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Abstract: A new technique is used in Discrete Least Square Meshfree(DLSM) method to remove the common existing deficiencies of 

meshfree methods in handling of the problems containing cracks or concave boundaries. An enhanced Discrete Least Squares Meshless 

method named as VDLSM(Voronoi based Discrete Least Squares Meshless) is developed in order to solve the steady-state heat 

conduction problem in irregular solid domains including concave boundaries or cracks. Existing meshless methods cannot estimate 

precisely the required unknowns in the vicinity of the above mentioned boundaries. Conducted researches are limited to domains with 

regular convex boundaries. To this end, the advantages of the Voronoi tessellation algorithm are implemented. The support domains of 

the sampling points are determined using a Voronoi tessellation algorithm. For the weight functions, a cubic spline polynomial is used 

based on a normalized distance variable which can provide a high degree of smoothness near those mentioned above discontinuities. 

Finally, Moving Least Squares(MLS) shape functions are constructed using a varitional method. This straight-forward scheme can 

properly estimate the unknowns(in this particular study, the temperatures at the nodal points) near and on the crack faces, crack tip or 

concave boundaries without need to extra backward corrective procedures, i.e. the iterative calculations for modifying the shape 

functions of the nodes located near or on these types of the complex boundaries. The accuracy and efficiency of the presented method 

are investigated by analyzing four particular examples. Obtained results from VDLSM are compared with the available analytical results 

or with the results of the well-known Finite Elements Method(FEM) when an analytical solution is not available. By comparisons, it is 

revealed that the proposed technique gives high accuracy for the solution of the steady-state heat conduction problems within cracked 

domains or domains with concave boundaries and at the same time possesses a high convergence rate which its accuracy is not sensitive 

to the arrangement of the nodal points. The novelty of this paper is the use of Voronoi concept in determining the weight functions used 

in the formulation of the MLS type shape functions.  

Keywords: Discrete Least Squares Meshless, crack, Voronoi tessellation, concave boundaries, Steady-state heat conduction. 

 

 

 

1  Introduction 
 

Meshless methods have been widely used for solving the 
practical engineering problems in recent years. These 
methods do not implement element or any predefined 
connectivity between nodal points to perform the analysis. 
They use instead a set of scattered nodal points for both 
approximating of the unknown function and for discretizing 
the continuous governing partial differential equations or 
just for the approximating step. Due to this characteristic, 
most of the researchers have been interested in 
implementing meshless methods rather than the 
well-known Finite Element Method(FEM) or Boundary 
Element Method(BEM) particularly for solving the 
problems involving large deformations, moving boundaries 
or irregular complex geometries.  

On the other hand, because that in meshless methods, in 
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contrast to the FEM, the support or influence domains of 
the sampling points(integration points) have generally 
overlapping(the shape functions in meshless methods are 
not restricted to have the Kronecker delta property), these 
methods yield more accurate results in problems governed 
with second or higher order derivatives of the unknown 
function. These types of problems such as heat transfer or 
fluid dynamics require a high degree of continuity for the 
unknown function to achieve desirable results. In other 
words, in meshless methods, with respect to FEM, the 
shape functions have wider influence domains and have 
more smoothness.  

Those more famous meshless methods implemented for 
heat transfer simulation until today are Smoothed Particle 
Hydrodynamic(SPH) method[1–2], Diffuse Approximation 
Meshless(DAM) method[3], Element Free Galerkin(EFG) 
method[4–5], Meshless Weighted Least Squares(MWLS) 
method[6], Reproducing Kernel Particle Method(RKPM)[7], 
and Meshless Local Petrov-Galerkin(MLPG) method[8–10]. 

SPH method is a computational method used for 
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simulating fluid flows. It is a Lagrangian meshless 
method(where the coordinates move with fluid) and the 
accuracy of the method can easily be adjusted with respect 
to variables such as density. Because that heat transfer 
generally involves complex fluid dynamics, CLEARY and 
MONAGHAN[11] used the advantages of Lagrangian 
methods like SPH for solving such problems. They 
employed a simple alteration to the standard SPH method 
to ensure continuity in simulating of heat flux across 
discontinuities in material properties. These researchers 
implemented a technique in the framework of SPH for 
improving the accuracy of this method in estimating the 
second derivatives of the governing heat conduction 
equations which are involved in an unsteady heat 
conduction problem. CHEN, et al[12], applied an alternative 
approach for overcoming the deficiencies of the SPH in 
solving the unsteady heat conduction problem at the 
boundaries of a domain where the particles become 
disordered. They combined the kernel estimate with the 
Taylor series expansion to develop a Corrective Smoothed 
Particle Method(CSPM). They declared that with their 
method, the accuracy of the solution was enhanced not only 
near and on the boundaries but also within the domain.  

