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Abstract: Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch 

force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses 

on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector 

regression (SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and 

variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the 

SVR model. Sixty experiments generated by design of experiments (DOE) are carried out to train and test the SVR model. The 

experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, 

an optimization algorithm of variable stretch force trajectory using particle swarm optimization (PSO) is proposed. The springback 

amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection 

and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch 

force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce 

springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to 

reduce springback.  
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1  Introduction 
 

Aluminum profile stretch bending forming is widely 
employed in the production of structural components for 
cars and high-speed rails. The stretch forming process 
involves a combination of elasto-plastic stretching and 
bending deformation of profiles. Elastoplasticity can result 
in a significant amount of springback after loading in 
stretch bending forming. Springback can cause twisting, 
wrinkling, shape errors and assembly difficulties[1–2]. The 
shape error resulted from springback in the profile stretch 
bending forming process is seen as a manufacturing defect 
which must be reduced as much as possible[3–4]. Reducing 
and predicting springback is still a major challenge in the 
stretch bending forming process.  

Many studies concerning springback have been 
performed. There are numerous factors that influence 
springback, such as material parameters, geometric 
parameters, stretch force trajectories and processing 
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speed[5–10]. CLAUSEN, et al[11], argued that the main 
factors influencing springback were tensile force and strain 
hardening properties. After an investigation into the effects 
of processing parameters on dimensional precision, YU, et 
al[12], found that springback decreased with the increase of 
the stretch force. LIANG, et al[13], proposed that an 
optimized combination of pre-stretch and post-stretch 
amount could reduce springback. These studies showed that 
adjusting and optimizing stretch force trajectories in stretch 
bending forming process could decrease springback. 
Existing studies that focus on using stretch force to reduce 
springback mostly apply constant force. Various papers are 
concentrated on springback reduction. LEE, et al[14], have 
concluded that smaller clamping force with an increase in 
die radius of curvature leads to greater springback. 
OUAKDI, et al[15], showed through tests of aluminum alloy 
the gradual decrease of springback with the increase of 
stretching depth. CAO, et al[16], proposed a stepped binder 
force trajectory algorithm by neural network controller. 
KITAYAMA, et al[17–18], carried out an optimization method 
of variable holder force trajectory for springback reduction 
using sequential approximate optimization with radial basis 
function network. It was found in that paper that the 
optimal variable blank hold force trajectory could 
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drastically reduce springback in comparison with various 
blank hold force trajectories. The optimal stretch bending 
was valid for springback reduction. However, there is a 
lack of optimized stretch force in stretch bending forming 
process in the past research.  

KAZAN, et al[19], proposed a springback predictive 
model by neural network in the wipe bending process 
grounded on the data obtained from finite element 
analysis(FEA). SONG, et al[20], developed a springback 
predictive model in the T-section beam bending process 
based on artificial neural networks (ANN) approach, in 
which the effect of material properties on springback was 
investigated by numerical simulations using the finite 
element method. From these papers, it can be conclude that 
neural networks associated with the finite element method 
have a wide range of applications in springback prediction. 
However, few studies have reported that the accuracy of 
neural networks associated with the finite element method 
can be ensured. The accuracy of SVM is higher than neural 
networks. Support vector regression (SVR) is applied in 
various fields for its generalization ability which is better 
than that of neural networks. SVR is a regression technique 
of support vector machines. A SVR model was studied by 
HONG, et al[21] to examine the feasibility of the reliability 
prediction model. SINGH, et al[22], predicted the thickness 
along the cup wall in hydromechanical deep drawing via 
SVR. This paper indicates that SVR has higher thickness 
prediction precision than ANN. 

