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Abstract: Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are 

utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a 

reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the 

basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull 

parameters’ prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is 

applied to two-parameter Weibull distribution to derive the formulas for the parameters’ posterior distributions and solve the calculation 

difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a 

reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 

compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. 

The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, 

and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy. 

 

Keywords: NC machine tools, reliability, Bayes, mean time between failures(MTBF), grid approximation,  
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1  Introduction 
 

1.1  Small-sample problem of NC machine tools 
Numerical control(NC) machine tools are the foundation 

of the equipment manufacturing industry. Reliability has 
become the key common technology constraining the 
development of this industry. China has been the world’s 
number one consumer and importer of NC machine tools 
for 10 consecutive years since 2002. China’s machine tool 
industry, academic circle, and government believe that 
research on the reliability of NC machine tools is very 
important. Reliability technology includes reliability 
modeling and assessment, failure analysis, reliability design, 
and reliability allocation. In 2013, YANG et al[1], conducted 
a comprehensive review of the development of research on 
the reliability of NC machine tools. 
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Reliability modeling and assessment is a prerequisite of 
other reliability techniques, and the data collected from a 
reliability test are the foundation of reliability modeling and 
assessment. For a long time, the field test has been the only 
means of reliability testing for the entire system of an NC 
machine tool[1]; this test usually requires considerable 
resources, especially time. The earliest work was 
implemented by KELLER, et al[2], who collected field data 
on 35 computer numerical control machine tools over a 
period of three years. JIA, et al[3], collected data on 24 
machining centers for over a year, and YANG, et al[4], 
collected field failure data on 12 machining centers for over 
five years from 2005 to 2010. Other cases can be found in 
Ref. [1]. 

Currently, field reliability tests on NC machine tools are 
mainly carried out by universities in association with 
manufacturing companies under the support of projects at 
the national level. Jilin University has accomplished and is 
implementing multiple tests. However, a new phenomenon 
has occurred in several of the tests. That is, the number of 
failures observed throughout a test or the corresponding 
data-sample size is extremely small that classic statistical 
methods are incapable of modeling and assessing reliability. 
Many reasons account for this new phenomenon, and the 
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main one is that the reliability level of NC machine tools 
continues to improve as technologies develop. Thus, 
corresponding small-sample data are inevitable and arise 
frequently now and in the future. The problem of reliability 
modeling and assessment for NC machine tools under a 
small sample of data, the so-called small-sample problem, 
needs to be investigated and resolved immediately. Solving 
this problem is of great significance, especially for China. 

Time between failures(TBF) is an important type of data, 
and mean TBF(MTBF) is the most important index 
representing the reliability level of NC machine tools. 
Since the time of KELLER, et al[2], many other scholars, 
such as JIA, et al[3], YANG, et al[5], ZHANG, et al[6], and 
CHEN, et al[7], have adopted the two-parameter Weibull 
distribution to describe the TBF of machine tools. All of 
these scholars adopted classic statistical methods, such as 
least squares estimation(LSE) or maximum likelihood 
estimation(MLE), to estimate the Weibull parameters(scale 
parameter  and shape parameter ). The expectation of the 
Weibull distribution is usually adopted as the MTBF, which 
is calculated by the parameters’ estimators. 

When the data sample is large, using LSE or MLE can 
obtain accurate parameter estimators. However, when 
dealing with small samples, the estimators of LSE and 
MLE, especially for shape parameter , are known to be 
significantly biased[8]. 

 
1.2  Bayesian methods for the small-sample problem 

Classic methods cannot be applied to the small-sample 
problem of NC machine tools. Although several scholars 
have proposed to adjust the estimators of classic methods 
through the use of adjustment factors[9–10], these methods 
have not drawn much attention compared with Bayesian 
methods. Owing to the development in calculation 
techniques, especially the advent of Markov chain Monte 
Carlo(MCMC) algorithms, Bayesian methods have become 
the main tools to solve small-sample problems in the 
reliability field. In 2008, HAMADA, et al[11], released a 
book that systematically presented the theories and 
applications of Bayesian methods in the reliability field. 

Given the existence of many expensive, highly reliable, 
complex systems in aerospace and military equipment, 
small-sample data cases are common. Many Bayesian 
reliability modeling and assessment methods have been 
developed for these cases. For example, GUIKEMA and 
PATÉ-CORNELL[12] performed a Bayesian analysis of the 
future success frequency of the 33 major families of launch 
vehicles, including China’s Long March family. 
GUIKEMA and PATÉ-CORNELL[13] also studied infancy 
problems for launch vehicles and pointed out that under a 
small number of launch attempts, the Bayesian approach 
exhibits an advantage over classic statistical approaches of 
yielding estimates. In another simulation-based research, 
GUIKEMA[14] proved that the predictive accuracy of 
Bayesian methods is better than that of classic methods for 
estimating the risk of failure for binary failure/no failure 

systems, such as strategic missiles. ANDERSON-COOK, et 
al[15], presented a Bayesian approach that combines 
component, subsystem, and system data with expert 
judgment for reliability modeling and assessment of missile 
systems. 