DAM may be considered as a generalization of the 
widely used FEM. It removes some of the limitations of the 
FEM like the regularity and smoothness of approximated 
functions in the domain and mesh generating requirements. 
SADAT and COUTURIER[13] worked on the performance 
and accuracy of DAM method and used the advantages of 
this method with respect to the FEM for solving the laminar 
natural convection problem. Also, SADAT, et al[14], solved 
a 2D heterogeneous heat conduction problem with this 
meshless method. SOPHY, et al[15], formulated a meshless 
approach for simulating the 3D laminar natural heat 
convection. Sadat and his co-workers reported that DAM 
can be used in complex geometries and this method is 
stable and accurate even at high Rayleigh numbers. 

In the EFG method, description of the geometry and 
numerical model of the problem consists only of a set of 
nodes and a description of exterior boundaries and interior 
boundaries from any cracks. This method uses moving 
least-squares interpolants to construct the trial and test 
functions for the variational principle(weak form). In 
moving least-square interpolants, the dependent variable at 
any point is obtained by minimizing a function in terms of 
the nodal values of the dependent variable in the domain of 
influence of the point. By implementing this approach, the 
dependent variable and its derivatives are obtained 
continuous in the entire domain. Certain key differences are 
introduced in this method to increase its accuracy; rate of 
convergence in the vicinity of the steep localized gradients 
in comparison to DAM. Singh et al employed the EFG 
method for solving a number of problems in the field of 
heat transfer such as the 2D fins[16], 3D steady-state heat 
conduction[17], 3D transient heat conduction[18], the 
temperature-dependent thermal conductivity problems[19] 

and finally composite heat transfer[20]. They utilized 
moving least squares(MLS) approximants to approximate 
the unknown function of temperature. These MLS 
approximants were constructed by using a weight function, 
a basis function and a set of non-constants coefficients. 
Variational method was used for the discretization of the 
governing equations. The essential boundary conditions 
were enforced using the Lagrange multiplier technique. 

MWLS method is a pure meshless method which 
combines the moving least squares approximation scheme 
and least squares discretization. YAN, et al[21], studied the 
steady state of heat conduction problems employing 
MWLS method. LIU, et al[22], extended MWLS method to 
solve the unsteady-state heat conduction equation and 
discussed the optimal choice of computational parameters. 
They reported that MWLS method is much faster than the 
EFG method, while the accuracy of MWLS is close to or 
even better than EFG method. 

RKPM is similar to the SPH method with one major 
difference: the development of a correction function for 
boundary effects. With this correction function, the tensile 
instability of the SPH has been completely eliminated in 
RKPM. Recently, CHENG and LIEW[23] used RKPM 
method for analyzing the 3D transient heat conduction 
problems. These researchers concluded in their research 
that RKPM can be used for non-regular geometries and this 
is an advantage with respect to FEM. They also declared 
that RKPM yields accurate results in steady-state heat 
conduction problem and can be extended for un-steady heat 
conduction.    

MLPG is a truly meshless method similar to the MWLS 
which needs no shadow elements to evaluate the domain 
integrals like the DAM, EFG or RKPM because that this 
method is based on local weak-form formulation. However, 
this method is based on point collocation and is very 
sensitive to the choice of collocation points. SLADEK, et 
al[24–26], used MLPG for solving the heat conduction 
differential equations in non-homogeneous anisotropic 
mediums. They reported that the limitation of conventional 
boundary element approaches to non- homogeneous solids 
is removed by using MLPG method. In another work, 
MLPG method was employed by QIAN, et al[27] to 
investigate the 3D transient heat conduction problem in a 
functionally graded thick plate. HONG and QUAN[28] 
applied MLPG method to study the steady-state heat 
conduction problems with irregular complex domains in a 
2D space and compared the results with the Finite Volume 
Method(FVM). 

None of the above mentioned approaches simulate heat 
transfer in domains contain crack or highly irregular 
concave boundaries. Furthermore, all these approaches 
except of the MLPG and MWLS methods use at least a 
background mesh for carrying out the numerical integration 
which involved in the analysis when the weak form of the 
governing  equations are present in the formulations. 
Hence, they have not a noticeable advantage over the mesh 
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dependent approaches like FEM or BEM for using in this 
study. Although the MPLG is a true meshless method 
which does not implement any kind of mesh in the analysis, 
the accuracy of this method as it was mentioned above is 
very sensitive to the choice of collocation points. Therefore, 
in this study, based on the advantages of MWLS in 
simulating the heat conduction phenomenon, it was decided 
to implement DLSM method which has not been tested 
against the heat conduction problems yet, and is very 
similar to the MWLS, and modify it to make it possible to 
simulate heat conduction in irregular domains containing 
crack or concave boundaries. 