The main objective of this work is to predict springback 
and reduce springback using optimized stretch force 
trajectories in the three-dimensional stretch bending 
forming process. The flexible three-dimensional stretch 
bending die is introduced. The springback prediction model 
in three-dimensional stretch bending is developed using 
SVR. The data used for training and testing the SVR model 
are derived from the experiments. The precision of the SVR 
model is compared with that of ANN. In order to optimize 
the stretch force trajectories, the stepped variable stretch 
forces, pre-stretching elongation and post-stretching 
elongation are considered as the design variables. Stretch 
force trajectories are optimized by particle swarm 
optimization(PSO). The objection and constraints are 
formulated by response surface. The precision of response 
surface models is examined. It has been proved that the 
optimized stretch force trajectory is more effective for 
reduction of springback.   

 
2  Three-dimensional Stretch Bending 

Forming Process  
 

2.1  Flexible die 
In the flexible stretch-bending forming processes, 

reconfigurable dies which have several unit bodies are used 
as forming tools instead of one-shot milled solid dies as 
shown in Fig. 1. The flexible die generates numerous 
discrete forming surfaces by changing the head of 

multi-point die and adjusting the placement of the head of 
multi-point die according to objective surface. Each 
unit-body installed in an independent support is composed 
of a support, a forming slider, a guide sliding block, a 
vertical guide rail, a limit block and other parts shown in 
Fig. 2. Screw of height control can control the height of the 
unit-body. Vertical pin contacting with the screw of height 
control decides the height of head of multi-point die. 
Horizontal pin is connected with the unit-body and head of 
multi-point die. Bolt is linked to the unit-body and stretch 
bending machine. Bracket supports the parts of unit-body. 
Guide key guides the unit-body to move along the plate of 
the stretch bending machine. The connected part and the 
head of multi-point die could move on vertical rails. 
Forming plate slider supports the head of multi-point. 
Guide slider limits the adjustment of the head of 
multi-point die. Head of the multi-point die is decided by 
the forming profile. Liner limits the downward movement.  

 

 
Fig. 1.  Schematic view of conventional die forming        

and flexible forming die 
 

 
Fig. 2.  Diagram of the unit-body 

1. Screw of height control; 2. Vertical pin; 3. Horizontal pin; 4. Bolt;     
5. Bracket; 6. Guide key; 7. Vertical rails; 8. Forming plate slider;       

9. Guided slider; 10. Multi-point die; 11. Liner  

 
2.2  Flexible three-dimensional stretch bending 

The most common way of the stretch bending forming 
process is divided into three stages. In the first stage, the 
profile bears the stress by applying an axial tensile force 
called pre-stretching tension at the centroid of the 
cross-section of profile. In the second stage referred to as 
bending, the profile is imposed bending moments to be 
close to the die. In the third stage, the profile is applied 
axial force called post-stretching force. The three-dimensional 
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stretch bending forming process means the stretch bending 
forming in two perpendicular planes. In three-dimensional 
stretch bending process, the profile is firstly stretched and 
bended in the horizontal plane and then in the vertical plane. 
Because the bending forming of three-dimensional stretch 
is partitioned into two steps bent in the horizontal plane and 
then in the vertical plane, the three-dimensional stretch 
bending process is composed of four steps.  

 
2.3  Adjustment calculation method of multi-point die  

The values of target shape S, radius R and bending angle 
θ are available. The distance between the two adjacent 
unit-bodies is d which can be measured. T-profiles plane is 
set to the XY plane of the three-dimensional coordinate 
system, where a unit-body is set to the positive Z-axis 
direction. The total number of unit-bodies is n, and the 
number of each unit-body is 1, 2, , i, , n, respectively. 
The adjustment yi calculation method of the ith unit-body is 
shown in Fig. 3. According to the geometric relationships, 
yi can be calculated, as given in Eq. (1): 

 
2

2 ( 1)
2 sin ( 1) .

1i
i

y R i d
n

é ù-
ê ú= - -

-ê úë û
       (1) 

 

 
Fig. 3.  Calculation of displacement and rotation angle 

 
To constitute the die-face, the sliders need to be rotated. 