In contrast to aerospace products and military equipment 
that have well-developed reliability technology systems, 
NC machine tools still lack a complete reliability 
technology system[1]. Bayesian methods for the reliability 
of NC machine tools are scarce. PENG and HUANG, et 
al[16], implemented an accelerated degradation test(ADT) 
on a machining center’s milling head. The acceleration 
factor was derived, the two-parameter Weibull distribution 
was adopted to model the milling head’s TBF, and a 
Bayesian reliability assessment method was developed to 
incorporate the information obtained in the ADT with 
available field data. However, given that the milling head is 
a comparatively simple component, the ADT plan and 
corresponding Bayesian method are unsuitable for the 
entire system of an NC machine tool consisting of many 
subsystems and components. Thus, the development of a 
Bayesian method of reliability modeling and assessment for 
the entire system of NC machine tools is necessary and of 
great significance.  

After determining the problem, the reliability model, and 
model parameters, a Bayesian method of reliability 
modeling and assessment for NC machine tools will mainly 
involve three steps: (1) building the prior distributions of 
the Weibull parameters; (2) calculating the parameters’ 
posterior distributions based on prior distributions, Bayes 
theorem, and the data; and (3) estimating the parameters 
based on the posterior distributions and calculating MTBF 
using the parameter estimators. These three steps are 
introduced in sections 1.3, 1.4, and 1.5, respectively. 

 
1.3  Expert judgment and prior distributions 

Compared with classic methods that rely only on present 
data, an obvious advantage of Bayesian methods is that 
they can incorporate prior information with present data. 
Prior information usually needs to be quantified into the 
parameters’ prior distributions to take part in the calculation, 
and expert judgment plays an important role in building 
prior distributions. However, most published methods do 
not explain in detail how experts achieved the final prior 
distributions. For example, in Ref. [11], rocket scientists 
stated that the prior distribution of the success probability 
of the launch vehicle is uniform in the interval (0.1, 0.9) 
according to past data and their engineering expertise; no 
further description was provided. GUIKEMA, et al[12], 
adopted uniform distribution in the (0, 1) interval as the 
prior distribution of the success probability of launch 
vehicles. PENG and HUANG, et al[16], adopted uniform 
distribution in the interval (0, 10 000) as the prior 
distribution for the Weibull scale parameter when no direct 
prior information existed; however, they did not discuss 
why 0 and 10 000 were selected as the endpoints. MING, et 
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al[17], directly presented the estimated interval of a 
product’s reliability based on expert panel and historical 
information without presenting the details.  

Prior distributions have a significant influence on the 
accuracy of reliability assessment. Thus, one must 
systematically study how to obtain prior distributions to 
develop a complete and practical Bayesian method for NC 
machine tools. Eliciting expert judgment to form a prior 
distribution and reduce the subjective bias is an 
independent research area supported by abundant literature. 
For example, QUIGLEY, et al[18], provided a 
comprehensive introduction of how to elicit prior 
distributions based on expert judgment. WALLS and 
QUIGLEY[19] developed an elicitation process for prior 
distributions of reliability growth models’ parameters based 
on expert judgment. MEYER and BOOKER[20] at Los 
Alamos laboratory published a book on eliciting and 
analyzing expert judgment. Thus, applying the techniques 
in the area of eliciting expert judgment to NC machine 
tools would be innovative and would achieve the fusion of 
multi-source prior information and expert judgment; 
reliable prior distributions could be obtained.  

Since neither of the Weibull parameters( and ) has an 
obvious physical meaning and experts with sufficient 
practical experience in the machine tool industry may be 
unfamiliar with probability or reliability knowledge, asking 
experts to directly provide the parameters’ prior 
distributions is unfeasible. An indirect approach is needed. 

KAMINSKIY, et al[21], pointed out that for the 
two-parameter Weibull distribution, prior information on  
and  is particularly difficult to elicit, whereas prior 
information on the Weibull cumulative distribution function 
(CDF) is generally easier to obtain. Therefore, in Ref. [21], 
prior information was presented in the form of the intervals 
of CDF estimates at two fixed time points. The CDF 
estimates were then translated into the parameters’ prior 
distributions through Monte Carlo simulation. However, 
considering that CDF values are values of probability, 
which remains too abstract for experts to understand, a 
comparatively larger subjective bias is inevitable if this 
method is applied to NC machine tools. 

GARTHWAITE, et al[22], advised that “experts should be 
asked questions about quantities that are meaningful to 
them and questions should generally concern observable 
quantities rather than unobservable parameters.” ALBERT, 
et al[23], pointed out that “experts are much more 
comfortable with answering questions based on time, which 
corresponds to observable quantities.” KADANE, et al[24] 
and LOW-CHOY, et al[25], also advised the use of indirect 
means, that is, to elicit expert judgment on observable 
quantities and then infer the parameters based on the 
judgment.  

The preceding discussion indicates that in Weibull CDF, 
time is a quantity that has a physical meaning; it is more 
perceivable and observable for experts than probability. 
Thus, we propose a new method wherein experts make a 

judgment on time, and then this judgment is translated into 
the Weibull parameters’ prior distributions. 