 
2  DLSM Method  

 
In DLSM which is a true meshless method, the domain 

of interest is discretized with a set of scattered nodal points 
and then it is trying to make a squared residual function to 
be minimized. This function is defined as the summation of 
the squared residuals of the governing differential equations 
and its accompanied boundary conditions at the nodal 
points. Generally in DLSM, the main unknowns(the 
temperatures at the nodal points in this study) are 
approximated using the Moving Least Squares(MLS) shape 
functions. Because the MLS shape functions do not satisfy 
the Kronecker delta requirement, the boundary conditions 
are imposed to the model using a penalty approach.   

DLSM has been implemented in recent years to solve 
many engineering problems such as Poisson’s equation[29], 
elliptical partial differential equations[30], transient and 
steady-state fluid flows[31–32], planar elasticity problems 
[33–34], error estimate and adaptive refinement for elasticity 
problems[35–36]. However, none of them can solve such 
equations on practical irregular domains with concave 
boundaries or cracks. This is due to the fact that the 
standard DLSM method like to the other meshless methods 
fails in determining the support domain of the sampling 
points in the vicinity of the concave boundaries or cracks 
accurately and consequently cannot construct their shape 
functions precisely. In other words, DLSM cannot 
distinguish the discontinuities between adjacent nodes near 
or on crack faces or concave boundaries and perhaps the 
nodes are located in two opposite sides of a concave 
boundary or crack are incorporated incorrectly in a same 
support domain. This means that portions of the mentioned 
crack or opening are considered wrongly as a continuous 
medium. Some techniques have been implemented in 
recent years such as visibility, diffraction and 
transparency[37–38] in meshless methods to overcome such 
deficiency but each of them has own specific shortcomings 
and does not possess a general application. These methods 
are briefly discussed in section 3.3. Hence, in current study, 
this method has been modified and improved its capacity to 
conquer such defects using the advantages of the Voronoi 
tessellation algorithm in constructing the MLS shape 
functions. This method does not show the shortcomings of 

the mentioned techniques. It guarantees the continuity and 
smoothness requirements for the shape functions 
everywhere around the crack tip and at the same time does 
not extend the time of processing. 

It is worth to mention here again before further continue 
that in this study the main task is to modify the standard 
DLSM method to make possible that the steady-state heat 
conduction problem can be solved in domains contain 
complex geometry with concave boundaries or crack. 
Standard DLSM cannot solve such problems and obtained 
results using this method are meaningless. So, it is not 
intended and basically it is not possible to compare the 
results obtained from VDLSM with the standard DLSM.  
Furthermore, FEM has been used in this study just for 
verifying the results obtained from VDLSM where 
analytical solutions are not available. By using VDLSM, 
the predefined nodal connectivity which is an essential 
need in FEM is not required and the discontinuity between 
temperatures at the element borders which may be observed 
in FEM does not occur in VDLSM because of the 
smoothness nature of MLS shape functions. 

This paper is organized as follows. Section 3 introduces 
the MLS approximation in conjunction with Voronoi 
tessellation approach used for shape function construction. 
In section 4, VDLSM method for solving heat conduction 
problems is formulated. Four benchmark numerical 
examples are solved in section 5. Finally, some useful 
conclusions are summarized in section 6. 

 
3  VDLSM Method 

 

In the present study, as mentioned before, the advantage 
of Voronoi tessellation used for constructing MLS shape 
functions. Creation of these shape functions consists of four 
stages as below. 

 
3.1  Support domain formation  

In previous works on DLSM method, two general 
methods have been used: In the first method, the radius of 
the support domain has been considered as a constant value. 
So, the nodes which lie within a circle around a node j(the 
center of the circle) are involved in the shape function 
construction for node j. This method is easy to implement 
but it can only be efficiently used for regular nodal 
configurations. In order to overcome this deficiency, the 
average of the distances of the n closest points to node i 
multiplied by a constant number was used for obtaining the 
support domain radius of node j. Using this method leads to 
give accurate results for geometrically regular domains 
with irregular nodal arrangements. However, this method is 
not easily applicable on a domain which includes cracks or 
concave boundaries(irregular domains), the main challenge 
of this work. Thus, in this study in addition to propose 
DLSM method for heat conduction analysis, a more 
flexible and effective method is proposed to overcome 
aforementioned deficiency. 
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In this method the support domain of node i includes 
only of the neighbor nodes of node j. Neighbor nodes of 
node j are detected using Voronoi diagram algorithm. In 
this way, each node has a Voronoi cell. A Voronoi cell of 
node j is defined as the collection of the points x that are 
located closer to node j than any other nodes likes node i 
(see Fig. 1)[39]. 
 

