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Abstract: Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been 

carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely 

investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, 

eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based 

on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical 

method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results 

show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and 

impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the 

changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error 

fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force 

amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can 

be used for diagnosis of faults and vibration control of practical SGRBS. 

 

Keywords: spur gear-rotor-bearing system(SGRBS), backlash, eccentricity, internal and external excitations,  

coupled lateral-torsional vibration 

 

 

 

1  Introduction　 

 

Gear transmission system, as one of the most common 
types of rotating machinery which is quite extensive used 
in wind turbines, ships, automobiles, and aircrafts, plays an 
important role in industrial application. However, the 
severe working environment often inevitably causes the 
gear system break down, and even results in significant 
economic losses and catastrophic accidents. Therefore, 
accurately detecting the dynamic behaviors of the gear 
system is a great significance for avoiding serious 
aftereffects and ensuring the safe and stable operation of 
the mechanical equipment. A great number of theoretical 
researches have been carried out in order to reveal the 
dynamic behaviors of the gear transmission system. In 
recent years, with the increased demand for high speed, 
high flexibility and high efficiency, many researchers have 
made a great contribution to study dynamic characteristics 
of gear systems by applying experimental methods, 
numerical simulation technique and analytical methods, 
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respectively. The coupled of gears, shafts and bearings 
usually simplified to single-degree-of-freedom(SDOF) 
model or multi-degree-of-freedom(MDOF) model, which 
include time-varying parameters and nonlinear features. 
These models can be used to analyze the influences on gear 
modification, mounting error, clearance in gear system. 

In earlier studies, the spur gear system was usually 
analyzed by SDOF. KAHARMAN, et al[1], studied the 
nonlinear dynamic characteristics of spur gear system with 
the harmonic balance method(HBM). In order to further 
study the nonlinear characteristics of gear transmission 
system, KAHARMAN[2] sequentially analyzed the effect of 
the gear rotor-bearing system with the backlash and the 
time-varying mesh stiffness, and carried out a detailed 
analysis to the nonlinear system. LI, et al[3], established a 
SDOF gear pair model with internal and external periodic 
excitations, and the key parameters of dynamic backlash, 
damping ratio and the excitation force amplitude were 
analyzed by incremental harmonic balance method(IHBM). 
BARBIERI, et al[4], applied genetic algorithms for 
optimizing spur gear in terms of static transmission ratio, 
the procedure considered a nonlinear finite element 
analysis for the evaluation of the transmission error within 
the optimization algorithm. BONORI, et al[5], presented a 
method for analyzing nonlinear vibration of gear system in 
presence of manufacturing errors, which used a SDOF 
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dynamic model to check the efficiency in terms of vibration 
reduction of the optimized profile reliefs. 

However, the observed phenomena indicate that support 
bearing, gear eccentricity and backlash make the system 
have strong nonlinearity, the SDOF model will fail to 
reflect the nonlinear dynamic behaviors of the SGRBS 
when the perturbed motion of bearing and the vibration of 
housing are no longer small. Based on both SDOF and 
MDOF models, CHEN, et al[6], established a MDOF gear 
system with the effect of the friction and dynamic backlash, 
and the impact motion was predicted. ZHOU, et al[7], 
studied the nonlinear characteristics of gear transmission 
system under the action of external and internal excitations 
by the IHBM, and the vibration response obtained by 
IHBM compared very well with the results obtained by 
Newmark method. WEI, et al[8] investigated the dynamic 
responses of a torsional vibration geared system with 
uncertain parameters by using the Chebyshev interval 
method. ZHU, et al[9], used the HBM to investigate the 
nonlinear dynamics of a compound planetary gear sets, and 
the effects of nonlinearities on the frequency response 
characteristics were investigated by changing parameters. 
WAN, et al[10] presented a series of investigations to the 
dynamic behaviors of gear-bearing system with nonlinear 
suspension, nonlinear oil-film force and nonlinear gear 
mesh force, and the results provided an understanding of 
the operating conditions under which undesirable dynamic 
motion took place in a gear bearing system. MA, et al[11–12] 