The rotation angle in the XY plane of the slider number i is 
i. From Fig. 3, it can be obtained that when the value i is 
positive, the rotation is clockwise; when the value is 
negative, the rotation is counterclockwise. The calculation 
method of rotation angle is given in Eq. (2): 

  
2( 1)

.
1ij

i

n

  -
= -

-
               (2) 

 

Because bending in the vertical plane is the same as that in 
the horizontal plane, the calculation method of 
displacement and rotation angle of the slider is the same as 
the above method. 
 
3  SVR Model and Springback Prediction 
 
3.1  Springback evaluation 

There are three common methods to evaluate springback: 
the variation of curvature radius, the springback angle, the 

springback displacement of the end of profile, as shown in 
Fig. 4. Because bending in the vertical plane is the same as 
that in the horizontal plane, the calculation method of 
displacement and rotation angle of the slider is the same. 
This paper sets springback displacement as springback 
evaluation. 

 

 
Fig. 4.  Springback evaluation 

 
 

3.2  SVR  
Support vector machine (SVM) is a new machine 

learning method based on statistical theory, and the 
principle of minimization of structural risk. Nonlinear 
problems in the original space are mapped into linear 
problems in high-dimensional feature space by kernel 
function in SVM[23]. The linear problem works out in this 
high-dimensional feature space. SVM is mainly used to 
resolve nonlinear problems. When SVM is used to solve 
regression problems, it is called support vector regression 
(SVR). SVR has good performance when the sample 
number is small. The purpose of SVR is to look for a 
decision function, such as • .y w x b=< >+  The 
procedure of nonlinear regression is described as follows. 

(1) For a given training set 
 

{ } 1
1 1( , ), , ( , ) ( ) ,n

i iT x y x y R Y= Î ´  

, , 1, , .n
i ix R y R i lÎ Î =            (3) 

 
In order to infer the corresponding output y to arbitrary x 
by y=g(x), it is necessary to look for a real-valued function 
g(x) 	∈R as per Eq. (3). This problem is a regression 
problem of Rn in n dimensional space. It can be subdivided 
into linear and nonlinear regression problems. Regression 
of springback prediction in three-stretch bending forming 
process is nonlinear regression problems. 

(2) Choosing appropriate kernel function K(x, xi) and 
proper positive number  and penalization parameter C. 
The commonly used kernel functions are polynomial kernel 
function and Gaussian radial basis kernel function. 

Polynomial kernel function is:  
 

[ ]( , ) ( ) 1 .
d

K x y x y= +            (4) 

 
Gaussian radial basis kernel function is 
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(3) Constructing and solving the quadratic programming 

problems as follows: 
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The solution of this problem can be expressed as:  
 

( )1 1, , , , .l l    ** *=   

 
Constructing the decision function: 
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where the bias constant b is 
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3.3  Design variables 

In three-dimensional stretch bending process, 
pre-stretching that guarantees the straightening of profile 
makes the stress in axial cross section linearly distributed. 
The stress difference between outer material o and inner 
material i could decrease springback. Under the axial 
pre-stretching force, the stress of the cross section is 
uniformly distributed, which is o1=i1=0.2. 0.2 is the 
yield limit. After the bending process, the stretch stress of 
outer layer material increases to o2 along the actual stress 
curve. However, the stretch stress of inner layer material 
reduces to i2 along the actual stress curve. After the 
post-stretching process, the stretch stress of outer layer 
material continues to increase to o3 along the actual stress 
curve. The stretch stress of inner layer material increases to 
i3 until it reaches yield limit 0.2 along the actual stress 
curve. The stress distribution in the center of cross section 
is shown in Fig. 5.  

In order to determine the total axial stretch force, the 
effect of friction must be considered. The length of the 

cross section where the curvature radius is the minimum 
value is divided into j regions as shown in Fig. 6. When 
considering the friction effect, the total stretch force is P: 
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where S is the area of cross section, D is stress modulus 
decided by material properties.  
 