 
1.4  Calculating the posterior distributions 

of parameters 
The combination of prior distributions and the data is 

implemented by the Bayes theorem, and the objective is to 
calculate the parameters’ posterior distributions. 
Considering that the Weibull probability distribution 
function(PDF) has a complex form and the two Weibull 
parameters are both treated as random variables, 
“high-dimensional” integration having no closed form will 
occur in the calculation process. The corresponding 
formulas are illustrated in detail in section 3. 

“Conjugate distribution” is an analytic method of 
simplifying “high-dimensional integration.” However, the 
fundamental result obtained by SOLAND[26] indicates that 
the Weibull distribution does not have a conjugate 
continuous joint prior distribution. No analytic solutions are 
available for the posterior distributions, but parameter 
estimations are based on posterior distributions. Further 
parameter estimators cannot be obtained analytically if 
posterior distributions do not have analytic solutions. First, 
a numerical method is required to solve the posterior 
distributions. Second, parameter estimation is implemented 
based on the numerically solved posterior distributions. 
MCMC algorithms(simulation) and the grid approximation 
method are two suitable choices. 

MCMC algorithms are a general class of computational 
methods utilized to generate values from posterior 
distributions to form a Markov chain[11]. Common MCMC 
algorithms include Metropolis algorithms[27], Metropolis- 
Hastings algorithms[28], Gibbs samplers[29], and Slice 
sampling[30]. However, when facing a specific problem in 
reality, researchers need to develop a specific algorithm 
based on the principles of common MCMC algorithms. 
Sometimes, a hybrid algorithm incorporated with different 
algorithms is needed. For example, GUPTA, et al[31], 
developed a hybrid algorithm combining the Metropolis 
algorithm and the Gibbs sampler to simulate the posterior 
distributions of the Weibull extension model’s parameters. 
SOLIMAN, et al[32], developed a Metropolis-Gibbs hybrid 
algorithm to simulate the posterior distributions of the 
parameters of the modified Weibull distribution. 

Many factors should be considered in successfully 
developing and implementing an MCMC algorithm. These 
factors include determining the burn-in period, selecting 
appropriate proposal distributions or initial values, and 
monitoring the convergence of a Markov chain[11]. 
Developing a specific MCMC program for a specific 
problem is thus difficult. Several software packages have 
emerged to help researchers; an example is the free 
software package WinBUGS. In WinBUGS, the Bayes 
problem needs to be modeled in a language called BUGS 
language. A BUGS model is then created, and the expert 
system on WinBUGS selects a suitable MCMC algorithm 
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according to the BUGS model[33]. For complex problems, 
the usual algorithm WinBUGS selects is slice sampling 
proposed by NEAL[30] in 2003. However, as indicated in 
the user manual of WinBUGS, MCMC may fail. That is, 
any of the factors mentioned above could make the MCMC 
algorithm unstable or even crash. Thus, an MCMC 
algorithm, whether it is developed manually or by 
WinBUGS, usually requires the user to have a sufficient 
mathematical background and excellent programming 
ability. This condition prevents Bayes methods from being 
applied extensively in the reliability engineering field of 
NC machine tools. 

By contrast, the grid approximation method can express 
the posterior distribution in a direct, explicit, approximate 
form. According to the introduction by KRUSCHKE[34], the 
basic principle of grid approximation is to discretize the 
continuous variables. High-dimensional integration can be 
simplified as a summation, and further parameter 
estimation can be calculated directly. Compared with 
MCMC, grid approximation is easy to understand and 
practical to apply. Nevertheless, no study has discussed the 
application of grid approximation to the two-parameter 
Weibull distribution. To provide engineers who lack a 
statistical background with a suitable tool, the grid 
approximation method is applied to the two-parameter 
Weibull distribution in this study; the posterior distributions 
are solved, and the corresponding formulas are derived. 

 
1.5  Estimations of parameters and MTBF 

Parameter estimations are comparatively easy given the 
posterior distributions. Generally, the expectation of a 
parameter’s posterior distribution is regarded as the Bayes 
point estimator of this parameter. In section 5, the formulas 
to calculate the point estimators and 90% credible intervals 
are derived based on posterior distributions obtained 
through grid approximation.  

Section 6 shows the application of the proposed method 
developed in sections 2, 3, 4, and 5 to a real, small data 
sample. The same case is also modeled in WinBUGS in 
BUGS language; the BUGS code is developed, and the 
corresponding MCMC simulation is run with the same data 
sample for comparison. 

 
2  Building the Weibull Parameters’ Prior 

Distributions 

 
2.1  Weibull distribution and its functions 

The CDF of the two-parameter Weibull distribution, 
P=F(t), is provided by Eq. (1): 

 

( | , ) 1 exp , 0,
t

P F t t


 


é ùæ öê ú÷ç= = - - ÷çê ú÷çè øê úë û
≥       (1) 

 
where >0 is the scale parameter, >0 the shape parameter, 
and θ = (,) is the parameter vector. 

