribution 
expressed by Eq. (1)) gradually increases while the 
tangential force gradually decreases. There must thus be a 
critical boundary inside which the stick phenomenon 
occurs where the stick condition is satisfied, and outside 
which slipping occurs where the tangential force exceeds 
the limiting friction. Hence the stick-slip situation occurs in 
the contact area under the combined effect of the tangential 
and normal forces. 

In rolling contact between a sphere and a cone, one side 
of the contact area close to the rolling direction is under 
compression and the other side is under tension. The stick 
region therefore shifts in the rolling direction and the offset 
distances of all the point are equal. It is only at the 
boundary of the stick region (y=0) that the offsets coincide 
with the contact boundary owing to the special geometric 
area of the ellipse as discussed in Eqs. (1) and (2). The 
elliptical contact area is defined on the x-y plane, where o is 
the origin and initial contact point, and the x- and y-axis 
coincide with a and b as discussed earlier in connection 
with Fig. 1. The y-axis is in the direction of the cone 
generatrix, and the sphere rolls in the negative direction of 
the x-axis. The reversed z-axis is perpendicular to the x-y 
plane and points inwards of the cone in the rectangular 
coordinate system. As shown in Fig. 2, c and d denote the 
semi-axes of the elliptical stick region, which has its 
midpoint at o' and an offset distance of s.   
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Fig. 2.  State of contact area under rolling contact 

 

With regard to the distribution of the tangential force, 
POPOV[31] used similar steps and assumptions as those 
proposed by CARTER[12] to calculate the three- 
dimensional stress state in the rolling contact area of the 
sphere and plane. The same procedure was adopted in the 
present study to obtain the distribution of the tangential 
force in the three-dimensional rolling contact area. This 
was done by superposition of two types of “Hertz” stresses 
as follows: 
 

( )
( ) ( )

, , slip region,

, , , stick region,

q x y
q

q x y q x y

ì ¢ïï=íï ¢ ¢¢+ïî  
      (14) 

where 

1
2 2 2

0 1 ,
x y

q p
a b


é ùæ ö æ öê ú÷ ÷ç ç¢ = - -÷ ÷ç çê ú÷ ÷ç çè ø è øê úë û

          (15) 

 
1

2 2 2

0 1 ,
c x s y

q p
a c d


é ùæ ö æ ö+ê ú÷ ÷ç ç¢¢ =- - -÷ ÷ç çê ú÷ ÷ç çè ø è øê úë û
       (16) 

 
2 2

+ 1,
x s y

c d
≤

æ ö æ ö+ ÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
              (17) 

 
.s a c                    (18) 

 

Where q denotes the distribution of the entire tangential 
force, which is defined within the boundary given by Eq. 
(2); and q ¢  and ( )q q¢ ¢¢+  denote the distributions of the 
tangential force in the slip and stick region respectively. 
 
3.2  Calculation of stress state  

Based on the two-dimensional contact model of two 
cylinders with parallel axes under a normal force, 
MCEWEN calculated the stress components at any point (x, 
z) in the strip contact area, the width of which is constant in 
the axis direction. However, the width of the contact area of 
a sphere and cone varies in the y-axis direction, as shown in 

Fig. 2. In the present study, the elliptical contact area was 
divided into numerous narrow bands dy (see in Fig. 2), and 
the corresponding contact width is 2x, where 
 

2

2
1 .

y
x a

b
= -                (19) 

 
The two-dimensional theory of cylindrical contact 

proposed by MCEWEN was applied to each narrow band 
dy and the interaction with the adjacent narrow band was 
neglected. The stress components of each narrow band 
under only a normal force can thus be expressed as 

 

( )
2 2 2

0 2 2 22

2

•
1

1 1 2

1

•x p

y z n
p m z

b m ny
a

b


é ùæ ö+ ÷çê ú÷=- - + - =ç ÷ê úç ÷ç +è øê úë û-

            

2 2
0

2 2
1 2 ,

p z n
m z

a m n

é ùæ ö+ ÷çê ú÷- + -ç ÷ê úç ÷ç +è øê úë û

          

(20) 

 

( )
2 2 2

0 2 2 22

2

1
1 1

1

• •z p

y z n
p m

b m ny
a

b


æ ö+ ÷ç ÷=- - - =ç ÷ç ÷ç +è ø

-

 

            

2 2
0

2 2
1 ,

p z n
m

a m n

æ ö+ ÷ç ÷- -ç ÷ç ÷ç +è ø

            

(21) 

 

( )
2 2 2

0 2 2 22

2

•
1

1

1

•xz p

y m z
p n

b m ny
a

b


æ ö- ÷ç ÷= - =ç ÷ç ÷ç +è ø

-

 

