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Abstract: Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are 

composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying 

thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high 

importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform 

pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing 

equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the 

governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. 

Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The 

main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different 

shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some 

properties such as high temperature residence by applying non-homogeneous material. 
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1  Introduction 
 

Functionally graded materials(FGMs) are composite 
materials made up of various material composition and 
micro-structures. These properties can vary spatially in 
FGMs. Structures made of FGMs have improved 
performance characteristics in terms of mechanical and 
thermal properties under high temperature and thermal 
cycling conditions. Recently, application of FGMs as  
heat-shielding materials  have attracted a great deal of 
interest. 

Powder metallurgy methods can be used in the 
production of FGMs. As an example of such a 
manufacturing process, they can be produced by the 
application of a centrifugal force. Using this method, a 
continuously varying volume fraction of the inclusion 
material can be formed.  The most well-known FGM is 
compositionally graded from a ceramic to a metal. It is able 
to incorporate diverse properties of ceramics, such as heat, 
wear and oxidation resistance, with toughness, strength, 
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machinability and bending capability of metals. It will 
result in a material with non-homogeneous thermal and 
mechanical properties. In the theory of elasticity, FGM 
materials are mostly treated as non-homogeneous materials 
with material constants that vary continuously along one 
spatial direction.  

The mechanical behavior of homogeneous and 
non-homogeneous cylinders has been investigated in 
several scientific papers. NZENGWA and SIMO[1] derived 
a 2-Dimensional model of a thick elastic shell from the 
3-Dimensional theory by considering of different ratios for  
h/R in horizontal and vertical components. TUTUNCU and 
OZTURK[2] presented the exact stress solution for spherical 
and cylindrical pressure vessels of a functionally graded 
composite. They used infinitesimal theory of elasticity and 
obtained a close form solution for the stresses. They have 
considered simple power law for stiffness and constant 
value for Poisson ratio. TUTUNCU[3] published another 
paper about finding the stress solution in thick-walled 
cylinders using power series. Elastic and thermoelastic 
analysis of functionally graded piezoelectric cylinder have 
been considered in the literatures[4–8]. Set of field equations 
for thick shell of revolution made of FGMs derived by 
ZAMANI NEJAD, et al[9]. They derived formulation for a 
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general shell of revolution and then solved that for a simple 
cylinder. 

LIEW, et al[10], published the analysis of the temperature 
and thermal stresses in a hollow circular cylinder made of  
FGM. They used a novel limiting process to obtain the 
stress solution. In that, they employed the solutions of 
homogeneous hollow circular cylinders, with no recourse to 
the basic theory or the equations of non-homogeneous 
thermo elasticity. JABBARI, et al[11], investigated the 
thermoelastic behavior of a FG cylinder under the thermal 
and the mechanical loads. They employed 2-dimensional 
differential equation of heat transfer for the different 
boundary conditions. Considering two sets of equilibrium 
equations in the cylindrical coordinate system and 
imposing the distribution of temperature, they obtained two 
Navier equations in terms of two axisymmetric components 
of displacement. 

First order shear deformation theory(FSDT) has been 
used by other investigators as it gives a satisfactory results 
in the variety of engineering problems. In this theory, shear 
deformation is assumed to be constant along the thickness. 
To achieve more accurate results, it is essential to adopt 
shear correction factor or use higher-order shear 
deformation theories. ZHANG et al. applied the FSDT in 
dynamic analysis of cylindrical shell with clamped ends[12]. 
SHENG and WANG[13] performed the analysis on FGM 
cylindrical shells embedded in an elastic medium under 
combination of different loading scenarios of linear thermal 
vibration, buckling and dynamic stability. They used the 
First order Shear Deformation shell Theory for the analysis 
and assumed a temperature dependent material property in 
the analysis. TORNABENE, et al[14], adopted first order 
shear deformation theory and generalized differential 
quadrature method to study the free vibration analysis of 
functionally graded conical, cylindrical shells and annular 
plates. NAJAFIZADEH and ISVANDZIBAEI[15] studied 
free vibration of thin FGM cylindrical shells with ring 
support using Ritz method and based on shear deformation 
shell theory. 