established a finite element model of a cracked gear 
coupled rotor system in a one-stage reduction gearbox and 
the effects of crack depth, width, initial position and crack 
propagation direction on gear mesh stiffness, fault features 
in time domain, frequency domain and statistical indicators 
were investigated. FAGGIONI, et al[13], presented a global 
optimization method focused on gear vibration reduction 
by means of profile modification, which reduced the 
vibration over a wide range of operating conditions and the 
optimum reliability was estimated using a Monte Carlo 
simulation. LEE, et al[14], studied the coupled vibration 
characteristics of a turbo-chiller rotor-bearing system 
having a bull-pinion speed increasing gear, and provided 
the mechanism of the characteristic changes. YASSINE, et 
al[15], analyzed a three-dimensional model of two-stage 
straight bevel gear system, and some defects in the 
developed model such us the eccentricity defect, profile 
error and cracked tooth were introduced. HUANG, et al[16], 
developed a time-varying model considering the mesh 
stiffness, damping factor, mesh force and frictional force 
between the tooth pairs at each calculation step, and the 
effects of the lubricant viscosity and applied torque on the 
gear dynamics were thoroughly studied. STRINGER, et 
al[17], studied a methodology for conducting modal 
reduction on a gear rotor dynamic system under the 
influences of general damping and gyroscopic effects, and 
widely discussed eigen-solution analysis. HE, et al[18], 
developed spur gear rotor model with sliding friction and 

rectangular mesh stiffness by assuming that load was 
equally shared among all the teeth in contact, and solved 
the gear system equations by using the Floquet theory and 
the HBM. PAREY, et al[19], established a dynamic model 
including localized tooth defect, and the processing of 
simulated and experimental signals were proposed in order 
to analyze nonstationary and nonlinear characteristics. 
OMAR, et al[20], presented a dynamic model taking into 
account gear size, errors and faults, and used parameters 
representing a real experimental gearbox rig. In addition, 
experimental and simulated data were compared for 
different operating speeds, torque loads and gear cracks. 
HOTAIT, et al[21], described a gear dynamics test set-up 
with integrated root strain and dynamic transmission error 
measurement systems, and dynamic factor and dynamic 
transmission error measurements from unmodified and 
modified spur gears were presented. TAMMINANA, et 
al[22], developed two different dynamic models, a 
finite-element-based deformable-body model and a 
simplified discrete model, to predict dynamic behavior of 
spur gear pairs, and the impact of nonlinear behaviors, such 
as tooth separations and jump discontinuities were 
quantified. AMARNATH, et al[23], conducted experimental 
investigations on the measurement of reduction in the gear 
teeth stiffness along with vibration parameters, and 
experimental measurement of stiffness was carried out 
using modal analysis in conjunction with a theoretical 
model. LEE, et al[24], presented an experimental 
investigations carried out to assess the surface fatigue wear 
in a spur gear system. The estimation of specific film 
thickness, measurement of reduction in tooth thickness, 
visual examination of wear mechanisms on the gear teeth 
and their effects on the statistical parameters of vibration 
and sound signals were considered. WANG, et al[25], 
proposed a new method of modified optimization of double 
helical gears based on reducing vibration and noise and 
raising machining efficiency, and the test-bed of vibration 
and noise were designed. RAFIQ, et al[26], analyzed a new 
nonlinear dynamic model, which was coupled with linear 
finite element models of shafts carrying them, and with 
discrete models of bearings and disks. The results were 
compared with the experimental data available. MA[27–28] 
investigated the dynamic behaviors of a perforated gear 
system considering effects of the gear crack propagation 
paths and focused on the effects of a crack propagating 
through the rim on the time-varying mesh stiffness and 
vibration responses. MOHMMED, et al[29], modelled a 
one-stage reduction gear using three different dynamic 
models (with 6, 8 and 8 reduced to 6 DOF), as well as the 
developed model (with 12 DOF). The dynamic simulation 
was performed for different crack sizes, and time domain 
scalar indicators were applied for fault detection analysis. 
HU, et al[30], proposed a 14-DOF lumped parameter 
dynamic model considering coupled multi-body dynamics 
of the face geared rotor system with coupled 
translation-rotation vibration. And the jump phenomenon, 
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periodic window, doubling-periodic bifurcation and chaotic 
behavior of the system were observed. ZHOU, et al[31], 
developed calculation of the contact position, impact 
velocity, impact force and impact friction coefficient. The 
“gear equivalent error-combined deformation” model was 
constructed by combining with gear error, deformation and 
load effect. 

Dynamic models of gear systems with flexible shafts and 
bearings have been investigated by many researchers. The 
models in the literature are complexity but most of them do 
not consider the gravity and impact motion in the 
simulations. In order to clearly understand the dynamic 
behaviors, a detailed analysis of vibration characteristics 
with complex model and analysis considering gravity, 
backlash, especially the fluctuation of drive load, and 
eccentricity should be given a deeper insight into gear 
dynamic characteristics. The proposed 8-DOF lateral and 
torsional generalized lumped parameter model of spur gear 
system is used to more precisely examine the coupled 
vibration characteristics of the SGRBS, which is the partial 
of wind turbine gearbox. Moreover, a comprehensive 
physical parametric study is accomplished to evaluate the 
effects of various dynamic parameters such as rotational 
speed, error fluctuation and load fluctuation. 

