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Abstract: In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is 

focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of 

models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping 

developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile 

modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a 

vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition 

are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is 

described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing 

errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is 

accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also 

introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of 

reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important 

dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. 

Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing 

ratio which serves as design variable for the calculation of the tooth profile modifications. 
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1  Introduction 
 

Planetary gears are used to transmit power in numerous 
industrial applications, being the most compact and lightest 
possible drives[1], but even so they are progressively 
subjected to higher requirements of torque, speed and 
compactness. In order to satisfy these demands, researchers 
try to improve their understanding of the underlying 
phenomena involved in planetary gear power transmission, 
through the development of models capable of realistically 
reproduce the system behavior. Research in this area 
contributes to improve gear transmission insight, helping 
developing better maintenance practices[2] and more 
efficient design processes.   

As it has been pointed out, one of the main advantages of 
planetary gearing is the compactness. For high torques, 
instead of using large wheels, a simpler solution consists in 
splitting the load into a number of paths, so that loadings 
per unit facewidth for a given wheel size remain below 
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nominal values, while the torque is multiplied. Ideally, each 
path should carry the same load. However, real planetary 
gear transmissions present manufacturing deviations and 
variable stiffness, which lead to a different load sharing 
ratio(LSR) for each path. This causes dynamic problems, 
higher loads and reliability concerns, due to the fact that the 
nominal load per teeth width may be surpassed. The LSR 
has been previously studied from both experimental[3–4] and 
computational modeling approaches. This last approach 
includes models that range from simple analytical[5] to 
complex hybrid models, combining analytical and finite 
element studies[6]. One of the main sources of uneven LSR, 
apart from the manufacturing errors in the system, is the 
existence of “out of line of action” (OLOA) contacts, for 
example at the tip of the teeth, where the involute profile 
ends and the teeth pairs come into contact in advance. In 
order to avoid this problem, modified profiles are of 
common use in the gear industry.  

Some studies have been done in profile modification in 
planetary transmissions, first addressed by PALMER and 
FUERHER[7], where an improvement in the noise 
generation of a planetary transmission was demonstrated 
with the introduction of profile modifications.  
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Regarding planetary modeling including profile 
deviations several works have been presented[8–10], 
extracting a variety of conclusions, like the diminishing of 
some of the mesh forces harmonics, or the reduction of the 
orbit radii for central elements. A more specific study on 
profile modification effects on the overall planetary gear 
dynamics was performed by BAHK and PARKER[11]. 
Using perturbation methods, they found that the dynamic 
analysis at a whole system level is necessary for the design 
of tooth modifications with the goal of planetary gear 
vibration reduction. This last conclusion comes to justify 
the complete model of planetary transmission that is used 
in this work for the profile modification design.  

Due to its spatial configuration, planetary transmissions 
are difficult to model. The static transmission error has 
been used as excitation to model planetary 
transmissions[12–13], but recent studies point that this 
approach, while remaining relatively valid for ordinary 
transmissions, may not be applicable to multi-mesh 
transmissions such as planetary ones[14]. Enhanced models 
including time-varying stiffness  give better off-resonance 
responses, and are also used to identify regions of 
resonance, where damping and other nonlinear phenomena 
strongly affect the behavior[15–16]. The latest and more 
advanced planetary transmission models are those based on 
computational approaches, frequently including FEM 
techniques in combination with different contact models[17], 
in some cases even considering completely flexible bodies 
during the dynamic simulations[8].  

In this work, a planetary transmission model developed 
by the authors and based on a previous mesh model[18–19] is 
applied to the design of profile modifications in a planetary 
transmission. The geometry definition aspects of the model 
are described with great detail, focusing the description on 
the inner gear, being the approach completely analogous for 
the external gear wheels. With the method implemented, 
aspects such as the undercutting of the teeth and the 
hypotrochoid section definition are implicitly taken into 
account. The introduction of a rounding arc at the tip of the 
teeth is justified and explained. A procedure for the 
modeling of profile deviations is then presented, with the 
possibility of linear and parabolic modification, and any 
size and length of both tip and bottom relief. Regarding the 
contact force calculation and the dynamic implementation, 
a summary of the procedure is presented, referencing those 
works in which further descriptions can be found. An 
analytical formulation for the contact problem is hybridized 
with finite element models in order to compute the contact 
forces[18].  