According to the discussion in section 1.3, the inverse 
function of CDF, t=F–1(P), is provided by Eq. (2): 

 
1

1 1
( ) ln , 0 1,•

1
t F P P

P


- é ùæ ö÷çê ú= = < <÷ç ÷çê úè ø-ë û

     (2) 

 
where t (time or possible observations of TBF) is the output 
and the value of CDF, P, is the input or exposure. Based on 
Eq. (2), a process of eliciting expert judgment and 
presenting prior information in the form of intervals of time 
at fixed exposures is developed in section 2.2. 

 
2.2  Elicitation of expert judgment 

A structured, complete elicitation process of expert 
judgment includes many definitions and details, which can 
be found in Refs. [18–20]. However, this paper presents 
two innovative definitions explained as follows. 

“Target System” refers to the NC machine tool to be 
studied. “Reference System” refers to an NC machine tool 
that has sufficient historical data and is similar to the Target 
System in the following aspects: reliability, type, model, 
structure, and functions. An ideal situation is that the Target 
System is a modified model of the Reference System. 

We let P=F0(t) and t=F0
–1(P) denote the Target System’s 

CDF and its inverse function; we let P=F1(t) and t=F1
–1(P) 

denote the Reference System’s CDF and its inverse 
function. The Weibull parameters for the Reference System 
are available based on historical data. Similar to the method 
in Ref. [22], two fixed exposures (P1 and P2) are specified 
for the Reference System. According to O'HAGAN, et al[35], 
the two most frequently assessed quantities are the 25th and 
75th percentiles. Therefore, we adopt P1=0.25 and 
P2=0.75. Based on Eq. (2), two time values, t11=F1

–1(P1) 
and t12=F1

–1(P2), can be obtained(see Fig. 1). 
 

 
Fig. 1.  Curves of Eq. (2) for the target and reference systems 

 
A formal interpretation for points (P1, t11) and (P2, t12) in 

Fig. 1 is as follows: the probability that the TBF of the 
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Reference System is less than t11 is P1, and the probability 
that the TBF of the Reference System is less than t12 is P2. 

An informal but intuitive interpretation for (P1, t11) and 
(P2, t12) is as follows: suppose that there are 100 similar 
Reference Systems being tested under the same situation; 
any single Reference System will be removed from the test 
for good after its first failure. A total of 100×P1 Reference 
Systems are removed when t11(h) have elapsed. A total of 
100×P2 Reference Systems are removed when t12(h) have 
elapsed. 

Each expert has a unique knowledge background. For 
example, an expert may be very familiar with reliability 
and statistical theories, whereas another one may be a 
machine operator with sufficient practical experience. Thus, 
considering the differences in knowledge background, this 
paper presents a formal set of questions (Q1, Q2) and an 
informal set of questions (Q1*, Q2*), where Q1 is 
equivalent to Q1* and Q2 is equivalent to Q2*. Each expert 
may opt to answer any one set according to his own 
preference. 

(1) First set of questions(see Fig. 1) 
Q1: For the function t=F0

–1(P) of the Target System, the 
estimate of time at fixed exposure P1 is denoted as t01. What 
are the minimum(Lt01) and maximum(Ut01) values of t01?  

Q2: For the function t=F0
–1(P) of the Target System, the 

estimate of time at fixed exposure P2 is denoted as t02. What 
are the minimum(Lt02) and maximum(Ut02) values of t02? 

(2) Second set of questions(see Fig. 1): 
Suppose that there are 100 similar Target Systems being 

tested under the same situation; any single Target System 
will be removed from the test for good after its first failure. 

Q1*: How long does it take until the number of removed 
Target Systems reaches 100×P1? Provide the minimum and 
maximum values of this duration. 

Q2*: How long does it take until the number of removed 
Target Systems reaches 100×P2? Provide the minimum and 
maximum values of this duration. 

Fig. 1 presents the curves of F1
–1(P) and F0

–1(P) based on 
Eq. (2). The figure provides experts an intuitive reference. 

The elicitation process of expert judgment mainly 
consists of three stages.  

The first stage is collecting multi-source prior 
information. Multi-source prior information generally 
belongs to 8 categories: (1) basic information(information 
on type, model, structure, manufacturer, and users); (2) 
degree of multifunction of a product(more functions affect 
reliability); (3) manufacturer’s technology level(capabilities 
of designing and manufacturing); (4) complexity of the 
product’s structure; (5) degree of maturity of the product; 
(6) cost of the product (cost of the entire system and 
subsystems); (7) user’s degree of satisfaction of the product; 
and (8) operational performance of the product(feedback of 
operation and maintenance personnel). 

The second stage involves asking experts to receive and 
process the multi-source prior information. 

The final stage is providing estimated, quantified 

answers. The three stages of the process are illustrated in 
Fig. 2. 