The rest of this paper organized as follows: In section 2, 
the mathematical model of a SGRBS combing with 8-DOF 
is proposed. In section 3, parametric studies are performed 
for several designing and working parameters in order to 
quantify their influence on the overall behaviors of the 
SGRBS. In the last section, some conclusions are 
presented. 

 
 

2  Dynamic Model and Equations of Motion 
 

 

2.1  Model of the SGRBS 
In order to efficiently study the dynamic behaviors of the 

SGRBS, a simplified 8-DOF coupled lateral-torsional 
generalized lumped parameter model consists of driving 
and driven gears, drive and load in Fig. 1. 

In Fig. 1(b), the mesh relationship between driving gear 
and driven gear is represented using mesh stiffness km and 
damping cm elements acting along the line of action. This 
line of action is defined as the common tangent line of the 
base circles in the gears having involute tooth form. All 
supports/bearings are modeled as springs and dampings. In 
addition, friction forces due to gear teeth contact and other 
dissipative effects are captured using damping. The gears 
are represented by base circles with radius rb1 and rb2, 
respectively. m1 and m2 indicate the masses of the gears. J1 
and J2 represent the moment of inertia of gears. The 
eccentricities for the gears are denoted by ρ1 and ρ2, 
respectively. The gear mesh has a constant backlash 2b 
along the line of action. O1 and O2 are the centers of driving 
and driven gears when they are rotating. G1 and G2 

represent the centers of mass. The coupled connections 
between shafts, and the drive/load are modeled as torsional 
stiffnesses and dampings. kxi, kyi and kti (i=1, 2) are the 
equivalent lateral and torsional stiffnesses of shafts and 
bearings, respectively. cxi, cyi and cti (i=1, 2) are the 
equivalent lateral and torsional dampings of shafts and 
bearings. 

 

 
Fig. 1.  Dynamic model of coupled lateral-torsional of SGRBS 

 
The torsional angular displacement of gears, drive and 
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load are assumed to result from a constant angular velocity 
term ωit (i=1, 2) plus a small variation displacement θi(t) 
(i=d, 1, 2, g) due to vibration originating from the 
flexibility of shafts, backlash and drive/load fluctuation. 
Therefore, the angle displacements φi(t) (i=d, 1, 2, g) of the 
gears and input/output can be expressed as follows: 
 

 
d 1 d 1 1 1

2 2 2 g 2 g

, ,

, .

t t

t t

     

     

= + = +

= + = +
 (1) 

 
Due to the existence of eccentricity, the centers of 

rotational O1(x1, y1), O2(x2, y2) and the centers of mass 
G1(xg1, yg1), G2(xg2, yg2) are misalignment. Therefore, the 
relationship between them can be expressed as follows: 
 

 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

cos( ), sin( ),

cos , sin .

g g

g g

x x y y

x x y y
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= + - = + -

= + = +
 (2) 

 
According to the mesh relationship, displacement δ(t) 

along the line of action can be written: 
 

 
b1 1 b2 2 g1 g 2

g1 g 2

( ) ( ) ( )sin

( )cos ( ).

t r r x x

y y e t
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

= - + - +
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(3)
 

 
Substituting Eq. (2) into Eq. (3), the displacement δ(t) 

can be represented as follows: 
 

 

b1 1 b 2 2

1 2 1 1 2 2

1 2 1 1 2 2

( ) ( )

( cos( ) cos )sin

( sin( ) sin ) cos ( ),
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= - +
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- + - - -

 

(4)

 

 
where  is the pressure angle of the gears; e(t) represents 
the static transmission error, which is the high-frequency 
caused by manufacturing and installation errors. 
e(t)=em+ersin(ωm+φm), em represents the mean and er 

indicates the fluctuation, respectively. φm represents the 
initial phase angle, then ωm=2πn1z1/60 =2πn2z2/60 is the 
mesh angular frequency, z1 and z2 are the number of teeth 
of driving and driven gears. n1 and n2 indicate the rotational 
speed of the driving and driven gears. 

The dynamic mesh force acting on the mesh point is 
 

 m m m ( ),F c k f = +  (5) 

 
where [ ]m m m 1 22 (1 ) (1 )c k m m= + , ξm is the damping 
ratio. f(δ) is the backlash function in the nonlinear gear 
system can be represented as follows: 
 

 

, ,

( ) 0, ,

, .

b b

f b b

b b

 

 

 

ì - >ïïïï= - < <íïïï + <-ïî

 (6) 

 
The backlash function f(δ) is shown in Fig. 2. According 

to the backlash function f(δ)[32], the impact is not observed 
in a gear system when the displacement δ lies in the region 
δmax<b and δmin>–b, which is shown in Fig. 2 as case I. 
Double-sided impact case exists when the displacement δ 
lies in the region δmax>b and δmin<–b and illustration of 
double-sided impact case III is shown in Fig. 2. When the 
displacement δ lies in the region δmax>b and δmin>–b or 
δmax<b and δmin<–b, the system presents single-sided 
impact case II. When the system exists the impacts, which 
include the double-sided impact and single-side impact, the 
gear system presents an unstable motion state. 