 

Fig. 1.  Voronoi diagram and neighbor nodes of node j 
 
In the mathematical formulation this definition can be 

stated as follows: 
 

{ }, ( , ) ( , ) for ,n
j j iV x d x d x i j = ÎÂ < ¹     (1) 

 
where Vj is the Voronoi cell of node j, and d is the 
Euclidean distance between point x and node n

i ÎÂ  
defined as  

 

( )
2 2 2

1 1 2 2 3 3

,

( ) ( ) ( ) .

i i

i i i

d x x

x x x

 

  

= - =

- + - + -
      (2) 

 
Once the Voronoi cells are created, the nodes which have a 
common facet with the Voronoi cell of node j are 
considered as the first layer of neighbor nodes(Fig. 1). We 
can define more than one layer of neighbor nodes if 
needed. 

 
3.2  Basis functions 

The second step to construct MLS shape functions is the 
approximation of the function defined as 

 

T

1

( ) ( ) ( ) ( ) ( ),
r

i i
i

x p x a x x x
=

= =åT P a        (3) 
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2 2 ( 1) ( 1)

( )

[1, , , , , , , , , , , ],m m m m

x

x y x xy y x x y xy y- -

=P

 
   

(4)
 

 
where ( )xa  is the vector of coefficients and ( )xP  is the 
vector of basis functions; m is the order of basis functions 
and r is the total number of the basis function terms. In the 
proposed method, the number of the layers of the neighbor 
nodes is considered to be equal to the order of the basis 
functions. In other words, the value of m determines the 
number of neighbor layers used for constructing the support 
domain. For example, in Fig. 2, two layers of neighbor 

nodes are selected for creating a second order basis 
functions. This method guarantees the required number of 
the nodes for basis functions calculation and there is no 
need to additional methods to determine the number of the 
nodes for the support domain. In this paper, the basis 
functions of the form 2 2( ) 1,[ , , , ],x x y x xy y=P  (m=2 and 
r=6) was used, means that two layers of the neighbor nodal 
points have been employed. 

 

 

Fig. 2.  Forming support domain by two layers of neighbors 

 

3.3  Definition of the weight function 
for non-convex domains 

In this work, a cubic spline weight function(Eq. (5)) was 
considered. Accurate solution of non-convex boundary 
problems or cracked domains requires the construction of 
smooth continuous weight functions near crack. This cubic 
spline function produces smooth continuous and 
differentiable results with relatively coarse scattered nodal 
points[40]. 
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Where i wjd d d= / , di =||xi－xj||  and dwj is the radius of 
the weight function of point j. dwj is set to be the di of the 
farthest node located in the support domain of node j 
multiplied by a constant number which is considered in this 
study as 1.1. Some considerations should be taken into 
account for computing di in this study. 

It should be recalled that by Voronoi approach used here, 
the nodes which are located in the support domain of node j 
are not determined based on their straight distances from 
node j. In other words, if the distance of a node i to node j 
is smaller than the distance between nodes j and k, node i is 
not necessarily considered in the support domain of node j. 
For example, for the case m=1, node i in Fig. 3 does not 
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place in the j’s support domain even if it’s distance from 
node j is smaller than the distance of the node m from node 
j. Because that node i in that Fig. has no common facet with 
j’s Voronoi cell. Furthermore, note that the node k which is 
located behind the crack vertex is excluded from the 
support domain of node j even if it is located at a very close 
position to node j, because the vertex which located on the 
crack line is not considered as the common facet.  
 

 

Fig. 3.  Nodes excluded from the support domain 
 
By this approach, for the case m=1(one layer of 

neighbor’s Voronoi cells is considered), di can be normally 
defined as the straight distance of node i from node j and no 
additional operation is needed. However, for the case     
m ≥ 2(two layers of neighbor’s Voronoi cells are 
considered), the distance di cannot be measured along a 
straight line connects nodes i and j because this line may 
pass through a cell which is not a neighbor cell of node j. 
This problem can be fixed by imposing a constraint. This 
constraint is that for computing di , at first a path must be 
defined between nodes i and j.  

This path which connects node i to node j must always 
passes through the neighbor cells of node j. By this way, for 
computing di in Fig. 4, the path which connects two nodes i 
and j passes from a middle node k. according to this Fig. di 
is the summation of P1 and P2: 

 

1 2 ,id P P= +                  (6) 

 

1 2, .k j k iP x x P x x= - = -            (7) 

 

 

Fig. 4.  Support domain for m=2 in a cracked domain 

 
Before further continuing of the formulation, as 

mentioned in introduction and for better understanding the 
scheme which was described above, let us review briefly 

some techniques which have been implemented by 
researchers in recent years to incorporate the effects of the 
discontinuities like cracks into the analysis. These 
techniques may not be understood well by the readers 
before this stage of the study.  

