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Abstract: Singular configurations must be avoided in path planning and control of a parallel manipulator. However, most studies rarely 

focus on an overall singularity loci distribution of lower-mobility parallel mechanisms. Geometric algebra is employed in analysis of 

singularity of a 3-RPS parallel manipulator. Twist and wrench in screw theory are represented in geometric algebra. Linear dependency 

of twists and wrenches are described by outer product in geometric algebra. Reciprocity between twists and constraint wrenches are 

reflected by duality. To compute the positions of the three spherical joints of the 3-RPS parallel manipulator, Tilt-and-Torsion angles are 

used to describe the orientation of the moving platform. The outer product of twists and constraint wrenches is used as an index for 

closeness to singularity(ICS) of the 3-RPS parallel manipulator. An overall and thorough perspective of the singularity loci distribution 

of the 3-RPS parallel manipulator is disclosed, which is helpful to design, trajectory planning and control of this kind of parallel 

manipulator. 
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1  Introduction 
 

A parallel mechanism is defined as a closed-loop system 
that consists of an end-effector and a fixed base, linked by 
several independent kinematic chains[1]. When the number 
of the degrees of freedom(DOF) of a parallel mechanism is 
less than six, it is called a lower-mobility parallel 
mechanism. Lower-mobility parallel manipulator gains 
growing concerns in recent years[2] because it has 
advantages of simple structure, low cost in manufacturing, 
and easier control over its counterparts with six DOFs. 

Singularity is an inherent characteristic of parallel 
manipulators. In its singular configuration, a parallel 
manipulator loses its rigidity, and the end-effector becomes 
uncontrollable. Much progress has been obtained in terms 
of singularity analysis. GOSSELIN, et al[3], investigated the 
singularity based on the deficiency of Jacobian matrices. 
ZLATANOV, et al[4], expanded the approach proposed by 
GOSSELIN, et al[3], divided singularity into six types. 
TSAI[5] made similar classification based on Jacobian 
matrix, and he named three different kinds of singularities, 
that is, inverse kinematic singularity, direct kinematic 
singularity, and combined singularity. CHOI, et al[6], 
studied the singularity of a four-DOF H4 parallel 
manipulator using an expanded Jacobian matrix instead of a 
conventional one to achieve a better result. HUNT[7] laid 
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the foundation for the methodology for analyzing parallel 
singularity via screw theory. MERLET[8] identified all 
singular configuration of a triangular simplified symmetric 
manipulator using Grassmann line geometry. Although this 
method obtains an exhaustive list of singular configurations, 
it is tough to express the geometric condition analytically. 
JOSHI, et al[9], studied the Jacobian matrix derived by 
using screw theory and determined the singular 
configurations of the 3-RPS manipulator. PARK and 
KIM[10], investigated singularities of closed kinematic 
chains by differential geometry using their geometric 
framework mainly for the manipulability of closed chains 
proposed in Refs. [11–12]. HUANG, et al[13], and LI, et 
al[14], investigated the kinematic principle and geometric 
condition for general-linear-complex special configuration. 
Some researchers[15–17] studied singularity analysis of 
lower-mobility parallel mechanism using Grassmann- 
Cayley algebra. 

In 1840s, Hermann Grassmann proposed geometric 
algebra[18]. In 1870s, William Clifford, standing on the 
shoulders of Hamilton and Grassmann, furthered their work. 
In Clifford’s manuscript, it is found that the geometrical 
features of vector, plane, and high-dimensional objects are 
described by his algebra. However, after nearly a hundred 
years of silence, HESTENES[19] proposed it again in 1960s. 
And then, researchers, including D’ORANGEVILLE and 
LASENBY[20], DORST, et al[21], PERWASS, et al[22], made 
valuable contributions to the development of geometric 
algebra. 

Geometric algebra combines geometric conditions with 
algebraic equations, which is a distinct advantage of 
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expressing the geometric relationship of the joints of a 
mechanism. One main property of geometric algebra is that 
subspaces can be added, subtracted and intersected in its 
framework. Geometric algebra has obvious interpretative 
advantages over other methods when dealing with 
geometric applications. 