In order to simplify the nonlinear problem, the output 
torque is usually assumed to be constant and neglect the 
fluctuation in the previous literature. Actually, the output 
torque also exists fluctuation. Therefore, the input/output 
torque Ti (t) (i=d, g) can be decomposed into mean Tim and 
perturbation Tir (t) parts. This is due to the SGRBS is a part 
of wind turbine gearbox, it essentially fluctuates between 
low and high values around the stochastic nature of wind 
speed. Td and Tg are input and output torques acting on the 
driving and driven gears, respectively. Therefore, the 
input/output torque can be written: 
 

 
d dm dr 1 d

g gm gr 2 g

sin( ),

sin( ),

T T T t

T T T t

 

 

= + +

= + +
 (7) 

 
where Tdm and Tgm are the means, Tdr and Tgr represent the 
fluctuations, ωi=2πni/60 is the rotational frequency, φd and 
φg represent the initial phase angles. 
 

 
Fig. 2.  Backlash function 

 
 
2.2  Equations of motion 

In this section, the motion differential equations of the 
SGRBS are derived. The nonlinear system has eight 
degrees of freedom about frame X-Y-Θ, including four 
laterals of mass center (x1, y1, x2 and y2,) and four rotations 
of the plane of the gears and drive/load (θd, θ1, θ2 and θg). 
Therefore, the generalized coordinate vector of the 
nonlinear dynamic model can be expressed as follows: 

 

 T
d 1 1 1 2 2 2 g[ ] .x y x y   =X  (8) 

 
The kinetic energy T, potential energy U and dissipation 
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function R of the SGRBS can be expressed as follows: 
 

(
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(9) 
 
The force vector F of the SGRBS can be represented by 

 
T

d 1 2 g[ 0 0 0 0 ] .T m g m g T= - - -F  

(10) 

 

The vibration differential equations are derived using 
Lagrange’s equation, which is given by 
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Substitution Eqs. (8)(10) into Eq. (11), the 

mathematical model of SGRBS can be written in matrix 
form as 
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where M, C and K are the mass matrix, damping matrix and 
stiffness matrix, respectively. FL is the linear factor vector, 
and FN is the nonlinear factor vector. It should be noted that 
the linear factor vector FL includes the input torque, output 
torque and gravity. The nonlinear force vector FN is a 
function of the displacement vector X, the velocity vector
X  and eccentricity ρ. 
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3  Dynamic Response of Gear System 
 

From the previous calculation and analysis, it can be 
seen that the SGRBS is a complicated system with strong 
nonlinearity and time variance. Therefore, it is necessary to 
give a detailed analysis of the gear system. The dynamic 
characteristics of system are investigated by Runge-Kutta. 
The key parameters are analyzed to obtain a basic 
understanding the dynamic behaviors of the SGRBS. Table 
1 summarizes the geometrical and physical parameters of 
spur gear. Let rotational speed ω, error fluctuation er and 
load fluctuation Tdr be control parameters in the following 
analysis. 

 
Table 1.  Parameters of the SGRBS 

Parameter Value 

Number of teeth z1, z2 20 
Radius rb1, rb2/m 0.1 
Mass m1, m2/kg 100.0 
Moment of inertia J1, J2/(kg·m2) 1.0 
Moment of inertia Jd, Jg/(kg·m2) 0.3 
Pressure angle /(°) 20 
Mesh stiffness km/( MN·m–1) 500 
Mesh damping cm/( kN·m–1·s–1) 1.2 
Eccentricity ρ1, ρ2/μm 15 
Torsional stiffness kt1, kt2/( MN·m–1·rad–1) 9.0 
Torsional damping ct1, ct2/( N·rad–1·s–1) 400 
Lateral stiffness kx1, y1, kx2, y2/( MN·m–1) 100 
Lateral damping c x1, y1, c x2, y2/( N·m–1·s–1) 500 
Error mean em/μm 20 
Error fluctuation er/μm 30 
Torque mean Tdm, Tgm/( N·m–1) 400 
Torque fluctuation Tdr, Tgr/( N·m–1) 300 
Backlash b/μm 40 
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3.1  Model validation 

Although many models have been developed in the 
previous literature, very few considers input/output torque, 
gravity and eccentricity of the model, which lead to 
obviously different dynamic characteristics. In order to 
illustrate the accuracy of the SGRBS, the gear system is 
simulated by four lumped mass points, Fig. 3 shows the 
time-domain waveforms in torsional and lateral directions. 
The results show that there are obvious difference between 
the vibration response obtained at output terminal and gear. 
It is clearly that the θd is obviously larger than that of θ1 by 
comparing the time-domain waveforms of the Fig. 3(a). 
The phenomenon is caused by the fluctuation of input 
torque of the system and the vibration transfer gradually 
reduced. Fig. 3(b) shows the waveforms in x direction and 
y-direction. Due to the effects of gravity and mounting 
position, the vibration amplitude in y direction is far greater 
than one in x-direction. Therefore, the dynamic model of 
SGRBS considering the input/output, gravity and mounting 
position is necessary. 