Finally, a real planetary transmission is used as 
application example. The design of a set of profile 
modifications is done based on the improvement of the load 
sharing characteristic up to a certain point, and then the two 
versions of the transmission(modified and not modified) 
are modeled and their dynamic behavior simulated, 
assessed and compared. 

 
2  Planetary Gear Basic Geometry 

 
The first problem to be addressed when building a 

planetary gear transmission is the appropriate description of 
the wheels geometry. This definition should be consistent 
enough to represent with flexibility and robustness the 
widest possible range of parametric variations of the 
transmission.  

This section describes the different phases of the profile 
definition, without taking into account the profile 
modifications, which will be introduced and described later 
on. For the sake of simplicity and shortness, the procedure 
will be described in detail, but limited to the inner gear 
profile definition. For external gears the procedure is 
completely analogous, and can be found thoroughly 
described in[20].  

In this model the generation of the gear profile is done 
by mathematically mimicking the real cutting process, 
using the vector approach proposed by LITVIN, et al[21]. 
This procedure provides a high degree of realism, and in 
addition it provides great versatility. It allows for the 
generation of shifted gears, and also take into account 
implicitly issues such as undercutting and trochoid 
definition. In order to avoid the singularity of corner 
contacts, a rounding arc is added at the tip of the teeth, 
according to VEDMAR[22] approach. 

 
2.1  Cutting tools 

For the modeling of a planetary transmission both 
internal and external gear are required. For the latter (sun 
and planet gears) it is used a normalized rack cutter, while 
for the inner ring gear profile definition a pinion shaper 
cutter has been adopted. 

In Fig. 1 a single tooth of the shaper cutter tool is shown. 
Each section of the tool is parameterized, allowing for an 
easy definition of the same. Three sections of interest are 
found: two corresponding to the outer and inner arcs of 
head and bottom circumferences, and another one 
corresponding to the involute tooth flank of the tool.  

 

 
Fig. 1.  Cutting tool parameterization 

 
Once the tool is completely defined, it is also necessary 

to define a set of coordinate systems as shown in Fig. 2, 
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that will be used for the analytical cutting process. The 
other parameters that define the tool are the m module, the 
addendum coefficient ad, dedendum coefficient dd and 
primitive and base radii RP and br . The module is 
expressed in milimeters, and the addendum, dedendum and 
shifted factor x are normalized by the module. Next, each 
section of the pinion shaper are defined within the pinion 
system of reference. 
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Parameters iu  and iv  determine the position of a point 

along each of the sections considered in the shaper. The 
parameter iu  provides variation within the plane 
perpendicular to the gear axis, and the parameter iv  varies 
between －b/2 and b/2, being b the pinion width in 
milimeters. The limits for the variation of 1u  and 3u  are 
defined by the following expressions: 
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where the well-known involute function is ( )Ev  =

 
( )tan . -  

 
2.2  Envelope and meshing condition 

In the manufacture of gears by shaper, the material is 
removed from the wheel up to a certain limit, which is 
defined by the envelope of the tool profile with respect to 
the manufactured gear. The analytical process is completely 
equivalent, being necessary to find the envelope to a family 

of curves. Applying the classical approach of differential 
geometry a necessary condition for the existence of this 
envelope can be obtained. If this condition is simplified 
exploiting the properties of the relative velocity between 
profiles, it results in the following meshing condition[21]: 

 

profile relative• 0.S S =n v                   (6) 

 

Once satisfied, this equation indicates which points in 
the profile of the tool have a relative velocity tangential to 
the surface, and are therefore likely to be cutting for a 
certain position.  