 

 

Fig. 2.  Illustration of the elicitation process of expert judgment 

 

2.3  Combination of expert judgments 
Suppose that m experts exist. The answer of the jth 

expert is denoted as [Lt01_j, Ut01_j] and [Lt02_j, Ut02_j], j=1, 

2, , m. To combine the answers of all the experts to form 
two single intervals [Lt01, Ut01] and [Lt02, Ut02], the assessor 
needs to assign weight Ej% to each expert to indicate his 
importance. Then, the weighted averages of each endpoint’s 

value are obtained as follows: Lt01= 011( % _ ),•m
i Ej Lt j=å  

Ut01= 011( % _ ),•m
i Ej Ut j=å  Lt02= 021( % _ ),•m

i Ej Lt j=å  

Ut02= 021( % _ ).•m
i Ej Ut j=å  Thus, the two intervals, [Lt01, 

Ut01] and [Lt02, Ut02], are obtained as the final, single 
answer of expert judgment. 

 
2.4  Building prior distributions 

For the Target System, the final answer of expert 
judgment is believed to be equivalent to the judgment on 
the Weibull parameters. That is, the expert panel has 
already implicitly provided the intervals [L, U] and [L, 
U] in which  and  lie. Intervals [L, U] and [L, U] are 
provided by providing [Lt01, Ut01] and [Lt02, Ut02]. Thus, 
mathematical skill is needed to transform [Lt01, Ut01] and 
[Lt02, Ut02] into [L, U] and [L, U]. 

First, given the specified P1 and P2, any pair (t01, t02) 
consisting of values obtained from [Lt01, Ut01] and [Lt02, 
Ut02], respectively, will determine a pair (, ). The 
derivation is as follows. 

Substituting (P1, t01) and (P2, t02) into Eq. (1) respectively 
yields Eqs. (3) and (4): 

01
11 exp , 0;

t
P t





é ùæ öê ú÷ç- - =÷çê ú÷÷çè øê úë û
≥            (3) 

02
21 exp , 0.

t
P t





é ùæ öê ú÷ç- - =÷çê ú÷÷çè øê úë û
≥            (4) 
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Thus,  and  can be obtained:  
 

1 1
1 2

01 02

ln ln(1 ) ln ln(1 )
,

ln( ) ln( )

P P

t t


- -é ù é ù- - -ê ú ê úë û ë û=
-

       (5) 

 

1
01 1

1
exp ln( ) ln ln(1 ) .t P


-ì üï ïï ïé ù= - -í ýê úë ûï ïï ïî þ

       (6) 

 
The transformation from pair (t01, t02) to pair (,) is 

achieved with Eqs. (5) and (6). Based on point-to-point 
transformation, the transformation process from interval to 
interval, which is a Monte Carlo algorithm, is proposed. 

(a) A value of t01 in [Lt01, Ut01] and a value of t02 in [Lt02, 
Ut02] are randomly selected. 

(b) The values of (,), which are denoted as (1, 1), 
are calculated according to Eqs. (5) and (6). 

(c) Steps (a) and (b) are repeated N–1 times, and the 
values of (i, i) are recorded each time, where i=2, 3N 
(e.g., N=1000).  

(d) The minimum and maximum values of {i} and {i} 
are determined. 

(e) [L, U] = [min(i), max(i)] and [L, U] = [min(i), 
max(i)]. 

For NC machine tools,  and  have their own range of 
value. However, no certainty exists as to which value could 
be the true value because of the lack of knowledge and 
information. The relations of the two parameters are also 
uncertain. Therefore, in accordance with BERGER[36], we 
assume that ,  are uniformly and independently 
distributed. For the Target System, the prior distributions 
(PDF) of the Weibull parameters and parameter vector are 
presented as follows: 

 
1( ) ( ) , ( , ),U L L U      -= - Î          (7) 

 
1( ) ( ) , ( , ),U L L U      -= - Î          (8) 

 
1 1( ) ( ) ( ) ( ) ( ) .U L U L        - -= = - -θ     (9) 

 
3  Posterior Distribution and High- 

dimensional Integration 
 

The theoretical formulas for the Weibull parameter 
vector’s posterior distribution can be derived via the Bayes 
theorem in combination with the data. In this study, each 
data point is complete without censoring. The case where 
censored data exist will be studied in the future. 

The PDF of the two-parameter Weibull distribution is 
provided by Eq. (10): 

 
1

( | , ) ( | ) exp , 0.
t t

p t p t t
  

  
θ

- é ùæ ö æ öê ú÷ ÷ç ç= = -÷ ÷ç çê ú÷ ÷ç çè ø è øê úë û
≥  (10) 

π(θ) denotes the prior distribution of parameter θ, and 
the random variable T denotes the complete TBF. An 
observation of T is denoted as tr, r=1, 2, , n. Thus, the 
data sample is denoted as t=(t1, t2, , tn). The posterior 
distribution of θ is denoted as π(θ | t).  

Substituting data point tr into Eq. (10) reveals its 
contribution to the likelihood function: 
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t t
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Likelihood function p(t | θ) is expressed by Eq. (12): 
 

1

1 1

( | ) ( | ) exp .
n n

r r
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-
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The marginal distribution of t is provided by Eq. (13):  
 

( ) ( ) ( | )d .p p= òt θ t θ             (13) 

 
Based on the prior distribution, likelihood function, and 

marginal distribution of data, the parameter’s posterior 
distribution, ( | ), θ t  can be obtained via Bayes theorem, 
which is shown in Eq. (14): 
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When θ=(, ), substituting Eqs. (12) and (13) into Eq. 