In visibility technique, the weight of node XI at point X is 
set to zero if the segment that joins them is cut by a crack. 
Hence, by this way, the weight function and subsequently 
the shape functions at point X are modified considering the 
discontinuity opaque for rays of light coming from the node 
XI (see Fig.5)[37]. In other words, by this approach, a 
discontinuity is distinguished as a part of a medium which 
light cannot travel through it. With this method, the 
concave boundaries are detected but the continuity 
condition of the weight and obtained shape functions is 
violated near the crack tip (yields spurious discontinuity) 
because that at the crack tip, an artificial discontinuity 
inside the domain is constructed as shown in Fig. 5[41].  

 

 

Fig. 5.  Visibility Criterion, diffraction,  
and transparency techniques[37]  

 
In diffraction method, if the segment that joins node XI to 

point X is cut by a crack, the normalized distance d  which 
it was used in Eq. (5) in this study, is defined according to 
the length of the shortest path from node XI to point X 
passing by the point of the crack tip XC: XI X- - XC. In 
mathematical form this can be written as 

 

c c 1 2

0 0

|| || || ||ix x x x S S
d

S S

- + - +
= = (see Fig. 5). 

 
The weight function of node XI is then continuous except 
across the crack. 
  By using transparency method, if the segment that joins 
node XI to point X is cut by a crack, the normalized distance 

0

id
d

S
=  in Eq. (5) is augmented by a transparency function 

that increases with the distance between the crack tip and 
the intersection of the segment with the crack. That is 
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with ( )t 0 0f =  and tf  a strictly increasing function to 
choose(see Fig. 5). Transparency criterion gives sharply 
varying shape functions for the nodes near the crack[41]. 

From the above reviewing, it is revealed that these 
techniques are not guaranteeing the smoothness of the 
shape functions near the crack or crack tip and also are not 
straight-forward schemes. This is due to the fact that these 
methods do not construct support domain of the nodal 
points considering the effect of crack or other discontinuity 
from the first step of the analysis procedure and they are 
trying to modify the weight and shape functions after that 
the support domains are constructed. However, by the 
proposed method in this study, the aforementioned 
deficiency is removed completely.  

Coming back to the main discussion, the weight function 
derivatives are computed using the chain role: 

 

,
W W d

x xd

¶ ¶ ¶
=

¶ ¶¶
 and .

W w d

y yd

¶ ¶ ¶
=

¶ ¶¶
        (8) 

 
Furthermore, because that VDLSM method is a method 
which works with the strong form of the governing 
equations, so the second derivatives should be calculated 
for heat conduction problems: 
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According to above equations, derivatives of 	 ̅  are 

needed and must be computed. Since	  is a constant, all 
that needed are derivatives of di. According to Eq. (7), P1 is 
not changed. So, only the derivatives of P2 should be 
calculated. The first derivatives are 
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and the second derivatives are 
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3.3  MLS shape function construction 

Weighted discrete L2 norm function is defined by 
 

( ) ( )T 2

1

( )( ) ,
sn

h
j j j j j

j

J W x x x a x
=

= - -å P T      (12) 

 
where h

jT  is the approximated unknown function (in this 
study the temperature) of node j, and ns is the total number 
of the nodes in the support domain of sampling point x and 

jW  is the weight function in node j. 
The unknown function; T(x); in sampling point x can be 

obtained by minimizing the function J (Eq. (12)) as 
follows: 
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where hT  is a vector collecting the nodal values of 
temperature as follows: 
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Eq. (13) is rewritten in the following form: 

 

( ) ( )T ,hx x=T N T              (17) 

 
where ( ) ( ) ( ) ( )T T 1x x x x-=N P A B  is transpose of the 
vectors of MLS shape functions. The seobtained shape 
functions can be appliedreadily to model the temperature 
field around and near the cracktip without need to use 
special modifications as it is required in techniques such as 
visibility, diffraction or transparency methods[41]. 