In the particular case of internal gear cutting, the relative 
motion of the shaper with respect to the ring gear is given 
by the pure rolling of the polar curve associated with the 
shaper on the polar curve associated with the ring. Thus, 
these two curves can be defined as the pitch circles for 
pinion and ring, of radii RP and RR. The motion is described 
in Fig. 2, where the three reference systems used are 
noticeable: one associated with the ring gear(in red), one 
with the pinion cutter shaper(in blue) and the global 
reference system(in black). During the cutting process the 
tool can undergo a deliberate shift in its position, which is 
defined by the parameter x(shift factor), allowing for the 
generation of shifted gears, with non-normalized tooth 
widths.  

 

 
Fig. 2.  Cutting process and reference systems  

 
The relative movement between the shaper and the ring 

will be characterized by their corresponding axodes. Hence, 
it is possible to obtain the relative velocity of any point Q at 
the tool profile by  

 

( ) ( ) ( ) ( ) ( ) ( ) ,
F F F F F F
Q R F Q R P Q P F Q R P Q R F Q P F= +  = -v v v v v v

 

(7) 

 
which is a vectorial equation expressing the velocity of the 
point Q at the ring(R) in the movement with respect to the 
pinion(P), expressed in the global reference system(F). 
Taking into account that the motion of Q is a rotation for 
any given relative motion, and knowing the distance 
between the centers of the wheels, from Eq. (7) it can be 
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obtained:  
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Thus only remains to calculate the normal to the tool 

profiles to raise the meshing condition Eq. (6). For curves 
defined parametrically, the normal is  
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By applying this expression to each of the sections 

defined of the tool profile it is possible to obtain the 
corresponding normal to each section. Then, a change in 
the reference system must be applied, to have all vectors 
defined in the global reference. Thus,  
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Finally, Eq. (6) can be particularized for each of the 

cutter sections, substituting Eqs. (8) and (10). The meshing 
condition for each section, which link the parameters ui 
with the angular positions of pinion and ring are then 
obtained: 
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2.3  Gear profile 

The gear profile is obtained by expressing each of the 
sections in Eq. (13) in the coordinate system of the ring, 
simultaneously verifying the meshing condition Eqs. 
(11)–(13). The coordinate transformation from P to R is 
done in two phases. The first is a rotation and translation of 
the reference system of the shaper to the global or fixed 

coordinate system. The second phase is another rotation to 
reach the ring reference system. Each of these operations 
can be expressed by the corresponding homogeneous 
transformation matrix, as shown below: 
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Multiplying the matrices in reverse order, the final 

homogeneous transformation matrix is obtained: 
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This can be applied to each of the sections of the tool 
defined in Eqs. (1)(3) providing 
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The meshing equations for the first and third section 

relationships between parameters u1 and θP can be obtained, 
so that substituting in Eq. (17): 
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It is easy to see that these equations describe the profile 
of the ring wheel bottom and head circumferences 
respectively. For the head(or outside circumference) this 
equation has only some relevance, since the actual 
manufacturing process involves a ring of material which 
defines the actual thickness of the gear. From the meshing 
equation for section 2 the parameter u2 can be found as a 
function of θR: 

 

b
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substituting 
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This is the involute profile of the inner gear. The section 

that links the involute profile and the bottom circumference 
will be cut and defined by the point at the tool designated 
as M in Fig. 1. This profile section correspond to a 
hypotrochoid, and for its definition any of the two cutter 
portions that meet in M can be used, as long as the 
parameter u is set to coincide with M. In this case, the first 
section has been used, with u1 set to its maximum(M). 
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Thus, they are only left for definition the variation 

intervals for the parameters ui and θR for which each tool 
section is actually actively cutting and which not 
necessarily coincide with those limits established in Eqs. (1) 
to (5). The next conditions must be observed: 

(1) To limit the involute profile, the tool will only cut up 
to the point where the radii of the points being defined 
match the external radius of the head circumference. The 
radius of the involute is given by 
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and the equation which provides the limit for the parameter 
variation is then 
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(2) For the circumference corresponding with the head of 

the teeth, which meets the involute section, the limiting 
equation can be 
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x x Rr r - =             (25) 

 
(3) Finally, for the hypotrochoid section, once fixed the 

parameter u1, θR will vary between the values for which M 
is actively cutting, which corresponds to 

 

2min troc 1min .R R R  ≤ ≤            (26) 
 

Both tool profile and generated inner gear tooth can be 
seen in Fig. 3. 