(14) yields the theoretical formula for the Weibull 
parameter’s posterior distribution: 
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òò
(15) 

 
However, Eq. (15) does not have an analytic solution for 

the following reasons: (1) the denominator of the 
right-hand expression involves a double integral, (2) both  
and  are random variables, and (3) the integrated function 
has a complex form. Thus, the integral is the so-called 
“high-dimensional integration,” which cannot have a closed 
form. 

Given that the denominator of the right-hand expression 
of Eq. (15) is a constant, Eq. (15) can be written as Eq. (16), 
which is a basis of developing an MCMC algorithm: 
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4  Posterior Distributions Based  

on Grid Approximation 
 

In this section, the principle of grid approximation is 
applied to the two-parameter Weibull distribution. 

 
4.1  Approximating the prior distributions 

Given the prior density π() of parameter  with domain 
[L, U], [L, U] is divided into n narrow sub-intervals 
with equal width of Δ=(U–L)/n; the end points of 
each sub-interval are denoted as *

0 (=L),

 

*
1 , *

2 , ,
*
n (=U), and a point i[ *

1i - , *
i ] is selected in each 

sub-interval. The set of i is {i} = {1, 2, , n}. 
Given the prior density π() of parameter  with domain 

[L, U], [L, U] is divided into n narrow sub-intervals 
with equal width of Δ=(U–L)/n; the end points of each 
sub-interval are denoted as *

0 (=L), 
*
1 , *

2 ,  , *
n

(=U), and a point j [ *
1j - , *

j ] is selected in each 
sub-interval. The set of j is {j} = {1, 2, , n} 

The probability mass functions, πm(i) and πm(j), are 
defined by Eqs. (17) and (18):
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The domains of πm(i) and πm(j) are {i} and {j}. 

Obviously, ∑πm(i)=1 and ∑πm(j)=1. Therefore, 
probability mass functions πm(i) and πm(j) are adopted as 
the approximate prior distributions of  and , respectively. 

We let θi,j=(i, j). Probability mass function πm(θi,j) is 
defined by Eq. (19): 

 

( ) ( ) ( ), .m i j m i m j    =θ            (19) 

 
The domain of πm(θi,j) is denoted as {θi,j}={(i, j)}, i=1, 

2,  , n, j=1, 2,  , n. Apparently, ∑∑πm(θi,j)= 
∑∑[πm(i)πm(j)]=1. Therefore, probability mass function 
πm(θi,j) is adopted as the approximate prior distribution of θ. 

For deeper understanding, the domain of πm(θi,j) is 
denoted by matrix Θ. The total number of elements is 
nΘ=n×n:  
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The probability mass at each point θi,j=(i, j) is also 
displayed in matrix πm(Θ) called “the prior distribution 
matrix.”: 
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4.2  Calculating the posterior distribution of θi, j 

Given the data sample t=(t1, t2, , tn), the posterior 
distribution of θi,j=(i, j) can be obtained via the Bayes 
theorem. Given that θi,j is discrete, the Bayes theorem in Eq. 
(15) is rewritten into a discrete form by Eq. (22): 
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(22) 

 
According to Eq. (22), the posterior probability mass can 

be calculated and denoted as πm(θi,j |t) or πm(i, j |t) at each 
θi,j=(i, j). The results are displayed by a matrix called the 
“posterior distribution matrix.” 
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4.3  Posterior marginal distributions of i and j 
Based on the posterior distribution matrix in Eq. (23), the 

posterior marginal distribution for a certain i or j can be 
denoted as πm(i | t) or πm(j | t) and calculated by Eq. (24): 
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5  Estimation Based on Posterior  

Distributions 
 

5.1  Point estimators of the Weibull parameters 
Generally, Bayesian point estimation is related to a loss 

function indicating the loss coming up when the estimator 
deviates from the true value[37]. Loss functions are of many 
types. When parameter  (for example) is one-dimensional, 
the loss function can often be expressed as Eq. (25):  

 

ˆ ˆ( , ) ,
B

l A   = -               (25) 

 
where A>0 and B>0. If B=2, the loss function is quadratic 
and is called a squared-error loss function(shown as Eq. 
(26)): 

 
2ˆ ˆ( , ) .l A   = -               (26) 

 
Refs. [37, 38] have proven that in a one-dimensional 

case and for a squared-error loss function, the Bayes 
estimator is simply the posterior mean, which can minimize 
the posterior risk. Thus, squared-error loss functions are 
adopted in the current study for  and . Considering that 
both are one-dimensional, the posterior means of  and  
are regarded as the point Bayesian estimators and provided 
by Eq. (27): 
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5.2  Estimating the parameters’ credible intervals 

Compared with classic methods, a significant advantage 
of the Bayesian method is that the credible (confidence) 
intervals are easy to obtain. Given that {i}={1, 2, , 
n}, i=1, 2, , n; {j}={1, 2, , n}, and j=1, 2, , 
n. The posterior probability mass of each i or j is 
obtained by Eq. (24). Thus, when 90% is specified as the 
credible level, two equations can be presented: 
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where k1 and k2 are two positive integers to be calculated. 
The interval [k1, k2] is the 90% credible interval of . 