 

 
Fig. 3.  Time-domain waveform of the SGRBS at ω=500 r/min 

 

3.2  Analysis of the effect of the rotational speed 
The piecewise nonlinear system with periodical 

parameters have attracted significant attention. In practical 
SGRBS, the rotational speed ω is commonly used as a 
control parameter. Accordingly, this section devotes itself 
to studying the effect on the rotational speed of the 
dynamic responses with the 8-DOF SGRBS, and only the 
stable solutions are shown here. Because the vibration 
response of the driving/driven gear exhibits the similar 
form of motion, the driving gear vibration responses are 
taken for example. 

Keeping all other parameters unchanged, taking the 
rotational speed ω as the control parameters, the vibration 
waveform, the frequency spectrum, the phase diagram and 
the deformation, under two different rotational speed 
conditions, low speed 500 r/min and high speed 5000 
r/min, are adopted to indicate the dynamic features in Fig. 
4 and Fig. 5, respectively. The vibration responses of the 
SGRBS at low speed 500 r/min are given in Figs. 4(a)(d). 
From the figures, it indicates that the two types of harmonic 
components appear in Fig. 4(a), which possesses two 
periods Tr (Tr=2π/ω1=0.12 s) and Tm (Tm=2π/ωm= 
6.0×10–3 s), respectively. In addition, the vibration 
amplitude in x direction of mesh frequency fm 

(fm=z1fr=166.67 Hz) is the second largest after that of the 
rotational frequency fr (fr=n/60=8.33 Hz), and the 
combination frequency and multiplication frequency 
components can’t be observed, as is shown in Fig. 4(b). At 
this speed, the phase diagram of the driving gear shows 
regular motion in Fig. 4(c). The single-sided impact of the 
system can also be verified by the deformation due to 
δmax>b and δmin>–b, as shown in Fig. 4(d). Figs. 5(a)(d) 
displays the vibration responses of the SGRBS at high 
speed 5000 r/min. Here, it can be found from Fig. 5(a) that 
the vibration amplitude obviously higher with increasing 
speed. However, the frequency components are significant 
differences at high speed and the frequency components 
become more complicated, which contains a response peak 
at frequency 83.33 Hz in addition to response peak at 
1666.67 Hz. The multiplication frequency(2fm, 3fm), the 
combination frequency(1.5fm±fr, 2fm±fr) and fractional 
frequency(0.5fm, 1.5fm) components can be observed in Fig. 
5(b). The phase diagram shows slight irregular motion in 
Fig. 5(c). Due to δmax>b and δmin<–b, the SGRBS lies in 
double-sided impact. 

 

 
Fig. 4.  Vibration responses of the SGRBS at ω=500 r/min 

 

 
Fig. 5.  Vibration responses of the SGRBS at ω=5000 r/min 
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Based on the above analysis, it is clear that the rotational 
speed ω is an important parameter and affects the dynamic 
behaviors of the SGRBS. Fig. 6 presents the mesh force of 
the system at 500 r/min and 5000 r/min. It can be seen that 
the fluctuation of the dynamic mesh force becomes more 
apparent and exists significant negative value at high 
rotational speed. Because the bending deformations 
increase of the driving and driven gears with the increasing 
rotational speed, which leads to the mesh impact activation 
and take off a tooth phenomenon become more apparent. 
The vibration amplitude significantly larger and vibration 
intensified. 