            

2 2
0

2 2
,

p m z
n

a m n

æ ö- ÷ç ÷ç ÷ç ÷ç +è ø

             

(22) 

where 

1
2 22

2 2 2 2 2 2
2

1
(1 ) 4

2

y
m a x z x z

b

é ùæ öê ú÷ç ÷= - - + + +çê ú÷ç ÷çê úè øë û
 

2
2 2 2

2

1
(1 ) ,

2

y
a x z

b

æ ö÷ç ÷- - +ç ÷ç ÷çè ø
            (23) 

 
1

2 22
2 2 2 2 2 2

2

1
(1 ) 4

2

y
n a x z x z

b

é ùæ öê ú÷ç ÷= - - + + -çê ú÷ç ÷çê úè øë û
 

2
2 2 2

2

1
(1 ) .

2

y
a x z

b

æ ö÷ç ÷- - +ç ÷ç ÷çè ø
            (24) 

 
Where subscript p corresponds to the normal force.   

Under sliding contact with interaction between the 
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tangential and normal forces, the stress relationship can be 
expressed as 

 
( ) ( )

0 0

,
x xzp q

p q

 
=                 (25) 

 
( ) ( )

0 0

xz zp q

p q

 
= ，                (26) 

 
where subscript q corresponds to the tangential force acting 
on the entire contact area; and q0 is the tangential force 
corresponding to p0, and is considered to be equal to μp0. q' 
under rolling contact has the same distribution as q under 
sliding contact, but an opposite direction. The stress 
components (σz)q' and (τxz)q' can be calculated using Eqs. 
(20), (22), (25), and (26), and only (σx)q' needs to be 
calculated separately. The stress components induced by 
the tangential force q ¢  in the contact area can be 
expressed as follows: 

  
2 2

0
2 2

( ) ( ) 2 2 ,x x qq
p z m

n x
a m n


 ¢

é ùæ ö- ÷çê ú÷=- =- - -ç ÷ê úç ÷ç +è øê úë û
  (27) 

 
2 2

0
2 2

( ) ( )z z qq
p m z

n
a m n


 ¢

æ ö- ÷ç ÷=- =- ç ÷ç ÷ç +è ø
，       (28) 

 
2 2

0
2 2

( ) ( ) 1 2 .xz xz qq
p z n

m z
a m n


 ¢

é ùæ ö+ ÷çê ú÷=- = + -ç ÷ê úç ÷ç +è øê úë û
  (29) 

 
From Eqs. (15) and (16), the distribution of q¢¢  is only 

defined in the stick region, and is similar to that of q', 
satisfying a certain proportion relationship. The parameter k 
is defined as the contact coefficient, where c/a = d/b = k. 
The axis of symmetry of the stick region is at x = s, and the 
stress components due to q¢¢ (x) can thus be expressed as 
 

( ) ( )
2 2

0
2 2

2 2 ,x q
p z m

n x s
c m n




*
*

* *¢¢

é ùæ ö- ÷çê ú÷= - - +ç ÷ê úç ÷ç +è øê úë û
   (30) 

 

( )
2 2

0
2 2

,z q
p m z

n
c m n




*
*

* *¢¢

æ ö- ÷ç ÷= ç ÷ç ÷ç +è ø
         (31) 

 

( )
2 2

0
2 2

1 2 ,xz q
p z n

m z
c m n




*
*

* *¢¢

é ùæ ö+ ÷çê ú÷=- + -ç ÷ê úç ÷ç +è øê úë û
     (32) 

where 

( ) ( )

1
2 22

2 22 2 2 2
2

1
1 4

2

y
m c x s z x s z

d
*

é ùæ öæ öê ú÷ç ÷ç ÷÷ç= - - + + + + +çê ú÷÷ç ç ÷÷çç ÷ê úè øè øê úë û

 

( )
2

22 2
2

1
1

2

y
c x s z

d

æ öæ ö ÷ç ÷ç ÷÷ç - - + +ç ÷÷ç ç ÷÷çç ÷è øè ø
，        (33) 

( ) ( )

1
2 22

2 22 2 2 2
2

1
1 4

2

y
n c x s z x s z

d
*

é ùæ öæ öê ú÷ç ÷ç ÷÷ç= - - + + + + -çê ú÷÷ç ç ÷÷çç ÷ê úè øè øê úë û

 

( )
2

22 2
2

1
1 .