Similarly, for , two equations can be presented: 
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m j
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1
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l

m j
j

 
=
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where l1 and l2 are two positive integers to be calculated. 
The interval [l1, l2] is the 90% credible interval of . 

 
6  Actual Application and Comparison 

 

6.1  Target system 

From October 26, 2013, to April 30, 2014, a field 
reliability test was conducted on a single NC machine tool, 
the type of which is NC turret punch. For confidentiality, its 
model is denoted as “Target.” Only four complete TBFs 
were observed. The data are shown in Table 1. 

 
Table 1.  Small-sample data of the Target System 

Order of observed TBF Observed TBF/h 

1 50 
2 1080 
3 1462 
4 1680 

 
6.2  Expert panel 

The expert panel consists of an assessor responsible for 
leading the entire elicitation process, a data collector 
responsible for observing the failures and recording the 
data, a managerial expert to help the assessor arrange 
affairs and meetings, and three technical experts identified 
by the assessor in association with the managerial expert. 
The definitions of the above roles are obtained from Refs. 
[19–20]. 

 
6.3  Reference system 

The expert panel identified a model of NC machine tools 
as the Reference System; the type is also NC turret punch, 
and its model is denoted as “Reference” for confidentiality. 
The Target is a modified model of the Reference. 

Historical data on the Reference were obtained from a 
field reliability test on 10 copies. The test was implemented 
from February 18, 2012, to November 18, 2014. Eighteen 
complete TBFs were observed. 

 

6.4  Raising specific questions 
The TBF of the Reference was modeled by the 

two-parameter Weibull distribution based on the historical 
data in Table 2 and LSE. The details of LSE on Weibull 
distribution can be found in Ref. [39]. The parameter 
estimators are =426.086 4 and =1.656 6. 

First, two fixed values of exposure were specified as 
follows: P1=0.25 and P2=0.75. For the Reference, 
t11=200.850 3 h and t12=518.953 2 h as calculated with Eq. 
(2). 

For the two points(P1, t11)=(0.25, 200.850 3) and     
(P2, t12)=(0.75, 518.953 2), the formal interpretation is as 
follows: the probability that the TBF of the Reference is 
less than 200.850 3 h is 0.25, and the probability that the 
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TBF of the Reference is less than 518.953 2 h is 0.75. The 
informal interpretation is as follows: Suppose that there are 
100 similar References being tested under the same 
situation, and any single Reference will be removed from 
the test for good after its first failure. Then, a total of 25 
References are removed when 200.850 3 h have elapsed; 75 
References are removed in total when  518.953 2 h have 
elapsed. 

 
Table 2.  Historical data of 10 copies 

of the Reference Systems 

Index of 
copies of 
Reference 

First observed 
TBF/h 

Second observed 
TBF/h 

Third observed 
TBF/h 

1 166   
2 312 338  
3 426 263  
4 235 436  
5 884   
6 136 181  
7 920   
8 200 597  
9 75 364 489 
10 136 682  

 
Two sets of specific questions are proposed as follows. 
(1) First set of questions  
Q1: For the function F0

–1(P) of the Target, provide the 
minimum and maximum values (Lt01 and Ut01) of t01 at P1= 
0.25. 

Q2: For the function F0
–1(P) of the Target, provide the 

minimum and maximum values (Lt02 and Ut02) of t02 at P2= 
0.75. 

(2) Second set of questions 
Suppose that there are 100 similar Targets being tested 

under the same situation; any single Target System will be 
removed from the test for good after its first failure. 

Q1*: How long does it take until the number of removed 
Target Systems reaches 25? Provide the minimum and 
maximum values of this duration(Lt01 and Ut01). 

Q2*: How long does it take until the number of removed 
Targets reaches 75? Provide the minimum and maximum 
values of this duration(Lt02 and Ut02).  

 
6.5  Expert judgments 

Before answering, each expert collected and processed 
the multi-source prior information, and each technical 
expert was assigned a weight by the assessor to indicate his 
importance. The individual and combined answers are 
displayed in Table 3. 

 
Table 3.  Results of expert judgment 

Expert index 
j 

Expert’s weight  
Ej% 

Estimated interval 
[Lt01_j, Ut01_j] 

Estimated interval 
[Lt02_j, Ut02_j] 

1 40% [230, 280] [580, 640] 
2 30% [260, 300] [600, 700] 
3 30% [220, 300] [560, 610] 

Combination 100% [236, 292] [580, 649] 

 
6.6  Calculating prior distributions 

According to Table 3 and Section 2.4, the minimum and 
maximum values after rounding are as follows: L=481, 
U=550, L=1.55, and U=2.29. The prior distributions for 
the Target’s parameters are as follows: π()=1/(U– 
L)=1/69, π()=1/(U–L)=1/0.74, and π(θ)=π()π()= 
1/51.06, where  (481, 550),  (1.55, 2.29). 

 
6.7  Calculating the posterior distributions 

According to Table 1, the data sample for the Target is 
t=[50, 1080, 1462, 1680].  