 
Fig. 5.  Stress distribution in the center of cross section 

 

 
Fig. 6.  Expression of the total stretch force 

 

The three stretch bending is partitioned into four steps. 
Then, the stretch force of each step is taken as the design 
variable. An illustrative example of the design variables is 
shown in Fig. 7. There is an obvious effect of pre-stretching 
elongation and post-stretching elongation on reduction, so 
they are chosen as the design variables. There are six 
design variables in the three-dimensional stretch bending 
process. P0 is the total stretch force in experiments: 

 

 
4

0
1

.i
i

P x
=

=å                 (12) 

 

3.4  Experimental setup    
The experiments were carried out on the flexible stretch 

bending machine as displayed in Fig. 8. The profiles in the 
tests were strictly selected from the same stock to ensure 
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that the materials were all aluminum AA6082T5. The 
material parameters of AA6082T5 are as follows: Elasticity 
modulus E=65 050 MPa, Poisson ratio =0.34, Yield 
stress 0=288.2 MPa, Anisotropic parameter of Barlat 
criterion r00=0.514 r45=0.844 r90=0.626. The dimensions 
of the aluminum profile section are in Fig. 9. The initial 
samples were automatically generated by the popular 
design of experiments (DOE) method. According to the 
DOE method, sixty experiments were designed and carried 
out under different combinations of design variables. The 
lower and upper bounders of the variables were determined 
by experiments and experience enumerated in the 
constraint design section. The samples of design space 
should be sparsely distributed to avoid long-time 
consuming procedures of forward problems. The 
experiment results will be utilized to train and test samples 
of the SVR and ANN models. 

 

 
Fig. 7.  An example of design variables 

 

 
Fig. 8.  Profile in three-dimensional stretch                  

bending forming process 
 

 
Fig. 9.  Geometrical shape of T profile 

 

 
3.5  Springback prediction  
 
3.5.1  Training of SVR 

The springback prediction based on SVR was trained by 

40 sets of input-output pairs. In this article, the six design 
variables were set as input parameters, while the 
springback displacement and thickness variation were set 
as output parameters. The different characteristics of the 
input values were vastly different in size. The training and 
testing data shall be normalized, since normalization can 
effectively improve the prediction accuracy and avoid 
attributes of the values in greater numeric ranges. It can 
dominate those values in smaller numeric ranges. The 
training and testing data were normalized to [–1, 1]. 

The selection of kernel function has great effects on 
prediction accuracy. The libsvm-3.17 toolbox was used, 
which was developed by Taiwan University. SVR was 
divided to epsilon-SVR and nu-SVR. There are three types 
of kernel functions: linear, polynomial and radial basis 
function (RBF). In order to find the best combination of 
SVR class and kernel function, the combinations of these 
values were researched with results in Table 1. The research 
trail shows that using the epsilon-SVR and RBF kernel 
function in the model of springback prediction in stretch 
bending of profile can obtain higher accuracy.  

 
Table 1.  Research of combination of SVR class          

and kernel function 

SVR 
Kernel 

function 

Iterations 

k 

Mean 
squared 
error  

Squared 
correlation 

coefficient r

Epsilon-SVR Linear 152 0.132 0.735 
Epsilon-SVR Polynomial 35 0.351 0.204 
Epsilon-SVR RBF 2063 0.093 0.749 
Nu-SVR Linear 64 0.224 0.643 
Nu-SVR Polynomial 30 0.312 0.309 
Nu-SVR RBF 186 0.189 0.521 

 
The parameters required to be determined were C and g, 

which controlled the tradeoff between model fitting and 
prediction accuracy. Cross-validation was used to find the 
best combination of C and g. The choice of parameters of C 
and g had large impacts on the prediction accuracy of the 
model. Cross-validation can be used to find the best 
combination. Various values of C and g were tried and the 
best-validation accuracy can be picked out. In this paper, 
grid regression function was used to search the best C and g. 
According to the trail, the best C=512, g=1, and the mean 
squared error was 0.032 41. The SVR model was trained by 
40 trail samples which were randomly selected from 60 
experiment samples.  