In the solution of partial differential equations, it is often 
necessary to obtain the shape function derivatives. The first 
order derivatives of the MLS shape function can be 
obtained as follows: 
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While the second order derivatives of MLS shape functions, 
which are only required when the second order derivatives 
are present in the governing differential equations, like 
present case, are obtained as follows: 

 
2 2 T 2 1 2

1 T T 1
2 2 2 2

T 1 T 1
1 T

d d d d

d d d d

d d d d d d
 2 ,

d d d d d d

x x x x

x x x x x x

-
- -

- -
-

= + + +

æ ö÷ç ÷+ +ç ÷ç ÷çè ø

N p A B
A B p B p A

p A p B A B
B A p

 

2 2 T 2 1 2
1 T T 1

2 2 2 2

T 1 T 1
1 T

d d d d

d d d d

d d d d d d
 2 ,

d d d d d d

y y y y

y y y y y y

-
- -

- -
-

= + + +

æ ö÷ç ÷+ +ç ÷ç ÷çè ø

N p A B
A B p B p A

p A p B A B
B A p

 

2 2 T 2 1 2
1 T T 1

T 1 T T 1
1

1 T 1
T 1 T

d d d d

d d d d

d d d d d d
  
d d d d d d

d d d d d d
  .

d d d d d d

xy xy xy xy

x y x y y x

x y y x y x

-
- -

- -
-

- -
-

= + + +

+ + +

+ +

N p A B
A B p B p A

p A p B p A
B A B

A B p B A B
p A p

 

(19) 

 
4  VDLSM Formulation for Steady-State 
  Heat Conduction Phenomenon  
 
In this section, to demonstrate the efficiency of the 

VDLSM, it is formulated for solving the steady-state heat 
conduction problems. Considering the following steady- 
state temperature distribution equation: 

 

( )2 0 ,ink T x Q + =             (20) 

 
where k and   are the thermal conductivity and mass 
density, respectively; Q is the heat source per unit mass; 
  is the domain of the problem and T[ ]x x y=  the 
Cartesian coordinates. The equation is subjected to the 
following boundary conditions: 

 
T T=  on 1,b                (21) 

 
• 0n k T q= =  on 2 ,b             (22) 

 

( )• an k T h T T= -  on 3,b            (23) 

 
where T  and q  are the prescribed temperature and heat 
flux on 1b  and 2b  boundaries, respectively. aT  is a 
prescribed ambient temperature on 3b  and n represents 
the unit outward normal to the boundary and h is the 
convection heat transfer coefficient. 

Eq. (20) can now be rewritten in the residual form as 

( )( )
1

in ,
dn

n

R L T f 
=

= +å             (24) 

 
where nd is the total number of the nodes used to discretize 
the problem domain   and ( )L  is a second order 
differential operator defined as 
 

( ) ( ) ),(xx yyL L L= +              (25) 

 
where xxL  and yyL  for the steady-state heat conduction 
equation are defined as  
 

2 2

2 2

( ) ( )
, ,x yyL x k L

x y

¶ ¶
=

¶ ¶
=            (26) 

 
and f

 
is defined as 

 
.f Q=                    (27) 

 
The boundary conditions i.e. Eqs. (21) to (23) can also be 
rewritten in the residual forms as 
 

1

1 1
1

( ) on ,
b

b

n

n b
n

R T T 
=

= -å              (28) 

 
2

2 2
1

( ( ) ) ,on 
b

b

n

n b
n

R L 
=

¢= -å T q            (29) 

 
3

3 3
1

( ) ( )  on ,
b

b

n

n a n b
n

R L h 
=

é ù¢= - -ë ûå T T T         (30) 

 
where 1bn , 2bn  and 3bn  are the total number of the 
nodes on 1b , 2b  and 3b  boundaries, respectively 
and L¢  is a first order differential operator defined as 
below: 
 

2 3( ) ( ) ( ) on n ,a dx y b bL L L  ¢ ¢ ¢= +         (31) 

 

where 
( )

•x xL n k
x
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¶

 and 
( )

•y yL n k
x
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¶

. 

Now a functional using the penalty approach for 
imposing the boundary conditions is defined as 
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where 1 , 2  and 3  are the penalty coefficients for 

1b , 2b  and 3b  boundaries, respectively. 
Minimization of this functional with respect to the nodal 

variables; i.e. the temperatures of the nodes ( ,iT i =
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d1, 2, , )n where dn 	is defined as the total number of the 
nodal points leads to the following system of equations: 

 
,=KT F                    (33) 

 
where T

1 2[ , , , ]ndT T T=T  is a vector collecting the 
unknown scalar nodal temperatures and K and F are the 
coefficient matrix and right hand side known vector 
respectively with typical components defined as follows: 
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The coefficient matrix K is seen to be a square matrix 

with a dimension  ,nd nd´  where, nd is the total number 
of the nodes used to discretize the problem domain. 
Furthermore, K is a symmetric and positive-definite matrix, 
irrespective to the characteristics of the differential 
operators L and L'. Furthermore, using the Voronoi based 
MLS shape functions makes K to be banded due to a few 
numbers of nodes which are included in a support domain. 
Therefore, the final system of equations can be solved via 
efficient iterative solvers if required. 