2

y
c x s z

d

æ öæ ö ÷ç ÷ç ÷÷ç - - + +ç ÷÷ç ç ÷÷çç ÷è øè ø
        (34) 

 
According to the results obtained by JOHNSON for a 

problem involving a tangential force, the stresses and 
deformations caused by the tangential and normal forces 
are independent of each other and the total stress can be 
obtained by superposition of the stress components. 

The dimensionless analytic equations are here introduced 
to express the stress components in the contact area, using 
W=x/a, H=y/b, and B=z/a. By the superposition of Eqs. 
(20), (27), and (30), the stress component σx/p0 can be 
obtained as 

 
( ) ( ) ( ) 2 2

2 22
0 0 0 0

1

1

x x xp q qx B T
Q

p p p p Q TH

   ¢ ¢¢ é +ê= + + = ê +- ë
 

( )
2 2

2 2
2 2

B Q
T Q T B W

Q T
  

ù- ú- + + - + -ú+ û

 

( )2 2

2 22 2 2 2

1
2 .

k W kB Q
T

Q Tk H k H

 *

* *

é ùæ ö + -- ÷çê ú÷- -ç ÷ê úç ÷ç +è ø- -ê úë û
  (35) 

 
In addition, by the superposition of Eqs. (21), (28), and 

(31), the stress component σz/p0 can be obtained as 
 

2 2 2 2

2 2 2 22
0

1

1

z B T B Q
Q Q T

p Q T Q TH




é ù+ -ê ú=- - - -ê ú+ +- ë û
 

2 2

2 22 2
.

Q B
T

Q Tk H

 *
*

* *

é ù-ê ú
ê ú+- ë û

             (36) 

 
Furthermore, by the superposition of Eqs. (22), (29), and 

(32), the stress component τxz/p0 can be obtained as 
 

2 2 2 2

2 2 2 22
0

1

1

xz Q B B T
T Q Q

p Q T Q TH


 

é ù- +ê ú= - - +ê ú+ +- ë û
 

2 2

2 22 2
2 .

B T
Q Q B

Q Tk H

 *
* *

* *

é ù+ê ú+ -ê ú+- ë û
      (37) 

 
Where 
 

( )
1

2 2 22 2 2 2 2 2
2

1
1 4

2

m
Q H W B x z

a

é ù= = - - + + +ê úê úë û
 

( )22 2 21
1 ,

2
H W B- - +            (38) 
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( )
12

2 22 2 2 2 2 2
2

1
1 4

2

n
T H W B x z

a

é ù= = - - + + -ê úê úë û
 

( )22 2 21
1 ,

2
H W B- - +            (39) 

 

( )

1
2 22 2

22 2 2 2
2 2

1
1 4

2

m H
Q W B x s z

c k

*
*

é ùæ öê ú÷ç ÷= = - - + + + +çê ú÷ç ÷çê úè øë û
 

22
2 2

2

1
1 ,

2

H
W B

k

æ ö÷ç ÷- - +ç ÷ç ÷çè ø
          (40) 

 

( )

1
22 22

22 2 2 2
2 2

1
1 4

2

n H
T W B x s z

c k

*
*

é ùæ öê ú÷ç ÷= = - - + + + -çê ú÷ç ÷çê úè øë û
 

22
2 2

2

1
1 .

2

H
W B

k

æ ö÷ç ÷- - +ç ÷ç ÷çè ø
          (41) 

 
4  Numerical Simulation and Discussion 

 
The stress components at any point within z<0 or on the 

surface of the contact area (z=0) can be determined using 
Eqs. (35)–(37). The characteristics of the latter are the 
focus of the present study. These characteristics have been 
previously determined by numerical simulation using the 
mathematical software MATLAB, and discussed in detail. 
The dimensionless forms of the coordinates are used in the 
following figures to present universal results. The 
three-dimensional distributions of the stresses σx/p0, σz/p0, 
and τxz/p0 are shown in Figs. 3–5, respectively. The contact 
coefficient k and friction coefficient μ are the main factors 
that determine the stress components σx/p0, σx/p0, and τxz/p0 
obtained by Eqs. (36)–(37). The effects of different values 
of k and μ on the stress components are shown 
two-dimensionally in Figs. 6–8. 