 
3.5.2  Testing of SVR 

The SVR prediction model was tested by the rest of the 
trail samples. In order to verify the prediction accuracy, the 
prediction model of ANN was studied. The training and 
testing procedure of artificial neural networks was 
programmed by the NN toolbox of Matlab. There were 
three layers of network structures in neural networks, 
encompassing input, hidden and output layers. There were 
56 nodes in the hidden layer, and 2 nodes in the output 
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layer. The model was trained by the data which were used 
to train SVR model. The training error was controlled 
within 10–5. The input and output parameters were the same 
as the model of SVR. Result comparisons of SVR and 
ANN were shown in Fig. 10. Prediction models of SVR 
and ANN were evaluated and compared against each other 
in springback displacement. From the comparison of the 
fitting with the initial data and the mean squared error, it 
was proved that SVR had higher accuracy than ANN. From 
Fig. 10, the results of SVR are more closed to the original 
data compared to that of ANN, and so the prediction 
accuracy of SVR is higher.  
   

 
Fig. 10.  Comparison of springback prediction                  

using SVR and ANN 

 
 
4  Optimization of Stretch Force Jrajcetory  
 
4.1  Definition of objective functions 

In this section, objective functions of profile 
three-dimensional stretch bending forming optimization are 
introduced. The objective function of stretch bending 
forming problem is based on the springback after unloading:  

 
Min S(x), 

, 1, 2, 3, 4,ia x b i =≤ ≤  

, 5, 6,jc x d j =≤ ≤  

con( ) , 1, 2, , .kp g x P k n= ≤ ≤         (13) 

 
where S(x) represents the minimized objective function; x 
denotes the design variables shown in Fig. 8; a and b 
represent the lower and upper bounds of the ith design 
variable, respectively; c and d represent the lower and 
upper bounds of the jth design variable, respectively; gk(x) 
denotes the kth constraint, and ncon represents the number of 
constraints. 

The investigate operation was characterized by 
conflicting performances and its optimization can be 
formulated as an optimization problem. 

 
4.2  Formulation of design optimization problems  

The response surface method is one of the most 
prevalent and simplest surrogate models. The response 

surface method uses a simple approximation function to 
replace the actual complex simulation model for easy 
analysis and calculation. The principle of response surface 
method is: when the actual function values of the points 
around a certain point are known, a hypersurface can be set 
up in some ways. The surface can substitute an actual 
function for complex calculation in the region which is 
sufficiently close to the area of the point. X is n 
dimensional input variable set, and Y is output variable set. 
In accordance with the experimental data, there is a 
relationship K(x) between input and output variables. K(x) 
is the response surface model.  

There are four commonly used response surface 
modeling approaches as follows: polynomial regression, 
artificial neural networks, Kriging function and radial basis 
function. The accuracy and efficiency of fitting are important 
standards to evaluate the response surface modeling 
method. Springback research in three-dimensional stretch 
bending is a complicated nonlinear problem. For the 
polynomial regression method, the second order 
polynomial is used widely. Second-order polynomial has 

insufficient description ability to higher-order nonlinear 
problem. High dimensional polynomial fitting precision 
causes decreasing fitting precision because of Runges 
phenomenon. Hence, the polynomial regression method is 
not suitable for springback research in three-dimensional 
stretch bending. Although the fitting accuracy of neural 
network algorithm is high, its computation efficiency is low. 
And it is easy to fall into local extremum, thereby leading 
to difficult convergence. The estimation parameter of the 
Kriging function method is complicated when the input 
variable is high dimensional. The radial basis function is 
suitable for high dimensional nonlinear problems. Radial 
basis function is chosen to fit the springback and optimize 
the forming parameters in this paper.  

The analytical expression for the radial basis function is 
 

1

( ) ( , ),
m

i i
i

y X r c
=

=å            (14) 

 
where ri(X) is the distance between the sampling point i and 
X in design space,   is primary function, c is nonnegative 
constant,  is weighting coefficient. In general, any 
function can be expressed as a set of weighted basis 
functions, so a nonlinear mapping is from the input samples 
to the output basis function. The Gaussian function was 
chosen as the basis function in this paper. Because the 
value of the Gaussian function only relates to the Euclidean 
distance between the input point and the center point and 
the width of the Gaussian function, the fitting function 
based on the Gaussian function. 