 

 

Fig. 6.  Mesh force at ω=500 r/min and ω=5000 r/min 

 
For a better understanding the dynamic characteristics of 

the SGRBS and the influence on the rotational speed, Fig. 7 
presents the 3-D(3-dimensional) frequency spectrum (Fig. 
7(a)) and the bifurcation diagram (Fig. 7(b)) with ω as 
control parameter in the range of ω∈[50, 900] rad/s. It can 
be seen that the mesh frequency(fm) and rotational 
frequency(fr) are the main frequency components and other 
frequency components don’t appear. The mesh frequency’s 
amplitude decreases gradually and the amplitude of fr 
increases firstly and then decreases at low values of the 
rotational speed ω, i.e., ω≤100 rad/s in Fig. 7(a). The 
nT-periodic motion can be seen as shown in Fig.7(b). 
However, as ω is increased from 100 rad/s to 165 rad/s, 
the 3-D frequency spectrum becomes more complex, which 
exhibits continuous frequency components. The rotational 
frequency(fr) is dominated response. The amplitude of fm 
steadily increases and the rotational frequency’s amplitude 
keeps the same. The corresponding bifurcation diagram 
transits to chaotic behaviors. As the rotational speed is 
further increased from ω=165 rad/s to ω=330 rad/s, the fr, 
fm and multiplication frequency(2fm, 3fm) appear in 3-D 
frequency spectrum and combination frequency 
components are not obvious. Nevertheless, the mesh 
frequency component reaches to a response peak at ω=330 
rad/s, and the amplitude of fm is considerably larger than 
other frequency components. In addition, the mesh 
frequency appears strongly jump discontinuous phenomena. 
The fr is not a significant change in amplitude. The 
bifurcation diagram presents different periodic motions. 
With the increase of the rotational speed from 330 rad/s to 
535 rad/s, the amplitude of fr increases gradually, but the 
amplitude of fm decreases. The 3-D frequency spectrum is 
from continuous excitation frequency components in the 
range of ω∈ [330, 450] rad/s to discrete frequency 

components in the range of ω∈[450, 535] rad/s, and the 
system exhibits nT-periodic through chaotic motion 
bifurcation. The multiplication frequency(0.5fm=10fr) 
appears obviously, and the amplitude is the second largest 
after that of the rotational frequency fr at ω∈[450, 535] 
rad/s. As the control parameter ω is further increased, the 
rotational frequency fr is the main response and a 
continuous frequency components exhibit at ω∈[535, 580] 
rad/s, discrete frequency components, such as rotational 
frequency fr and multiplication frequency(7fr) at ω∈[580, 
735] rad/s. In addition, the amplitude of fr increases 
gradually and the mesh frequency’s amplitude is not 
obvious. In the bifurcation diagram, the behavior of system 
reverts from chaotic motion to quasi-periodic bifurcation. 
Finally, for all ω≥735 rad/s, the amplitude of fr reaches 
the peak at ω≥775 rad/s. After that point, the amplitude 
decreases gradually. The chaotic motion is replaced by 
quasi-periodic motion. Therefore, it can be concluded that 
the rotational speed has an influence on the nonlinear 
dynamic characteristics and the increasing speed can lead 
to the SGRBS exhibits chaotic behavior, accompanying 
separation phenomenon and single-sided/doubled-sided 
impact. 

 

 
Fig. 7.  3-D frequency spectrum and bifurcation diagram  

 
3.3  Analysis of the effect of the error fluctuation 

In this section, the main purpose is to analyze the effect 
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on the error fluctuation in the nonlinear dynamic model of 
the coupled SGRBS. The transmission error caused by 
manufacturing error and installation error is a displacement 
excitation at the mesh point due to the geometrical error of 
the teeth profile and spacing, which not only affects the 
vibration amplitude of the system, but also directly affects 
the degree of nonlinearity. To illustrate the influence on the 
SGRBS with the error fluctuant amplitude er, a further 
analysis has been carried out considering several set of 
simulated of the error fluctuant amplitude in Fig. 8(er=20 

μm) and Fig. 9(er=80 μm). It can be seen from Fig. 8(b) 
that the rotational frequency(fr) dominated in frequency 
spectrum, and the phase diagram in Fig. 8(c) exhibits 20 
oscillations associated with the tooth number of the gear. 
The deformation presented in Fig. 8(d) shows that the 
single-sided impact exists only due to δmax>b and δmin>–b. 
When er is equal to 80 μm, comparing Fig. 8 with Fig. 9, it 
can be seen from Fig. 9(a) that the vibration displacement 
in torsional direction significantly larger. In Fig. 9(b), the 
rotational frequency(fr) is also the dominated response in 
frequency spectrum, and the amplitude has an increase. In 
addition, the multiplication frequency(2fr, 3fr, 4fr, 2fm), the 
combination frequency(fm±fr, 2fm±fr) and continuous 
frequency components appear. In Fig. 9(c), the phase 
diagram shows irregular motion, and the SGRBS undergoes 
the double-sided impact, as shown in Fig. 9(d). 