From a computational point of view some finite element 
methods have been proposed in the literature. For instance, 
a semi-analytical axisymmetric finite element model using 
the 3D linear elastic theory for free vibrations of 
functionally graded cylindrical shells has been carried out 
by SANTOS, et al[16]. GHANNAD and ZAMANI 
considered a cylindrical shell with clamped ends[17]. They 
applied First order Shear Deformation Theory and principle 
of virtual work for modeling of a functionally graded 
cylinder. They compared their solution with finite element 
method and showed the effects of boundary on functionally 
graded cylinder. Perturbation technique has been adopted 
for a cylindrical shell with variable thickness by 
GHANNAD, et al[18]. They used matched asymptotic 
method for the system of ordinary differential equations 
with variable coefficients. Perturbation theory is a 
technique for finding an approximate solution to a problem 

by starting from the exact solution of a related problem. 
Matched asymptotic method is used in a perturbed problem 
when the domain is divided into some sub-domains. 

Exact solution for a cylinder with finite length made of 
functionally graded material under non-uniform pressure 
has been calculated by KHOSHFOTAR, et al[19]. They 
considered First order Shear Deformation Theory and 
introduced an analytical method for solving the problem. 
They also showed the capability of the model for different 
material distribution and different non-uniform pressure. 
Unfortunately, this analytical model cannot be used for a 
cylinder with variable thickness and non-uniform pressure. 

The main aim of this paper is to apply the matched 
asymptotic method for solving the non-homogeneous 
cylinder with varying thickness and varying pressure along 
the longitudinal axial of cylinder. 

 
2  Problem Formulation 

 
Consider a cylinder of length L with variable thickness 

h(x). Assume that it is subjected to non-uniform internal 
pressure P(x) and temperature T(x, z) that is shown in Fig. 1.  

 

 
Fig. 1.  Schematic of a cylinder with various thickness  

under non-uniform internal pressure and temperature 

 
The total potential energy functional   can be obtained 

from Eq. (1): 
 

i oU U = + .                (1) 

 
The first term in   represent the strain energy stored in 

the cylinder that is obtained from Eq. (2): 
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where A is the cross section area of the cylinder and 
changes along the length of the cylinder. For isotropic 
materials the stress-strain relation is given by Eq. (3): 
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where   and   are the Lame constants, 0T T-  is 
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temperature change that can be evaluated by heat transfer 
equation in the cylindrical coordinate system[7] and   is 
the coefficient of linear thermal expansion. Because of 
symmetry, there is no displacement in   direction. 
Therefore, by applying cylindrical coordinate system, the 
linear strain-displacement relation is given by Eq. (4): 
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where U  and W  are displacements along x  and z  
directions. By applying First order Shear Deformation 
Theory(FSDT), the displacement components can be 
written as Eq. (5): 
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           (5) 

 
Area element dA  in the cylindrical coordinate is 

written as rdrd  or (R z)d d ,z +  where R  is the 
radius of meridian curve. The second term in   denote 
the work done on the cylinder by the distributed pressure 
P(x) that is presented in Eq. (6): 
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According to principle of minimum total potential energy, 

we wish to determine the governing equations by using 
Euler equation as shown in Eq. (7) [20]:  
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After substituting Eqs. (1)–(6) into Eq. (7), the final form 

of equations are presented in Eq. (8) where all the 
components are shown in appendix: 
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Governing Eq. (8) is a non-homogenous differential 

equations with variable coefficients. It may be solved by 
the perturbation technique which is shown in the next 
section. 