 

 
5  Numerical Examples  

 

In this part, the efficiency of the recommended VDLSM 
method in the solution of the steady-state heat conduction 
problems is investigated via solving four benchmark 
examples. The obtained results are compared with the exact 
analytical or approximate numerical results obtained from 
FEM using ABAQUS standard software. 

 
5.1  Steady-state heat conduction 

in a rectangular domain 
As a first example, an ordinary problem; a rectangular 

domain; with the dimensions of 1 m´0.8 m(see Fig. 6), 
was chosen. The thermal conductivity is 1.2 W/(m℃ . 
Upper boundary is subjected to an inflow heat flux q =
500 W/m2; other boundaries are maintained at a constant 
temperature 0 ℃. No heat source exists in the domain.  

 

Fig. 6.  Geometry and boundary condition for first example 

 
The exact analytical solution obtained from BUDAK et 

al[42] is brought here as follows: 
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        (36) 
 
The problem was solved with three different regular 

nodal arrangements containing 357, 1353 and 3651 nodal 
points respectively in order to investigate the convergence 
rate of this method. Fig. 7 compares the temperature 
contours obtained from VDLSM method with the 
corresponding results obtained from the exact solution. 
Also, for making a possibility to compare the obtained 
results from VDLSM with other meshless methods, the 
results obtained from EFG and MWLS for this particular 
example have been shown in Fig. 7.  

 

 

Fig. 7.  Contours of Temperature (℃) 

 
It can be seen that VDLSM shows more agreement with 

analytical results than these methods. Temperature 
distribution along the upper boundary is depicted in Fig. 8. 
Fig. 9 shows the comparison of different results along a 
vertical section at x=0.5. 
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Fig. 8.  Temperature distribution on y=0.8(℃) 
 

 

Fig. 9.  Temperature on central vertical line (x=0.5)(℃) 

 
From these figures, it can be seen that there is no 

sensible difference between the obtained results from 
VDLSM for different number of regular nodal 
arrangements. This shows that obtained results from 
VDLSM method for this example are not sensitive to the 
number of nodes greater than 357. 

Hence, it can be said that VDLSM has a good 
convergence rate and high accuracy in this particular 
problem similar to MWLS method in their work. It can be 
seen that there is a good coincidence between the results 
obtained by VDLSM and exact solution. A L2-error has 
been defined for this example as below: 

1/2

total 1
exact

ˆ ˆ( ) ( )

.

N
T

k k k k
k

T T T T

E
N

=

æ ö÷ç é ù ÷- -ç ÷ê úç ë û ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

å
      (37) 

In the above relation, Tk is the approximate temperature and 
Tk is the exact temperature. N is the total number of nodal 
points in the domain. Fig. 10 shows such defined L2-error 
distribution for this example in the domain.  

 

5.2  Insulation of vapor transport in a pipe  
As a second example, the vapor transport in a pipe with 

diameter of 200 mm was considered. The pipe was covered 
by a thermal insulation layer forming a square shape 
section of 400 mm length as shown in Fig. 11. 

 

 

Fig. 10.  L2-Error distribution for example 5.1 
 

 

Fig. 11.  Vapor transport in a thermal insulated pipe 
 
Inside and outside surface temperatures of the pipe are 

maintained at the values T1=200 ℃  and T2=60 ℃ , 
respectively. The thermal conductivity of the heat 
insulation layer is considered as 0.1 W/(m℃). 

Due to the symmetry, only one eighth sector of the 
problem domain was modeled.  

The problem was solved with 441 regular and 398 
irregular nodal point arrangements. The problem was also 
simulated by FEM based ABAQUS standard software as a 
reference solution due to the lack of the analytical solution. 
Fig. 12 shows the nodal configurations of FEM and 
VDLSM. 

Four hundred linear quadrilateral-DS4-elements(a 
4-node heat transfer quadrilateral shell) were used from the 
element library of ABAQUS software for FEM modeling. 
The temperature contours obtained using the VDLSM with 
regular and irregular grid and the solution of FEM were 
compared in Fig. 13.  