Application of geometric algebra covers physics, neural 
computing, robotics, signal and image processing, 
computer and robot vision. SELIG[23] lectured on the 
applications of Clifford algebra in engineering, especially 
in computer vision and robot kinematics. HIDENBRAND, 
et al[24], computed 3-dimensional inverse kinematics in the 
5-dimensional conformal algebra, which made use of the 
straightforward characteristic of geometric algebra. WANG, 
et al[25], and FU, et al[26], investigated the inverse 
kinematics of serial manipulators. 

However, geometric algebra is seldom applied to 
singularity analysis of lower-mobility parallel manipulators. 
To the best of our knowledge, in 2006 and 2008, 
TANEV[27–28] proposed a methodology for deriving the 
singularity condition for lower-mobility parallel mechanism 
using geometric algebra, and then he analyzed the linear 
dependency of the blades of a mechanism qualitatively and 
identified the singularity. ZHANG[29] discussed the 
singularity of a 3-RPS parallel mechanism by analyzing its 
blades from a qualitative perspective based on TANEV’s 
pioneering work[27]. 

Employing TANEV’s method[27–28], this paper obtains the 
general singularity locus and the constraint singularity 
locus of the 3-RPS parallel manipulator from a quantitative 
perspective. The paper is structured as follows. Section 2 
introduces the basics of geometric algebra. Section 3 
introduces the singularity analysis based on geometric 
algebra in the lower-mobility parallel mechanism. Section 4 
illustrates an example to adopt the methodology for 
analyzing singularity of lower-mobility parallel mechanism 
numerically. The inverse kinematics of HUNT’s 3-RPS 
parallel manipulator is solved via Tilt-and-Torsion angles 
instead of traditional Euler or Tait–Bryan angles. Based on 
the coordinates of the three S joints, the screws are 
obtained and they are expressed in G6. Singular 
configurations of the 3-RPS manipulator are drawn in 
distribution loci generated in Maple. Finally, constraint 
singularity of the 3-RPS manipulator is analyzed by similar 
approach. 

 
2  Basics of Geometric Algebra 

 

Geometric algebra is the fusion of geometry and algebra. 
It can be more direct and efficient to solve mathematical 
problem than any other mathematical system, like tensor, 
vector algebra, complex algebra. Moreover, it integrates 
different kinds of algebraic systems to obtain a unified 
mathematical language, which not only preserves different 
special feature, but also has new features that other algebra 
does not have. 

 
2.1  Geometric operators 

The element of a geometric algebra G is called a 
multi-vector. It is assumed that G is closed under addition 
and multiplication between multi-vectors. A blade A for a 

k-dimensional subspace of nR  is a product of members of 
an orthogonal basis for the subspace, namely, 

1 2 k= ⋅⋅⋅A a a a . We call A a blade of grade k. Every 

multi-vector A in G can be expressed as 
 

 ,
r

r

=åA A  (1) 

 

where element 
r

A
 

represents a r-vector of A. If 

r
=A A , then A is called homogeneous of grade r.  

The three fundamental operators are geometric product, 
inner product, and outer product. They are shown as 
follows, respectively: 

 
 ,•= + a bab a b  (2) 

 ( )
2

•
1

,= +a b ab ba  (3) 

 ( )1
.

2
 = -a b ab ba  (4) 

 
In 2-dimensional space, •a b  denotes a scalar. At this 

point, inner product has the same meaning as dot product in 
vector algebra; a b  denotes a parallelogram spanned by 
a and b, and a b

 
represents the square of this 

parallelogram. Similarly,  a b c
 
represents the volume 

of a 3-dimensional solid. Therefore, we can see that the 
outer is grade-increasing, while the inner product is 
grade-decreasing.  

 
2.2  Properties of three products 

The outer product is the anti-commutative, namely,   
a b=b a. It also satisfies the associative law and the 

distributive law, namely, a (b+c)=a b+a c, a (b
c)=(a b) c. 

Three vectors are linearly dependent if and only if their 
outer product is zero, 

 
 0.  =a b c  (5) 

 

Thus, outer product makes linear dependency a 
computational property. 