 

 

Fig. 3.  Tool and generated inner gear tooth profile 

 
2.4  Undercutting 

The approach described in the previous subsections also 
allows for the consideration of undercutting(Fig. 4) during 
the cutting process, providing for an extra degree of realism 
to the gear profile definition. When the undercutting occurs 
at the external gears, the new limits between sections must 
be numerically determined, as the involute profile is 
modified by the cutter after its initial definition. This 
procedure is described in Ref. [20]. 

 

 

Fig. 4.  Inner gear undercutting 
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In the case of inner gears, where the focus of this section 
is applied, the undercutting consists on the removal of 
material from the wheel tooth tip during the extraction of 
the shaper teeth, due to an excess in the size dimension of 
both gears. In Fig. 4 this effect is modelized according to 
the procedure described, where the shaper used presents a 
number of teeth which exceeds the limit defined by Eq. (27) 
for which the nonundercutting condition is guaranteed 
LITVIN[21]: 

 
4.42.P Rz z -≤              (27) 

 
For a pressure angle of 30º and considering the axial 
generation method. 

 
2.5  Teeth tip rounding arc 

According to the gear profile definition described above, 
it can be seen that the intersection of the head 
circumference and the involute profile results in a sharp 
edge. Although kinematically speaking this should not be a 
problem, real gears are flexible, and during the meshing 
process corner contacts could arise, which would lead to 
problems in the model contact force calculation. In order to 
avoid this singularity, a tip rounding (Fig. 5) is added to the 
tip of the teeth, following VEDMAR[22] approach both in 
external and internal gears, according to the process 
described below. 

 

 

Fig. 5.  Graphic construction for the tip 
 rounding definition  

 
A new circular section of the tooth profile is defined as a 

rounding arc as follows:  
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Angle γ can be defined according to Fig. 5 as 
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The limits of variation of the parameters describing the 

involute section must now be modified with respect to 
those determined in Eq. (24). The minimum radius of 
involute will be defined by the length of the OA vector in 
Fig. 5: 
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Once these parameters are known, α is defined to be 

introduced in Eq. (31) as  
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The variation limits of the θR3 also change with the 

introduction of the tip rounding, and Eq. (25) is modified as 
 

( ) 3 3min2 2min 0 .R R
x Rx ur r - =            (35) 

 
This rounding arc will be taken into account for the 

contact force determination, both in terms of magnitude 
and direction. 

 
 

3  Geometric Overlaps and Profile 
Modifications 

 
The second step in the planetary modeling is the 

determination of the potential contact points and the 
geometric overlaps between profiles for a given position of 
the transmission. In a similar way as the profile definition, 
it is also possible to find the potential contact points and the 
geometric overlaps through analytical formulation. To this 
end, the contact over the line of action(LOA) is defined and 
the geometrical overlapping between profiles is determined 
for each potential contact point. This procedure is 
thoroughly described in[18]. Up to this point, all modelling 
processes have been based on the ideal involute profile, 
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with the addition of the tip rounding. In the real world, 
gears include profile modifications, which are designed to 
improve the dynamic behavior(e.g. smoothening the 
transmission error) and to reduce the stress levels in the 
system(avoiding for example the corner contact at the teeth 
tip). As the objective of this work is the study of these 
profile modifications in a planetary transmission, it is 
necessary to implement said modifications in the model. 

As first assumption prior to the profile modification 
modeling, it can be stated that deviations in the profile 
shape do not affect the overall flexibility of the tooth nor 
the direction of contact. This means that profile 
modifications only alter the contact condition in terms of 
the magnitude of the geometric overlap, advancing or 
delaying the contact with respect to the non-modified case. 
Therefore, for the implementation of the profile 
modification, it is sufficient with the alteration of the 
geometric overlaps according to the quantity of profile 
relief.  