In Fig. 13, also similar results which obtained by Hong 
and QUAN from another meshless method i.e. MLPG have 
been depicted. As it can be seen, the proposed method 
shows more accurate results than MLPG method. To obtain 
a more accurate comparison, temperature distributions 
along two radial lines (bottom and upper boundaries) are 
demonstrated in Figs. 14 and 15.The comparisons show 
excellent agreements between the results and confirm the 
high degree of accuracy of the proposed method. Solving 
this example also demonstrates that the results obtained 
from VDLSM are not sensitive to the arrangement of the 
nodal points (regular or irregular) in contrast to the MLPG 
method which was mentioned before in literature review.  
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Fig. 12.  FEM and VDLSM models for the second example 

 

 

Fig. 13.  Temperature field around the tube (℃) 
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Fig. 14.  Temperature distribution along the bottom 
boundary( y=0) (℃) 

 

 

Fig. 15.  Comparison of temperature (℃) distribution  
along the upper boundary (second Example) 

 

5.3  Finite plate with an inclined insulated crack  
In order to control the efficiency of the VDLSM method 

in cracked domains, a square plate containing an inclined 
insulated crack was considered as the third example.  

The top and bottom boundaries are subjected to constant 
temperatures T0 and –T0, respectively, where m T0 is 
considered as 100 ℃. The other boundaries are adiabatic. 
The width of the plate is l=100 mm and the length of the 
crack is a=60 mm. The angle of the crack with the x-axis is 
set to θ=45 and the center of the crack places on the 
center of the square plate. The thermal conductivity is 
considered as k = 1.2 W/(m℃). The geometry of the 
problem and nodal configuration with 2442 nodes are 
exhibited in Fig. 16 and Fig. 17, respectively.  

As shown in Fig. 17, the crack was considered as a 
longitudinal notch with rounded tips and free flux boundary 
condition was applied on its faces. Because that the tips of 
the crack are considered rounded, there is no need for 
incorporating the singularity of stresses in the analysis.  

 

Fig. 16.  Geometric configuration of the squared 
plate with an inclined crack 

 

 

Fig. 17.  Irregular nodal configuration of the squared 

plate with an inclined crack 
 
Results of the FEM solution with 2151 DS4 ABAQUS 

elements were considered as the exact solution. Fig.18  
 

 

Fig. 18.  Comparision of temperature(℃) contours for the 
squared plate with an inclined crack 
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comparesthe temperature fields in the domain obtained 
from FEM and VDLSM.  Temperature distributions along 
the upper side of the crack line and central horizontal line 
are depicted in Fig. 19. Results show that VDLSM method 
is capable to predict temperature field in highly complex 
geometries-cracked domains- with a high accuracy. 

 

 

Fig. 19.  Comparison of temperature distribution  
for the third problem 

 

5.4  Steady-state heat conduction in a cylinder head 
As the final example with an irregular shape containing 

concave boundaries, a part of a cylinder head of a Yamaha 
XS1100 engine was selected and modeled. A photo of such 
cylinder head was depicted in Fig. 20.  

For minimizing the CPU RAM of computer during 
analysis, a central part of this cylinder head was considered 
and modeled. The nodal configurations used in VDLSM for 
this part of the cylinder head can be seen in Fig. 21. 

The temperature on the external boundaries was 
considered as 400 ℃ and on the other internal boundaries 
was kept as 90 ℃. The thermal conductivity was considered 
as k=177.2 W/(m℃). Other required parameters for heat 
conduction solution are the same as the example 5.3. The 
number of used nodal points in VDLSM method was 3850. 
A second order polynomial shape functions with m=6 were 

implemented. Due to the lake of the analytical solution in 
this case, the obtained temperature distribution within the 
domain was compared with that obtained from ABAQUS 
standard software. Figs. 22 and 23 show this comparison.  
 

 

Fig. 20.  Yamaha XS1100 motor cylinder-head  
for the fourth problem 

 

 
Fig. 21.  Nodal configurations of the cylinder-head  

 

 

Fig. 22. Temperature contours (℃) for the cylinder-head  
predicted by VDLSM 

 

In the FEM approach, 15 000 linear triangular heat 
transfer shell elements-DS3- of ABAQUS element library 
were used for modeling. It can be seen that there exists a 
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good correlation between these two kinds of results.  
 

 

Fig. 23.  Temperature contours (℃) for the cylinder-head  
predicted by F.E.M 

 
6  Conclusions  

 

(1) A modified discrete least square meshless method 
named as VDLSM is formulated and implemented for 
solving the steady-state heat conduction phenomenon in the 
domains contain crack or irregular concave boundaries.  

(2)The advantages of the Voronoi tessellation algorithm 
is used for building up the support domains in such 
mentioned mediums precisely and subsequently for 
constructing weight and MLS shape functions.  

(3)This method is a straight-forward scheme which does 
not suffer from the shortcomings of the other techniques 
such as visibility, diffraction or transparency. It guarantees 
the continuity condition for the shape functions; does not 
extend the time of processing, yields accurate results 
comparable with FEM and analytical results and high 
convergence rate for cracked domains or domains with 
highly irregular concave boundaries. 
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