Fig. 3 shows the variation of the stress component σx/p0 
for k=0.8 and μ=0.15 when the body is rolling in the 
negative direction of axis x/a and the width of the contact 
area changes along axis y/b. The offset of the stress in the 
rolling direction is shown in Fig. 3(a). It can be observed 
from Fig. 3(b) that the stress is compressive in the rolling 
direction and tensile in the opposite direction and that the 
amplitude of the compressive stress is larger than that of 
the tensile stress. However, because compressive stress is 
generally more likely to cause failure, both the largest 
compressive and tensile stresses should be taken into 
consideration in estimating the surface failure and checking 
the intensity. The phenomenon of stress mutation occurs at 
the boundary between the stick region and the slip region, 
resulting from the adopted CARTER[12] theory, as 
expressed by Eq. (14), in which the distributed force in the 
stick region is the algebraic sum of the slipping contact 

stress and its associated stress shrinking by a certain ratio 
relative to the contact coefficient, but in a reverse direction. 
In other words, the discontinuously distributed force in the 
contact area contributes to stress mutation, which is 
characteristic of a large-gradient stress in actual contact. 
 

 

Fig. 3.  Distribution of dimensionless stress σx/p0  
for k=0.8 and μ=0.15 

 

Figs. 4(a) and (b) show the variation of σz/p0 when k= 
0.8 and μ=0.15 for a surface contact area in which there is 
only compressive stress, the maximum value of which 
occurs at x/a=0. The distribution of σz/p0 in the 
dimensionless coordinate system is hemispherical, and 
there is no stress mutation. Only the maximum compressive 
stress should thus be considered in a failure analysis. 

Figs. 5(a) and (b) show the variation of τxz/p0 for k=0.8 
and μ=0.15. It can be clearly observed from the figures that 
the stress in the slip region is greater than that in the stick 
region, for which reason the slip region is more susceptible 
to wear. In addition, stress mutation occurs at the junction 
of the stick and slip regions, and this should be considered 
in the numerical prediction of fatigue and analysis of 
failure. 

Fig. 6(a) is a two-dimensional representation of the stress 
σx/p0 for fixed values of μ=0.15 and y/b=0 and varying 
values of k. It can be observed that, when k=1, the stick 
region covers the entire area, and there is no sliding or 
stress mutation. Although this is an ideal situation, it is 
impractical. When k<1, stress mutation occurs due to the  
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Fig. 4.  Distribution of dimensionless stress σz/p0   
for k=0.8 and μ=0.15 

 

Fig. 5.  Distribution of dimensionless stress τxz/p0  
for k=0.8 and μ=0.15 

co-existence of stick and slip regions, and the stick region 
decreases with decreasing value of k. Fig. 6(b) shows that, 
for fixed values of k=0.8 and y/b=0, the tensile and 
compressive values of the stress σx/p0 both increase with 
increasing μ, and stress mutation is more obvious.  

 

 

Fig. 6.  Effects of k and μ on stress σx/p0  

 

 

Fig. 7.  Effects of k and μ on stress component σz/p0 

 

However, the parameters k and μ have no effect on the 
stress σz/p0 of the rolling contact examined in the present 
study. Fig. 7 shows the results for k=0.8, μ=0.15, and 
y/b=0. As also shown in Fig. 8(a), for fixed values of μ= 
0.15 and y/b=0, the stick region covers the entire contact 
area, and there is no stress mutation when k=1. Moreover, 
with decreasing value of k, the width of the stick region 
decreases while the stress τxz/p0 increases. Furthermore, Fig. 
8(b) shows that, for a fixed value of k=0.8, the tangential 
stress τxz/p0 acting on the entire contact surface increases 
with increasing value of μ, and mutation is more obvious. 



 
 
 

Y ZHAO Yanling, et al: Analysis and Numerical Simulation of Rolling Contact between Sphere and Cone 

 

·528· 

 

 

Fig. 8.  Effects of k and μ on stress component τxz/p0 

 
 

5  Conclusions 
 
(1) The rolling contact area generally is comprised by  

stick and slip regions, and the surface stress component σx 
in the area is compressive in the rolling direction and 
tensile in the reverse direction. In addition, the amplitude of 
the compressive stress is greater than that of the tensile 
stress. With regard to σx and τxz, they have large gradients 
along the boundary between the stick and slip regions, and 
they should therefore be considered in the numerical 
prediction of fatigue and analysis of failure. 

(2) With regard to the effect of the contact coefficient k 
on the stress components, with decreasing value of k, the 
scope of the stick region decreases and σx and τxz increase. 
However, the increase in the amplitude is not significant, 
and k is therefore not important factor in the analysis of the 
stress in the absence of a strict requirement. k has no effect 
on σz. 

(3) With increasing value of the friction coefficient μ, σx 

and τxz increase and the stress gradient also increases. From 
the perspective of service life, this is beneficial to reducing 
the friction coefficient properly. 

(4) A new method for calculating the stress of three- 
dimensional non-conforming rolling contact between a 
sphere and a cone is developed and the equations for 
analyzing the stress components are derived. The results of 
this study provide a foundation for the further study of 
friction, wear, and fatigue.  
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