 
2.3  Duality 

If Ar is a blade, the dual of Ar is the orthogonal 
complement of Ar. The dual of Ar is spanned by the bases 
not contained in Ar

[22]. Duality can be used to express the 
constraint space of a mechanism from its motion space. The 
dual of a multi-vector A is obtained by geometrically 
multiplying A with the inverse of a unit pseudoscalar. Here, 
in G3, the unit pseudoscalar is 3 1 2 3=I e e e ; in G6, 

6 1 2 3 4 5 6=I e e e e e e  is the unit pseudoscalar. 1
6
-I  is the 
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inverse of 6I . Let 1 2k k=  ⋅⋅⋅A S S S , then in G6, 
1

6k k
-=D A I  denotes the dual of kA .  

A directional line in space can be decided by its direction 
u and moment m: 

 
 ,= + º + l u m u r u  (6) 

 

where r is the position vector of any point on the line l. 
A screw S can be expressed as a vector in G6 with the 

basis { }1 2 3 4 5 6, , , , ,e e e e e e
 

and 

 

 6

1 1 2 2 3 3 4 4 5 5 6 6 ,

h

k k k k k k

= +  + =

+ + + + +

S u r u I u

e e e e e e
  

(7)
 

 
where k1, k2, and k3 denote the three direction cosines of the 
vector and k4, k5, and k6 denote the three components of the 
moment of the vector.  

 
3  Method for Singularity Analysis of Lower- 

mobility Parallel Mechanisms 
 

3.1  Blades of limb motion 
Sij is defined as the jth joint twist of the ith limb of a 

lower-mobility parallel mechanism. Let Ai denote the blade 
of the end motion of the ith limb. It can be defined as the 
outer product of all mi twists of the ith limb: 

 

 1 2 .
ii i ii i mj=     A S S S S   (8) 

 

The blade of a limb motion Ai can be interpreted as a 
subspace which is spanned by all the mi twists of the ith 
limb. 

 
3.2  Blades of limb constraint 

In G6, the dual of Ai is as 
 

 (6 )1 1
6 6( 1) ,i im m

i i i
- -- -= = -D A I I A  (9) 

 

where 1
6
-I  is the inverse of the unit psedoscalar in G6 . 

The blade of the constraint of the ith limb is defined as 
 

 1
6( ).i i i -= =C D A I  (10) 

 

i
D  is obtained through a reciprocal transformation in G6 

that interchanges the order of the primary part and the 
secondary part of iD . According to Eq. (8) and the 

definition of duality, Ci is a blade of grade (6mi) which 
denotes a subspace spanned by all the constraint wrenches 
of the ith limb. Obviously, it represents the constraint space 
of the ith limb. 
 

3.3  Blades of platform constraint 
Based on the blade of limb constraint, the blade of 

platform constraint is 
 

 1 ,C i n=    A C C C   (11) 

 

where AC is a p-blade representing the constraint subspace 
spanned by all the constraint wrenches of n limbs. 

 
3.4  Dummy joint 

Some legs of a lower mobility parallel mechanism may 
not have full mobility. In that case, it is supposed that the 
remaining DOFs are represented by dummy joints (or 
driven but locked joints) and associated with them dummy 
screws[27]. 

 
3.5  Singular condition 

The singular condition developed from the linear 
dependency of the blades representing active and dummy 
joints is proposed by TANEV[28]: 

 

 
1 1

0, 6,
k qa a d d k q⋅⋅⋅  ⋅⋅⋅ = + =D D D D  (12) 

 

where 
iaD

 
is the dual vector associated with the ith 

actuated joint, 
idD
 

is the dual vector associated with the 

ith dummy joint.  
The result obtained from Eq. (12) contains kinematic 

singularities and constraint singularities. However, one 
cannot identify constraint singularities from the mixed 
results. In order to obtain the constraint singularity, Eq. (13) 
was used to achieve this goal. When constraint singularity 
occurs, we have 

 
 1 0.C i n=     =A C C C   (13) 

 
In fact, iC  is 

idD  defined by TANEV in Ref. [27].  