Gear profile modifications are of diverse type, but 
generally they can be classified according to the section of 
the profile affected and the size of said modification. This 
way, there are tip and bottom relief, where material is 
removed respectively from the tooth tip and from zones 
near the root circumference. The depth of the modification 
as well as the length of the profile affected depend on the 
application: load level, contact ratio and other parameters 
of the transmission. For tip and bottom relief, and in the 
case of transmissions with a contact ratio between 1 and 2, 
modifications which affect only the multiple contact 
zone(two pair in contact for each mesh) are considered 
short, while if the effect is extended to the single contact 
zone, the modification is considered long. With respect to 
the modification shape, in this work only two cases are 
considered: linear and parabolic. 

The modeling approach presented in this work is valid 
for the implementation of profile modifications in a 
planetary gear transmission, but it can also be used for the 
introduction of non-desired deviations in the profile, due 
for example to manufacturing errors. Both in the case of 
non-desired or deliberately designed modifications, the 
usual practice is to represent the magnitude of the deviation 
in a diagram with respect to the radius of curvature of the 
profile(distance s in Fig. 6). Thus, the correction e(s) 
introduced(deviation of the actual profile with respect to 
the ideal profile) is defined by the maximum magnitude of 
the modification(CT or CB for the tip and bottom relief 
respectively), the length of the correction(ΔLT or ΔLB) and 
the shape of the modification: linear or parabolic. Positive 
values of correction means the removal of material and, 
therefore, a smaller radius of curvature s in the case of 
external gears, and a greater s in the case of internal gears, 
as shown in Fig. 7. The initial point of the relief from the 
pitch point P are marked with B and T for the base and tip, 
respectively, being possible to represent the relief as shown 
in Fig. 7. 

 
Fig. 6.  Parameter definition for the profile modifications 

 

 
Fig. 7.  Tip and base profile modification definition 

 
The relief magnitude will be added to the geometrical 

overlap for each potential contact point, for the calculation 
of the contact forces. According to the definition of the 
profile modification, the relief will be as follows: 
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Eqs. (36) and (37) are used for tip relief in external 

(planet/sun) and inner gear (ring) respectively, Eqs. (38) 
and (39) for bottom relief. The modification shape is taken 
into account with the exponent n, 1 for linear and 2 for 
parabolic relief. 

 
4  Meshing Forces and Dynamic 

Implementation 
 

Next, a summary of the modeling approach used in this 
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work for the meshing forces calculation and the dynamic 
implementation is presented, being described with greater 
detail in Refs. [1820]. The contact forces are computed in 
this model defining their relation with the deformations, 
which are obtained for a given position as the geometric 
overlaps between mating profiles. By solving a non-linear 
constrained system of equations, the contact forces cab thus 
be computed for a specific position. The relation between 
contact forces and deformations is obtained by using a 
modification of ANDERSSON’s procedure[23]. The 
deformations are obtained as a combination of two terms: 
global and local. The structural term is due to linear 
deflections in the region far from the contact point, 
representing the deformation(shearing and bending) of the 
tooth and the whole gear body. On the other hand, the local 
term is used to describe the non-linear deformation near the 
region where the contact is taking place. Thus, the three 
problems described in Fig. 8 are combined, taking into 
account Saint-Venant theory for statically-equivalent loads: 
far away from the application point, differences among 
their effects can be neglected.  

 

 

Fig. 8.  Combination of structural and local deformations 
 
Therefore, a boundary must be established at a distance h 

in order to consider both structural and local deformations. 
Structural deformations are then computed using Finite 
Element Method(FEM), with a unitary force applied on the 
potential contact point(Fig. 8 left). These deformations are 
valid only for regions far away from the contact point. 
Consequently, a correction is needed for regions closed to 
the contact point, where the deformation is going to be 
computed via Weber-Banashek formulation. Thus, a 
subtraction is applied near the contact point(depth < h), as 
it can be seen in Fig. 8(center). Total structural deformation 
is then obtained as a combination of the two first problems 
in Fig. 8(left and center).  