 
3  Solving Procedure 

 

Eq. (8) is a system of non-homogenous differential 
equations with variable coefficient. This equation can be 
converted to a dimensionless equation if one uses 
parameters defined in Eq. (9): 
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            (9) 

 
Therefore, Eq. (8) can be rewritten as dimensionless 

form as it is presented in Eq. (10). All the components can 
be found in Appendix. 
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where   is the small perturbation parameter that is equal 
to 0t l/ . Different variables must be used for solving near 
boundary or inner solution and out of boundary or outer 
solution. This is due to the faster variation near the 
boundaries. For outer solution the expansion of Eq. (11) 
can be applied: 
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By substituting Eq. (11) into Eq. (10), the equations with 

the same order can be derived as Eq. (12): 
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As shown in Eq. (12), the unknown functions of Eq. (11) 

can be obtained with algebra equations. For the inner 
solution, it is necessary to select a more sensitive variable 
to show the faster variations at the boundaries. This 
variable for two boundaries is shown in Eq. (13): 
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a=0 presents the beginning and a=1 shows the end of 
cylinder. By substituting of Eq. (13) into Eq. (10), it can be 
rewritten as Eq. (14): 
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According to Taylor expansion, the matrices of coefficients 
and non-homogenous part can be rewritten as Eq. (15) 
based on  : 
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As before, the expansion of Eq. (16) can be considered 

as the solution of Eq. (14) as inner solution: 
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After substituting of Eq. (16) into Eq. (14) and 

considering the same order of  , the solution of Eq. (14) 
can be obtained from Eq. (17): 

 

( )
*

* * *
1 2

0

*
* * *
3 4

*

dd d
:

d d d

d

d

, 0, 1, 2,

j
j ij

n n j in i n i
i

j i
n n j in i n i

n n j
j


  



-
-= =

=

-
-= =

=

æ ö÷ç ÷ç + +÷ç ÷ç ÷çè ø

+

=

=

å
y

A A y

y
A A y

F 

  (17) 

 
Eq. (17) is a system of non-homogenous differential 

equations with constant coefficients. The solution can be 
written as Eq. (18)[19]: 

 
* * *

h p ,i i i= +y y y                 (18) 

 
where *

hiy  is homogenous solution and *
piy  is particular 

solution of Eq. (17). The homogenous solution can be 
obtained from Eq. (19)[19]: 
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where jm  and jv  are eigenvalues and eigenvectors of 
matrix of Eq. (17). There is a need to obtain jc  by 
applying the boundary conditions. There are 16 coefficients 
for two ends of cylinder. However, there are only 8 
boundary conditions available and the other coefficients are 
zero according to the finite solution. It means when   ¥  
for 0x =  and   -¥  for 1x = . Particular solution 
for non-homogenous system depends on the F  
distribution. The trail solutions according to F  are 
substituted into non-homogenous system and the arbitrary 
components of the coefficient vectors are determined to 
make the resulting equations identically true[19]. 

So far, an approximate solution of the boundary layer 
problem has been given as two separate expansions in 
terms of outer variable x and inner variable  . The basic 
idea underlying the method of matched asymptotic 
expansion is that the domains of validity of the two 
expansions overlap and hence they match. The final 
solution can be obtained from Eq. (20) where overJ  is over 
lapping part: 

* * *
out in over .= + -y y y J             (20) 

 
In addition, over ,J  over lapping solution, can be 

determinate from Eq. (21): 
 

* *
over out out0 1

.
x x 
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4  Results and Discussion 

 

In this section some capabilities of the presented method 
are discussed and the results are compared to other theories. 
Schematic of cylinders with various thickness under the 
various internal pressure are illustrated in Fig. 2. 

Fig. 3 shows comparison between classical theory, FSDT 
with analytical solution and current work for a 
homogeneous cylinder with constant thickness and uniform 
pressure that is shown in Fig. 2(a). Classical theory cannot 
show displacement variation along the length of the 
cylinder and is only able to consider the displacement 
variation along the thickness. Results obtained from FSDT 
and classical theory were the same for the points far from 
the boundaries. Identical results between FSDT and 
Classical theory were obtained for the mid surface of the 
cylinder for the points far from the boundaries(Fig. 3(c)). 
However, there is a high difference near the boundaries 
(Fig. 3(b)) as the effects of boundaries are not considered in 
the classical theory. As it is shown, the perturbation method 
leads to the accurate results according to the analytical 
method for this case. In one hand, with considering 3 terms 
of perturbation series, non-dimensional displacement fields 
calculated from both methods are the same up to the 6 
digits. In another hand, there is an error between two 
methods. Increasing the number of perturbation series 
terms lead to more accurate results comparing to the 
analytical solution. 