 
4  Singularity of 3-RPS Parallel Manipulator 

 
Fig. 1 shows the schematics of the 3-RPS parallel 

manipulator proposed by HUNT[30] in 1983. The three P 
joints are actuated. This manipulator has one translational 
and two rotational DOFs[31]. 

 
4.1  Positions of three S joints 

Tilt-and-Torsion angles[32–33] are adopted in the process 
of analyzing singularity. Tilt-and-Torsion angles are 
modified Euler angles. Because HUNT’s 3-RPS parallel 
manipulator is without torsion angle, the number of rotation 
angles is reduced to two. The reduction of rotation angles 
simplifies the following expressions. 

Coordinate frames are established as shown in Fig. 1. 
The origin of frame -o xyz¢  is located at the center of the 
moving platform, and the origin of frame o XYZ-  is 
located at the center of the base. The radius of the 
circumscribed circle of the moving platform and the base 
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are 400 mmr =  and 2 500 mmr = , respectively. The 
height of the moving platform is kept as constant at 

1300 mm.h =  Note that the height can be any value. Here, 
1300 mmh =  is chosen as an example to illustrate the 

method. 

 
Fig. 1.  Schematics of a 3-RPS parallel manipulator 

 
Let the rotation matrix of frame -o xyz¢  with respect to 

frame o XYZ  be R: 

 
c c c s s c c s s c c s

s c c c s s c s c c s s ,

s c s s c

               

               

      

- - - -

- - - -

- -

æ ö- - - ÷ç ÷ç ÷ç ÷= + - +ç ÷ç ÷ç ÷÷ç ÷-çè ø

R  (14) 

 
where c is shorthand for cosine, s for sine, and φ, θ, and σ 
are angles representing azimuth, tilt and torsion, 
respectively. Since the 3-RPS parallel manipulator has no 
torsion angle, σ equals zero.  

The position vectors of S joints, 1B , 2B , and 3B , with 

respect to the base frame o XYZ-  are 1R , 2R , and 3R , 

respectively: 
 

 1 0 ,

0

ræ ö÷ç ÷ç ÷ç ÷= + ç ÷ç ÷ç ÷÷çè ø

R P R  (15) 

 

 2

2
cos

3

2
sin ,

3

0

r

r





æ öæ ö÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷è øç ÷ç ÷ç ÷÷ç æ ö÷ç ÷ç ÷ç= + ÷ç ÷ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷÷çè ø

R P R  (16) 

 

 3

2
cos

3

2
sin ,

3

0

r

r





æ öæ ö÷ç ÷ç ÷- ÷ç ç ÷÷ç ç ÷è øç ÷ç ÷ç ÷÷ç æ ö ÷ç ÷ç ÷ç= + ÷ç ÷ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷÷çè ø

R P R  (17) 

 

where ( )T
b bx y h=P  is the position vector of the 

center of the moving platform with respect to the base 

frame and xb=rcos2φ(cosθ1)/2, yb=rsinφcosφ 

rcosφcosθsinφ[33]. 
 

4.2  Singularity analysis 
From Eqs. (15)(17), the twist system of the 3-RPS 

parallel manipulator can be obtained in Plücker coordinates, 
and it is written in the form of a vector in G6 with the basis 

{ }1 2 3 4 5 6, , , , ,e e e e e e . 

Each twist of limb i can be written as 
 

 

1 1 1

2 2

3 1 1

4 14 4

5 15 5

,

,

,

,

.

i

i

i i A i

i A i

i i i i

i i i

i i i

= + 

= 

= + 

= + 

= + 

S u r u

S r u

S u R u

S u R u

S u R u

 (18) 

 
In Eq. (18), uij denotes the direction component of the jth 

twist of the ith limb, 
1
,Ar  

2
,Ar  

3Ar  
are the position 

vectors of points A1, A2, A3, respectively. 
It is self-evident that the expressions depend only on two 

rotation angles. Because of its symmetrical layout, we 
analyzed limb 1 first as shown in Fig. 2. 