After the model of response surface is established, the 
accuracy should be assessed. The error evaluation 
indicators of response surface are relative average absolute 
error (RAAE), determination coefficient R2, and relative 
maximum absolute error (RMAE). 
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where k is the number of samples; n is the degree of 
freedom; the value of n is the number of adjustment 
parameter minus one; iy  denotes the exact function value 
at confirmation point i; ˆiy  is the corresponding surrogate 
value; iy  is the mean value of iy . When the value of R2 
and Radj

2 is closer to 1, the fitting precision of the response 
surface model will be higher. 
 
4.3  Constraint 

In general, wrinkling and tearing are major defects 
except for springback in the three-dimensional stretch 
bending forming process. High stretch force can result in 
tearing and reduce wrinkling. The wrinkling in T profiles 
stretch bending forming is not obvious when the stretch 
force is adequate. The tearing and wrinkling are considered 
as the design constraints. Wrinkling and tearing can be 
represented by forming limit diagram (FLD), but it is 

difficult to obtain the precise FLD. Wrinkling and tearing 
are related to the change of the local thickness in the stretch 
bending forming. Therefore, the changes of the local 
thickness are used as a criterion of forming limit by many 
scholars:    

 

max 0
max

0

,
t t

t
t


-

=                 (18) 

 

0 min
min

0

,
t t

t
t


-

=                 (19) 

 
where Δtmax denotes the maximum rate of local thickness 
change; Δtmin represents the minimum rate of local thickness 
change; and t0 is the local thickness before forming.  
 
4.4  Procedure for optimization of stretch force 

trajectory  
The particle swarm optimization (PSO) algorithm is 

widely used and developed rapidly. It is easy to implement 
and exhibit robust global convergence. It is applied 
successfully to optimize the design problems of the sheet 
metal forming process. Sheet metal forming is a nonlinear 
problem like the profile stretch bending forming process. 
PSO is chosen to optimize the stretch force trajectories in 
this paper.  

The initial samples are generated by DOE. Assume that 
the number of samples is n, the response surface is 
employed to construct the formulation of design 
optimization problem from n samples. Then we analyze the 
accuracy of response. If the accuracy of the response 
surface was acceptable, we optimize the stretch trajectory 
using PSO for an optimum set of stretch trajectories. 
Otherwise, it is necessary to add the samples for 
recalculation. SVR is used to predict the springback and the 
change of the local thickness of the optimum values. If the 
springback and change of the local thickness are acceptable, 
the best stretch trajectory can be obtained. Otherwise, the 
new samples are needed.  

 
5  Numerical Example  
 
5.1  Optimization of stretch force trajectory 

In this paper, the objective optimization for 
three-dimensional stretch bending for profile is specifically 
formulated as follows: 

 
min ( )S x = f(x), 

s.t.  0.02≤g1(x)≤0.03, 
 0≤g2(x)≤0.15, 
 100 000 N≤xi≤273 150 N, 1≤i≤4, 
 0.5%≤xj≤1.4%, 1≤j≤2, 

 
where g1(x) is denoted as the minimum rate of local 
thickness change, and g2(x) represents the maximum rate of 
local thickness change.  

Fifty of the experiments were selected randomly to 
formulate the response surface model. The accuracy of the 
response surface was examined. The errors of objective 
function and constraints were summarized in Table 2. It 
showed that the response surface model was suitable for the 
three-dimensional stretch bending forming.  
 

Table 2.  Accuracy of response surface 

Parameter RAAE R2 RMAE 

S(x) 0.017 3 0.994 3 0.046 2 
g1(x) 0.036 2 0.985 7 0.073 5 
g2(x) 0.027 6 0.991 5 0.051 7 

 
After formulating the objective function and constraints, 

the objective function was optimized by PSO. The 
parameters of PSO were set as Table 3. The knee point 
which was found to have the least distance compared with 
other pareto points was always an overall optimum in the 
objective space. The value of utopia point is presented in 
Table 4.  