On of the advantages of this model is that we are able to 
choose different material properties along the thickness 
without any restriction. For instance, we assumed the 
material properties varied along the thickness as described 
in Eq. (22). Different values of n show different distribution 
of the properties along the thickness. 
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n
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One of the most interesting functionally graded materials 

is combination of metal and ceramic. Zirconia 
( 244.265 96(GPa) and 0.288 2)E = =  and Ti6AIV 
( 122.556 76(GPa) and 0.28 838 235)E = =  are selected 
for numerical results[21]. The elastic modulus and Poisson 
ratio variations along thickness of cylinder according to Eq. 
(22) and selected material are plotted in Fig. 4. 

Radial and axial displacements of a cylinder with 
constant thickness and non-uniform pressure are considered 
in Fig. 5 and Fig. 6. The corresponding configuration is 
illustrated in Fig. 2(b). The analytical solution exists for 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·1153·

this case[19]. Comparing the results of the matched 
asymptotic solution and the analytical results, it can be 
inferred that both methods follow each other quite well (Fig. 
5). In Fig. 5 and Fig. 6 different non-homogeneous and 
homogeneous cases are presented. Other mechanical 
components can be determined with displacement field 
solutions. 

 

Fig. 2.  Schematic of cylinders 

 

 

Fig. 3.  Dimensionless radial displacement 

 
As another case, a cylinder with variable thickness and 

uniform pressure is considered in Fig. 7 and Fig. 8. The 
schematic of the cylinder and applied load is showed in Fig. 
2(c). Fig. 7 and Fig. 8 show the radial and axial 
displacements for the homogeneous cases and their 
combination with n=1. The axial displacement variation is 
very fast at the boundaries and it is significant. 

Fig. 9 and Fig. 10 show radial and axial displacements of 
a cylinder with varying thickness under non-uniform 
pressure. The schematic of the boundary conditions and 
geometry of the cylinder is shown in Fig. 2(d). Based on 
the strong capability of the current work, it possible to 
obtain an optimum design of the cylinder. It will lead to the 
optimum thickness and optimum properties for the cylinder. 
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Fig. 4.  Mechanical properties distribution along thickness  
 

 
Fig. 5.  Dimensionless radial displacement distribution 

 along the inner surface of cylinder with constant 
thickness and non-uniform pressure 

 

 
Fig. 6.  Dimensionless axial displacement distribution 

along the inner surface of cylinder with constant 
thickness and non-uniform pressure 

 
Fig. 7.  Dimensionless radial displacement distribution 

 along the inner surface of cylinder with varying 
thickness and uniform pressure 

 
Fig. 8.  Dimensionless axial displacement distribution  

along the inner surface of cylinder with varying 
thickness and uniform pressure 

 
Fig. 9.  Dimensionless radial displacement distribution 

 along the inner surface of cylinder with varying 
 thickness and non-uniform pressure 

 
Fig. 10.  Dimensionless axial displacement distribution  

along the inner surface of cylinder with varying 
 thickness and non-uniform pressure 
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5  Conclusions 
 

Perturbation method is applied for the elastic analysis of 
functionally graded cylinder with varying thickness and 
non-uniform pressure. The governing equations of general 
cylinder are obtained by First order Shear Deformation 
Theory (FSDT) and minimum total potential energy 
approach. Matched asymptotic method is applied to obtain 
mechanical behavior of cylinder. Inner solution for near 
boundaries and outer solution for points far from 
boundaries are obtained by perturbation series. General 
solution is combination of inner and outer solutions. The 
current study is compared to the existing numerical results, 
classical theory and analytical solution for appropriate 
cases. The capability of presented method in estimation of 
the displacement field for non-homogeneous cylinder with 
varying thickness and non-uniform pressure is shown. It is 
possible to increase the level of accuracy of current model 
by considering of higher-order theories such as third order 
shear deformation theory. With the help of the presented 
method it is possible to achieve an optimum design of 
cylinder in term of the thickness and materials according to 
pressure and temperature distribution along the cylinder. 
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