Then, local deformation taking place at the region close 
to the contact point(Fig. 8 right) is computed by means of a 
non-linear analytical formulation, which is dependent on 
the depth h and length of contact zone L. Total deformation 
can be described as 

( ) ( ) ( ) ( )1 2 1 2
Local Local Struc, 1: Struc, 1: ,G G G G

Tj j j j N j Nf f f f= + + +u u u u u

 (40) 

with the local non-linear analytical formulation defined as 
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Computation of contact forces using this approach 

presents some advantages. Usually, the contact zone is two 
orders of magnitude smaller than teeth size. This means 
that using only FE models, a very fine mesh would be 
needed in the contact region. Also, as the contact zone 
changes during motion, a remesh would be needed for each 
position. With the hybrid approach used in this work, a 
much less fine mesh is accepted because it is only needed 
for computing structural deformations and no remesh is 
required. This reduces considerably the computational 
effort. 

Regarding the dynamic implementation, a planar 
dynamic model of lumped masses is adopted in this work. 
The dynamic model must also include the dissipative 
phenomena, such as friction and damping. It is difficult to 
find in the literature a systematic modeling of these kind of 
efforts for gear transmissions, specially for its dynamic 
implementation. They can be classified by means of their 
dependency on losses by friction, rolling and deformation 
(dependent) and losses due to movement of fluid mass 
(independent). According to HÖHN[24], friction is the most 
important loss component if we compare it with rolling. 
Moreover, from the point of view of the system excitation, 
the importance of the friction force is even greater, not only 
because it acts out of the line of action, but because its 
direction change at the pitch point. In this work, friction 
forces and damping forces due to solid deformation and 
lubricant effect have been taken into account. Friction 
forces are implemented using a Coulomb model, where the 
contact forces are multiplied by the friction coefficient. The 
definition of the friction coefficient takes into account its 
zero value at the pitch point, but also lubricant effects, such 
as sliding velocity, viscosity, load amplitude and rugosity. 
The whole model has been implemented in MATLAB® 
and the dynamic part integrated in SIMULINK®. Further 
details on these modeling aspects can be found in Refs. 
[1820].  
 
 
5  Profile Modification and Results 

 
The goal of the work is the application of the planetary 

model to the design of a profile modification set for the 
three gears of the planetary. A real transmission has been 
selected for its simulation, whose parameters are shown in 
Table 1. 
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Table 1.  Transmission parameters 

Parameter Sun Planet Ring

No. of teeth 16 24 65 
Modulus m/mm 4.23 4.23 4.23
Width/mm 25 25 25 
Pressure angle (º)  25 25 25 
Tool addendum/mm 1.35m 1.35m  
Tool deddendum/mm 1.15m 1.25m  
Tool tip/mm 0.05m 0.05m  
Teeth tip round/mm 0.05m 0.05m 0.05m
Axis radius/mm 20  20 156.4

Elastic modulus/GPa  207  
Poisson coefficient 0.3  

 
The relief parameters have been designed based on the 

levelling of the load sharing ratio, which has already been 
defined as the individual portion of the load that each 
planet carries with respect to the total transmitted load. The 
profile modifications are closely related with the LSR 
characteristics. The profile modifications allow for the 
avoidance of corner contact, which as already has been 
stated is one of the main sources of uneven load sharing for 
planetary systems with a floating central member. Thus, the 
LSR levels with the introduction of the modifications, due 
to the elimination of contacts out of the line of action.  

In the example case, the modification values have been 
varied until certain threshold of improvement in the LSR is 
achieved. In Fig. 9 are shown the results for the original 
LSR(without modification) and for the final selection of 
modification parameters.  