For , the domain [L, U]=[481,550] is divided into 
n=69 sub-intervals with equal width of Δ=(U– 
L)/n=1, and the midpoint i in each sub-interval is 
selected. According to Eq. (17), the approximate prior 
distribution for  is πm(i)=1/69, and the domain is 
{i}={481.5, 482.5, , 549.5}, i=1, 2, , 69. 

For , the domain [L, U]=[1.55, 2.29] is divided into 
n=74 sub-intervals with equal width of Δ=(U– 
L)/n=0.01, and the midpoint j in each sub-interval is 
selected. According to Eq. (18), the approximate prior 
distribution for  is πm(j)=1/74, and the domain is 
{j}={1.555, 1.565, , 2.285}, j=1, 2, , 74. 

According to Eq. (19), the approximate prior distribution 
for θ is πm(θi,j)=πm(i)πm(j)=1/5106, and the domain is 
{θi,j}={(i, j)}, i=1, 2, , 69, j=1, 2, , 74. 

Given πm(i), πm(j), and t, the posterior probability at 
each (i, j) is obtained by Eq. (22). The point estimators 
are obtained by Eqs. (24) and (27). The 90% credible 
intervals for  and  are obtained by Eqs. (28), (29), (30), 
and (31). These calculations were realized by a computer 
program, and the results are listed in Table 4. 
 
6.8  Estimators based on an MCMC algorithm 

Under the same prior distributions and data, an MCMC 
algorithm was developed in WinBUGS software, which 
does not recognize the right-hand expression of Eq. (10) as 
a standard Weibull PDF. Thus, the “zeros trick” that is 
capable of specifying a non-standard distribution was used. 
Ref. [33] introduced the “zeros trick” in detail. The Bugs 
code, which is the core for an MCMC algorithm in 
WinBUGS, is as follows: 

model; 

{ 

   alpha ~ dunif(481,550) 

   beta ~ dunif(1.55, 2.29) 

   for (i in 1:n)           { 

                         z[i]<- 0 

                         z[i] ~ dpois(phi[i]) 

                         phi[i] <- -log(L[i]) 

L[i]<-(beta/alpha)*pow(t[i]/alpha,beta-1)*exp(-pow(t[i]/alpha,beta)) 

                         } 

 }                 list(n=4,t=c(50,1080,1462,1680)) 
 
The length of the Markov chain for each parameter is  
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10 000, and the first 500 sampled values are discarded as 
the burn-in. The remaining 9500 sampled values are used to 
calculate the estimates. The other considerations and details 
for this software can be found in Ref. [33]. 

 
6.9  Comparison of the two methods 

The Bayesian point estimators and 90% credible 
intervals obtained by the proposed method and the MCMC 
algorithm are listed in Table 4. MTBF (unit: h), an 
important reliability attribute of NC machine tools, can be 
calculated by substituting the corresponding values into 
*Γ(1+1/), where Γ(*) is the gamma function. The 
MTBFs obtained by the two methods are also shown in 
Table 4. 

 
Table 4. Comparison of the proposed method and MCMC 

Method 

Point 
estimator 

of  

Point 
estimator 

of  

90% credible 
interval of  

90% credible
interval of 

MTBF/h

Proposed 
method 

528.6 1.621 [493.5, 548.5] [1.555, 1.755] 473.3874

MCMC 
algorithm 

528.5 1.628 [494.3, 548.7] [1.554, 1.774] 473.1129

 
Table 4 reveals the following.  
(1) If the posterior mean values are selected as the point 

estimators, then the point estimators and 90% credible 
intervals obtained by the two methods are very close. 

(2) If MTBF=473.112 9 h estimated by the MCMC 
algorithm is regarded as the standard, the relative error of 
MTBF=473.3874 h estimated by the proposed method is 
5.802 0×10–4, indicating that the proposed method is as 
accurate as the MCMC algorithm. 

(3) The pure running time consumed by the proposed 
programmed grid approximation method is less than 1 s. 
Given that the MCMC algorithm in WinBUGS involves a 
random-sampling process, the pure running time consumed 
by the MCMC simulation in WinBUGS usually costs tens 
of seconds. 

 
7  Conclusions 

 

(1) A structured process of expert judgment elicitation is 
designed, and expert judgments are translated into prior 
distributions of Weibull parameters. This method, which 
considers multi-source prior information, avoids the 
subjective bias of experts and significantly improves 
accuracy.  

(2) High-dimensional integration in calculating the 
posterior is solved by grid approximation. The formulas for 
calculating the statistics, such as the point estimators and 
90% credible intervals of the parameters, are derived.  

(3) An application of the proposed method is 
demonstrated, and the MCMC algorithm is implemented 
for comparison. The results obtained by the two methods 
are close. The comparison indicates that the proposed 
method is as accurate as the MCMC algorithm.  

(4) The proposed method is easier to understand and 
program is compared with MCMC algorithms. The 
convenience the proposed method provides can widen the 
use of Bayesian methods among engineers in the 
engineering field of NC machine tools who are not very 
good at complicated theories and lack programming skills.  
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