 

 
Fig. 8  Vibration responses of SGRBS at er=2.0×10–5 m 

 
The dynamic mesh force is also an important evaluation 

factor of the SGRBS. Fig. 10 presents the mesh force at 
er=20 μm and er=80 μm m. Note that the mesh force is 
almost positive at low values of the error fluctuation and 
the positive and negative values alternate at high 
fluctuation. The main reason for this phenomenon is due to 
the larger fluctuation of the transmission error, which leads 
to transform of the gear mesh state and separation 
phenomenon. The driving gear is impacted repeatedly with 
higher dynamic load by the driven gear due to the 
separation phenomenon. Therefore, the nonlinear degree of 
the dynamic mesh force is significantly higher with 
increasing error fluctuation. 

 

 
Fig. 9.  Vibration responses of SGRBS at er=80 μm 

 

 
Fig. 10.  Mesh force at er=20 μm and er=80 μm 

 
The vibration responses of the SGRBS in the range of er

∈ [10, 500] μm are studied and the 3-D frequency 
spectrum(Fig. 11(a)) and the bifurcation diagram(Fig. 11(b)) 
of the rotational direction(θ1) using er as control parameter 
are given in Fig. 11. The dynamic responses of the system 
exhibit different nonlinear phenomena with changing er. It 
can be observed that the SGRBS exhibits two types of 
frequency components(fr, fm) at low values of the error 
fluctuation, i.e., er≤30 μm. In addition, the rotational 
frequency is the dominated response and the amplitude of fr 
remains about the same, the mesh frequency’s amplitude 
increases gradually. Other frequency components don’t 
appear in the 3-D frequency spectrum. It can be found from 
Fig. 11(b) that there is only quasi-periodic motion. 
However, with the increase of the control parameter er, the 
fr and fm are the dominated responses. The multiplication 
frequency(2fr, 3fr, 2fm) and the combination frequency 
(fm±fr) components can be observed. The continuous 
frequency components are becoming more apparent, which 
are mainly concentrated on the 15fr. The amplitude of fr 
increases first and then remains at a certain level with the 
increasing error fluctuation and the mesh frequency’s 
amplitude gradually increases, which is caused by the 
increasing error fluctuation. In addition, the region of 
continuous frequency becomes wider and the amplitude 
significantly increases. The chaotic behavior is clearly 
visible of the system. The numerical computations confirm 
the prediction of analytical chaos for applied value of er. 
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Fig. 11.  3-D frequency spectrum and bifurcation diagram  

 
3.4  Analysis of the effect of the load fluctuation 

In this section, a case study is analysed in order to 
understand the influences of load fluctuation on the 
dynamic behaviors. The effects of load fluctuation on 
dynamic responses are shown in Fig. 12(lightly fluctuation) 
and Fig. 13(heavily fluctuation) to highlight its influence 
on steady state response. As observed in Fig.12 for Tdr=100 
N/m, the vibration displacement is periodic motion. In Fig. 
12(b), the mesh frequency(fm) component dominated 
frequency spectrum, and the amplitude of rotational 
frequency(fr) is less than the mesh frequency’s amplitude. 
The phase diagram exihibts regular motion in Fig. 12(c). 
The single-sided impact can be verified by Fig. 12(d). For 
heavy fluctuation case at Tdr=500 N/m, it can observe the 
rich nonlinear behaviors including coupled frequency and 
doubled-sided impact. In Fig. 13(a), the vibration 
displacement in y directon exhibits complicated harmonic 
components and seems as nonperiodic motion. The 
vibration amplitude increases with greater load fluctuation. 
The rotational frequency fr dominated in spectrum and the 
amplitude of mesh frequency(fm) is less than the rotational 
frequency’s amplitude. In addition, the multiplication 
frequency(nfr), the combination frequency(fm±fr, 2fm±fr) 
and continuous excitation frequency components can be 
observed obviously. The phase diagram is highly 
disordered in Fig. 13(c). Because of δmax>b and δmin<–b, 
double-sided impact exists in the system. The results 
presented in Fig.13 indicate that the SGRBS undergoes 
different motions with changing load fluctuation condition. 

 
Fig. 12.  Vibration responses of SGRBS at Tdr=100 N/m 

 

 
Fig. 13.  Vibration responses of SGRBS at Tdr=500 N/m 

 
Fig. 14 presents the dynamic mesh force at Tdr=100 

N/m and Tdr=500 N/m. According to the simulation 
results, the load fluctuation can cause the stronger vibration 
of the mesh force. The SGRBS has a large deformation and 
crowded teeth phenomenon occur, which may cause the 
higher dynamic loads. The single-sided impact transits to 
doubled-sided impact. 
 

 
Fig. 14.  Mesh force at Tdr=100 N/m and Tdr=500 N/m 

 

For a better clarity, Fig. 15 displays the 3-D frequency 
spectrum(Fig. 15(a)) and the bifurcation diagram(Fig. 15(b)) 
of the SGRBS using the load fluctuation Tdr as a control 
parameter at ω=500 r/min. For light load fluctuation, i.e., 
Tdr≤105N/m, the SGRBS only exhibits two types of 
frequency components, namely, rotational frequency(fr) and 
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mesh frequency(fm). The mesh frequency dominated in 3-D 
frequency spectrum and the amplitude is considerably large 
than the amplitude of fr. In addition, the amplitude of the fm 
has an approximate constant and the amplitudes are 
approximately the same magnitude.  