 

 
Fig. 9.  Dynamic LSR 

 
The design of the modification is based on a tip linear 

relief for every gear, and the resulting modification 
parameters (according to the definition presented in Section 
3) were CT=0.014 mm for both external gears and 
CT=0.010 mm for the ring. The profile modification length 
to which the correction is applied is ΔLT=3 mm for the 
planet, ΔLT=2.5 mm for the sun and ΔLT=4 mm for the 
ring. 

As the design of the profile modification set is based on 
the improvement on the LSR, is evident that this 
characteristic is implicitly better in the modified case. 
Nevertheless, some other dynamic characteristics can be 
studied to verify if the behavior improvement is general.  

As for the transmission error, which is one of the most 
typical transmission characteristics used for the assessment 
of the dynamic behavior, in Fig. 10 is presented for both 
cases(modified and unmodified).  

 

 
Fig. 10.  Overall planetary transmission error(sun) 

 

The mean value of the transmission error is increased 
when relief is included, although this has only a slight 
effect on the dynamic characteristics. One of the reason for 
the increase in the TE is the reduction of the overall 
stiffness of the planetary, being the single contact periods 
for each mesh in play prolonged. As a second and more 
important factor, the TE is a characteristic with a pure 
kinematic component, and the fact that the relief reaches 
the primitive point for each mesh implies an extra free 
rotation of the wheels to achieve contact. The peak-to-peak 
variation of the TE is significantly reduced, due to the less 
abrupt change in the number of pairs in contact, with a 
much smoother transition.  

In Fig. 11 the orbit of the sun is presented for the 
modified and unmodified cases. Again, it is possible to 
appreciate the improvement in terms of orbit radius 
reduction when the involute profiles include relief.  

 

 
Fig. 11.  Sun orbit 

 
As additional demonstration of the model capabilities 

and relief improvement, the vertical force transmitted 
through the ring to the support is shown in Fig. 12. There is 
a considerable reduction of the force when the relief is 
introduced. The main factor that determines this reduction 
is the improvement of the load sharing ratio. When the LSR 
is uneven, the symmetry of the 3-planet system is broken 
and the support forces skyrocket. 
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Fig. 12.  Dynamic vertical force in the ring 

 
 

6  Conclusions 
 

A planetary gear model for the design of profile 
modifications is been presented, with the description 
focused on the profile geometry definition. The approach 
allows for the realistic reproduction of the cutting process 
of external and internal gears: 

(1)This method takes into account the undercutting of the 
teeth, also directly defining the hypotrochoid section that 
connects the involute profile and the root circumference.  

(2)To avoid the corner contact at the teeth tip, a rounding 
arc is added, which allows to calculate the meshing forces 
in magnitude and direction for the entire contact period, 
including during these out of line contacts. 

(3) The procedure for the modeling of profile deviations 
can be used for the introduction of both manufacturing 
errors and designed profile modifications.  

(4) The modeling approach allows for the possibility of 
linear and parabolic correction, with any size and length of 
both tip and bottom classes relief.  

(5) The correction effect on the tooth flexibility is 
neglected, which allows for the easy implementation of the 
profile deviation as a simple geometric reduction in the 
geometric overlap between mating profiles for a given 
position of the transmission.   

A set of reliefs is designed for the minimization of the 
load sharing ratio. The modification adopted is linear, 
CT=0.014 mm for both external gears and CT=0.010 mm 
for the ring, with length of ΔLT=3 mm for the planet, 
ΔLT=2.5 mm for the sun and ΔLT=4 mm for the ring. The 
relief is designed for obtaining a leveling in the LSR, 
eliminating the contacts out of the line of action. As 
additional results, it has been found that with the 
modifications: 

(1) The sun orbit radius experiments a significant 
reduction of almost 60%.  

(2) The mean value of the TE is increased when 
modifications are included, but there is a great reduction in 
the peak-to-peak variation of the TE, due to the smoother 
transition between changes in the number of contacting 
pairs.  

The vertical force transmitted through the ring to the 
support is greatly reduced when the relief is introduced. 
The force symmetry is maintained through the meshing 
period, and the contact forces cancel each other, 
consequently reducing the force transmitted to the support. 
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