 

 

Fig. 2.  First limb of the 3-RPS parallel manipulator 

 
4.2.1  General singularity 

The dual vector, 2iD , associated to the actuated P joint 

and the dual vector, idD , associated to the dummy joint are 

as follows: 
 

 
( )
( )

1
2 1 3 4 5 6

1
1 2 3 4 5 6

,

,

i i i i i id

id i i i i i

-

-

=    

=    

D S S S S S I

D S S S S S I
 (19) 

 

where subscript d represents dummy joint. The RPS leg has 
five DOFs and one extra dummy joint(denoted by a 
subscript d) is added to make it full mobility. The extra 
dummy joint can be considered as active but locked[30]. 

For limb 1, the outer product of 2iD  and idD  is 
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 ( )

( )

2

1
1 3 4 5 6

1
1 2 3 4 5 6 ,

           i i id

i i i i id

i i i i i

-

-

=  =

é ù    ê úë û
é ù   ê úë û

D D D

S S S S S I

S S S S S I

 

(20)

 

 
where 1i = . 

Simplifying Eq. (20) gives 
 

 ( ) 1
1 3 4 5 6i i i i i -=   D S S S S I , (21) 

 

where 1,i = and ( ) 1
1 3 4 5 2 6i i i i id i -=     S S S S S S I  

is a constant. 
Based on the singular condition proposed in Eq. (12) by 

TANEV[28], 
 

 
1 1

0, 6,
k qa a d d k q⋅⋅⋅  ⋅⋅⋅ = + =D D D D  (22) 

 

where 
iaD
 

is the dual vector associated to the ith actuated 

joint, 
idD
 

is the dual vector associated to the ith dummy 

joint. The singular condition of the 3-RPS parallel 
manipulator is given as 

 

 

( )

( ){
( )

( ) }

1
1 2 3 6

1
1 11 13 14 15 6

1
2 21 23 24 25 6

1 1
3 31 33 34 35 6 6 .

     D







-

-

-

- -

=   =

é ù   ê úë û
é ù   ê úë û
é ù  ê úë û

D D D I

S S S S I

S S S S I

S S S S I I

 

(23)

 

 

Then, programming and calculating is conducted instead 
of resorting to discussing the geometry of the twist system. 
When the height of the moving platform is at 

1300 mmh = , the distribution of value D  of every 
configuration is shown in Fig. 3. The manipulator is in its 
singular configuration if 0D =  as shown in Fig. 3. Note 
that D actually describes the closeness of the 3-RPS 
parallel mechanism to the singularity. It is thus called index 
for closeness to singularity(ICS). 

 
Fig. 3.  Distribution of value D  of every configuration  

when 1300 mmh   

Several points in Fig. 4(a) are taken as examples to 
illustrate the singular configurations. The coordinates are 
rounded to three decimal places. Constraint singularity in 
Fig. 4(a) is drawn red in Fig. 4(b). This means that general 
singularity contains constraint singularity, which will be 
detailed in the next section. 

 

 

Fig. 4.  Singularity distribution when 1300 mmh =  

 

Fig. 5 is the loci of singularity distribution for every 
height h of the moving platform, which ranges from 0 to 
1300 mm. Moreover, Fig. 6 shows the singularity 
distribution for several heights of the moving platform, 
namely 0.2 mh = , 0.4 mh = , 0.6 mh = , 0.8 mh = , 

1.0 mh = , and 1.2 mh = . 
When 0.000, 180.023 = =  , the position vectors of 

three S joints, R1, R2, and R3, are (-800.000 0.000 13)T, 
( -200.000 346.410 1300.000)T, ( -200.000 -346.410 
1300.000)T, respectively. The schematic representation of 
the manipulator at this point is presented in Fig. 7(a). This 
is a constraint singularity, which will be further explained 
in the following. 

When 0.000, 64.687 = =  , the position vectors of 
three S joints, R1, R2, and R3, are (56.421 0.000 938.369)T, 
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( -200.000 346.410 1480.815)T, ( -200.000 -346.410 
1480.815)T, respectively. The schematic representation of 
the manipulator at this point is presented in Fig. 7(b). This 
is a 5b singular configuration in the classification of 
MERLET[8] and an RO-type singularity[34]. 