 
Table 3.  Parameters setting of PSO 

PSO parameter name Value 

Population size m 100 
Personal learning coefficient c1 1.494 
Global learning coefficient c2 1.494 
Inertia weight w  0.729 
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Table 4.  PSO optimal designs 

Description Value 

Objective S(x) s/mm 2.037 
Constraint g1(x) Δtmin 0.024 
Constraint g2(x) Δtmax 0.082 
Variable x1 f1/N 159 392 
Variable x2 f2/N 181 566 
Variable x3 f3/N 175 426 
Variable x4 f4/N 167 357 
Variable x5 l0/% 0.79 
Variable x6 l1/% 0.85 

 
5.2  Examination on the optimum  

In order to examine the optimum of stretch force 
trajectory, the following four experiments of different 
stretch force trajectories were tested for the springback 
reduction in Table 5. The experiment in which variables 
were set according to the optimum was carried out. The 
variables of x1, x5 and x6 were applied the optimized values 
in case 1. The variables of x2, x5 and x6 were used the 
optimized values in case 2. The variables of x4, x5 and x6 
were employed the optimized values in case 3. The 
variables of x5 and x6 were adopted the optimized values in 
case 4. The variables of x1, x2, x3 and x4 were employed the 
optimized values in case 5. The variables were all different 
from the optimized values in case 6. The comparison of 
springback and thickness change among the optimum and 
the four stretch force trajectories were presented in Table 6.  

 

Table 5.  Comparison of stretch force trajectories 

Case 
No. 

Variable
x1/N 

Variable 

x2/N 

Variable

x3/N 

Variable 

x4/N 

Variable

x5/% 

Variable

x6/% 

Case 1 159 392 180 257 185 652 181 530 0.79 0.85 
Case 2 179 475 181 566 171 789 171 486 0.79 0.85 
Case 3 175 580 189 462 178 426 167 357 0.79 0.85 
Case 4 159 392 181 566 175 426 167 357 0.72 0.92 
Case 5 159 392 181 566 175 426 167 357 0.80 0.88 
Case 6 150 348 175 355 165 327 170 217 0.80 0.89 

 
Table 6.  Comparison of springback among the optimum  

and the four stretch force trajectories 

Case No. 
Springback  

s/mm 
Minimum rate 

Δtmin 
Maximum 
rate Δtmax 

Case 1 3.251 0.028 0.135 
Case 2 1.852 0.035 0.168 
Case 3 2.048 0.027 0.138 
Case 4 3.025 0.023 0.076 
Case 5 1.803 0.032 0.157 
Case 6 3.203 0.026 0.170 

Optimum 2.037 0.024 0.082 

 
It can be found that the springback was not the smallest 

in optimum. The springback in case 2, case 3 and case 5 
was lower than that of optimum, but Δtmin and Δtmax were 
not acceptable. So case 2 case 3 and case 5 were not the 
best parameters. The value of springback of optimum was 
lower than case 1, case 4 and case 6, simultaneously the 
values of Δtmin and Δtmax were acceptable. The value of 
springback of optimum in experiment was close to the 

value in the response surface model. It can be suggested 
that the stretch force trajectory during the 
three-dimensional stretch bending played an important role 
for the springback reduction. 

 
6  Conclusions  

 
(1) According to the characteristics of the three- 

dimensional stretch bending process, the flexible die is 
presented, which can be reconfigurable for the target shape 
of profile, and the constructive method of the die face is 
carried out. 

(2) Springback prediction based on SVR is proposed 
which has higher accuracy than ANN. The input 
parameters of SVR are variable stretch force trajectories.  

(3) The fitting function of springback in three-dimensional 
stretch bending process using response surface is suitable.  

(4) The stretch force trajectory in three-dimensional 
stretch bending is optimized by PSO algorithm. The 
optimized stretch force trajectory is proved to efficiently 
reduce the springback. 
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