 

 
Fig. 15.  3-D frequency spectrum and bifurcation diagram 

 
As observed from Fig. 15(b), as Tdr increases, the 

nT-periodic motion transits to quasi-periodic motion. With 
the increase of the excitation force amplitude from 105 
N/m to 395N/m, the 3-D frequency spectrum performs 
complicated frequency components, and the fr and fm are 
the dominated responses. Besides, the continuous 
frequency components mainly concentrated on the 
frequencies between 14fr and 17fr. The amplitudes exist 
obvious difference among various frequencies, where the 
amplitude of fr increases and the fm increases first and then 
decreases gradually. In the corresponding bifurcation 
diagram, the system begins to execute the chaotic behavior. 
When the Tdr∈[395, 405] N/m, the continuous frequency 
components gradually vanish and the nfr is evident. The 
amplitude of fr is also the dominated component and the fm 
is the second largest after that of the rotational frequency fr. 
In Fig. 15(b), the chaotic motion is replaced by 
quasi-periodic motion. As Tdr increases from 405N/m to 
630N/m, the fr, 14fr, 15fr, fm(20fr) is the dominated 
vibration resopnses and the amplitudes of fr and fm increase 

obviously, the amplitude of 14fr increases with fluctuation. 
In addition, the region of continuous frequency becomes 
narrow and the multiplication frequency components (nfr) 
appear clearly in 3-D frequency spectrum. The chaotic 
behavior can be seen as show in Fig. 15(b). For values of 
the load fluctuation in the range Tdr∈[630, 805] N/m, the fr, 
fm and the multiplication frequency components(nfr) can be 
observed significantly, especially the fr, 14fr, 15fr, 16fr, fm 
components. The amplitude of fr is larger than the mesh 
frequency’s amplitude and other frequency’s amplitudes are 
relatively lesser, and thus it can be inferred that the 
system’s behavior transits from chaotic to periodic motion 
with the changing Tdr. Finally, for all from Tdr≥805 N/m, 
the SGRBS performs rich frequency components, which 
contain the multiplication frequency and multiplication 
frequency components. The amplitude of fr is obvious 
larger than other components, which illustrates the external 
excitation is the main influence than internal excitation. 
The dynamic behaviors of the gear system are found to be 
quasi-periodic motion at Tdr∈ [805, 835] and periodic 
motion at Tdr∈[835, 900]. The results indicate that the 
excitation force amplitude has an influence on the nonlinear 
dynamic characteristics and the increase of the excitation 
force amplitude makes the vibration amplitude increase but 
it may restrict the chaotic motion at some extent. 

 
4  Conclusions 

 

(1) An 8-DOF model of the SGRBS is presented in 
which the effects of the different parameters are studied and 
calculated. The results provide a detailed understanding of 
nonlinear dynamic behaviors under rotational speed, error 
fluctuation(internal excitation) and load fluctuation 
(external excitation) conditions, which enable suitable 
values of the key parameters to be specified such that 
chaotic behavior can be avoided and reducing the vibration 
and impact of the gear system. 

(2) The rotational speed has significant influence on the 
nonlinear dynamic behaviors of the SGRBS. The system 
exhibits different motions such as periodic motion, 
quasi-periodic motion and chaotic motion under different 
rotational speed conditions. In addition, the no tooth impact, 
single-sided tooth impact, double-sided tooth impact and 
coupled lateral-torsional vibration of gear system can be 
clearly observed in 3-D frequency spectrum and bifurcation 
diagram. 

(3) At relatively low error fluctuation, the rotational 
frequency amplitude is dominated response, which 
indicates that the external excitation is main excitation in 
the system. With the increase of the error fluctuation, the 
mesh frequency’s amplitude is larger than others and the 
error fluctuation obviously has effect on the system’s 
vibration and the internal excitation plays the leading role, 
which makes the system undergo chaotic behavior. 

(4) The load fluctuation has a significant influence on the 
vibration response. It can be seen that, with the increase of 
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load fluctuation, the amplitude of fr increases obviously and 
the nonlinear dynamic behaviors are corresponding with no 
tooth impact, single-sided tooth impact and double-sided 
tooth impact. The results indicate that the excitation force 
amplitude has an influence on the nonlinear dynamic 
characteristics and the increase of the excitation force 
amplitude makes the vibration amplitude increase but it 
may restrict the chaotic motion at some extent. 
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