 

 
Fig. 5.  Singularity distribution of the moving platform 

 

 
Fig. 6.  Singularity distribution for several heights 

 of the moving platform 
 

When 0.000 , = = -121.754, the position vectors 
of three S joints, R1, R2, and R3, are (-515.972 0.000 
1640.040)T, ( -200.000 346.410 1129.980)T, ( -200.000  

346.410-  1129.980)T, respectively. The schematic 
representation of the manipulator at this point is presented 
in Fig. 7(c). This is similar to Fig. 7(b). It is also a 5b 
singular configuration in the classification of MERLET[8] 
and an RO-type singularity[34]. 

When 0.000, = = -161.631, the position vectors 
of three S joints, R1, R2, and R3, are (-769.429 0.000 
1426.053)T, ( -200.000 346.410 1236.974)T, ( -200.000 

346.410-  1236.974)T, respectively. The schematic 
representation of the manipulator at this point is presented 
in Fig. 7(d). This is a 5b singular configuration in the 

classification of MERLET[8] and the sixth kind of 
singularity[35]. 

When 28.648 , =  = -179.221, the position vectors 

of three S joints, R1, R2, and R3, are (-432.205 0.000 
1340.669)T, ( - 399.546 692.034 1299.874)T, (183.417 
317.687 1295.456)T, respectively. The schematic 
representation of the manipulator at this point is presented 
in Fig. 7(e). This is a 5b singular configuration in the 
classification of MERLET[8]. 

When 40.107 , 90.069 =  =  , the position vectors 
of three S joints, R1, R2, and R3, are (131.764 0.000 
994.063)T, (-287.763 498.420 1229.805)T, (53.924 97.398 
1676.132)T, respectively. The schematic representation of 
the manipulator at this point is presented in Fig. 7(f). In this 
configuration, the moving platform is perpendicular to the 
base. This is a 5a singular configuration in the classification 
of MERLET[8]. 
 

 
Fig. 7.  Part of the singular configurations  

when 1300 mmh   
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4.2.2  Constraint singularity 
The definition of constraint singularity by 

ZLATANOV[34] is adopted to analyze the constraint 
singularity of the 3-RPS parallel manipulator. The 
procedure for constraint singularity analysis is explained as 
follows. The program flowchart is shown in Fig. 8. 

 

 
Fig. 8.  Several constraint singularities when 1300 mmh   
 
(1) Express all the twist of the ith limb and calculate the 

blade of limb motion iA  of ith limb 
Given the expressions of all the twists, we calculate the 

blade of limb motion of each limb by outer product 
 
 1 2 3 4 5 , 1, 2, 3,i i i i i i i=     =A S S S S S  (24) 
 

where iA  denotes the outer product of all the twist of the 
ith limb. In fact, it is a blade of limb motion. 

(2) Calculate the blade of the limb constraint iC  of the 
ith limb 

The dual of the blade of the ith limb motion is  
 

 1
6 .i i
-=D A I  (25) 

 

Interchanging the order of the primary part and the  

 

secondary part of iD  yields ,i
D   

 

   .i i=C D (26)

 

where iC  denotes the blade of the limb constraint of the 
ith limb.  

(3) Calculate the blade of platform constraint Ac 
The outer product of the all the constraint wrenches of 

three limbs, namely 1C , 2C , and 3C , gives the blade of 
platform constraint Ac: 

 

1 2 3.c =  A C C C
 

(27)

 

(4) Find the φ and θ of constraint singularity 
If constraint singularity occurs, Ac will equal zero. Here, 

numerical search is used to obtain the result of singularity. 
From (3), the coefficients of Ac are obtained. If the absolute 
values of these coefficients are all smaller than a certain 
threshold and all near zero, then the corresponding 
configuration is in constraint singularity. 

Two rotation angles, θ and φ, range from 0  to 360 . 
Several constraint singularities of the manipulator are 
shown in Fig. 9 where the big and green triangle denotes 
the base, and the small and blue triangle the moving 
platform. The red arrow represents a constraint force, and 
point C is the intersection of three constraint forces. The 
coordinates of three R joints in constraint singular 
configurations are shown in Table 1. Note that the height of 
the moving platform is 1300 mmh = . 

From Fig. 8 and Table 1, the result of constraint 
singularity analysis is consistent with Ref. [34], which turns 
out that if 180 =  , that is, the moving platform and the 
base are parallel and the moving platform is upside down, 
the manipulator is in its constraint singularity. 

Table 1.  Coordinates of three S joints in constraint singularity when 1300 mmh =  

Angle Coordinate of B1 Coordinate of B2 Coordinate of B3 

φ=0.00°, θ=180.00° (−799.999, 0.000, 1299.363) (−200.000,346.410, 1300.319) (−200.000, −346.410,1300.319) 

φ=11.46°, θ=180.00° (−736.848, 0.000, 1299.376) (−319.111, 552.716, 1300.203) (−49.314, −85.414, 1300.422) 

φ=22.92°, θ=180.00° (−557.365, 0.000, 1299.413) (−387.841, 671.760, 1300.079) (109.158, 189.067,1300.508) 

φ=34.38°, θ=180.00° (−289.886, 0.000, 1299.474) (−395.339, 684.748, 1299.951) (250.396, 433.699, 1300.574) 

φ=45.84°, θ=180.00° (23.360, 0.000, 1299.556) (−340.422,589.629, 1299.826) (352.102,609.859, 1300.618) 

φ=45.84°, θ=180.00° (332.918, 0.000, 1299.656) (−231.760, 401.421, 1299.708) (398.219, 689.735, 1300.636) 

φ=68.75°, θ=180.00° (589.914, 0.000, 1299.769) (−86.509, 149.837, 1299.601) (381.466, 660.718,1300.630) 

φ=80.21°, θ=180.00° (753.778, 0.000, 1299.892) (72.401, −125.402, 1299.510) (304.487, 527.388, 1300.598) 

φ=91.67°, θ=180.00° (798.636, 0.000, 1300.019) (219.880, −380.843, 1299.439) (179.437, 310.795, 1300.542) 

φ=103.12°, θ=180.00° (717.407, 0.000, 1300.145) (332.645, −576.158, 1299.390) (26.0580, 45.134, 1300.465) 

φ=114.59°, θ=180.00° (522.915, 0.000 ,1300.265) (392.892, −680.510, 1299.366) (−131.435, −227.653, 1300.369) 

φ=126.05°, θ=180.00° (245.866, 0.000, 1300.375) (391.111, −677.424, 1299.366) (−268.178, −464.498, 1300.259) 

φ=137.51°, θ=180.00° (−69.999, 0.000,1300.470) (327.581, −567.388, 1299.392) (−362.581, −628.009, 1300.138) 

φ=148.97°, θ=180.00° (−374.813, 0.000, 1300.546) (212.334, −367.773, 1299.443) (−399.741, −692.372, 1300.011) 

φ=160.43°, θ=180.00° (−620.452, 0.000, 1300.600) (63.564, −110.096, 1299.515) (−373.790, −647.424, 1299.885) 

φ=171.89°, θ=180.00° (−768.135, 0.000, 1300.631) (−95.242, 164.964, 1299.607) (−288.826, −500.262, 1299.763) 

φ=183.35°, θ=180.00° (−794.547, 0.000, 1300.636) (−239.011, 413.979, 1299.714) (−158.263, −274.120, 1299.650) 
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5  Conclusions 
 

(1) Overall kinematic and constraint singularity loci 
distributions of the 3-RPS parallel manipulator are obtained 
in the framework of geometric algebra. The results of 
singularity distribution provides a powerful tool in the 
context of design and application of such manipulators. 

(2) Geometric algebra provides a complete representa- 
tion of twist and wrench. The reciprocity between twist and 
wrench is reflected by their duality in geometric algebra. 
This method is computationally advantageous and can be 
applied to singularity analysis of other classes of parallel 
manipulators. 
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