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Abstract: The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of 

the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional 

classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. 

Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has 

three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment 

respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce 

the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the 

similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency 

on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency 

components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration 

frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to 

isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal 

decomposition is improved. 
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1  Introduction 
 

Mechanical systems are developing towards large-scale, 
high speed and good precision，so the composition of 
equipment is becoming more and more complex. The 
connections among mechanical parts are increasingly close. 
The failure of any mechanical part will cause the disruption 
of production and even cause a greater loss. How to find 
the fault information that contains the equipment running 
status timely and effectively is one of the key steps to the 
right decisions. Because the fault signal usually has the 
characteristics of nonlinear, non-Gaussian and non- 
stationary, traditional signal analysis methods, for example, 
short-time Fourier transform and wavelet transform based 
on basis function similarity matching principle, are hard to 
describe the real world signal through limited basis 
function. Empirical mode decomposition(EMD) is a data 
driven adaptive signal decomposition method that 
decomposes the signal according to its own characteristics. 
EMD decomposes complex non-stationary signal into a 
series of approximately single component signal by which 
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the useful sensitive information can be isolated. 
EMD method has been proposed by HUANG, et al[1] 

since 1998. Then it has been widely used in signal 
de-noising[2–3], fault diagnosis[4–7], biomedical analysis[8–10] 
etc. and has achieved great success. However, further 
applications are limited owing to the drawbacks of end 
effect, mode mixing and other disadvantages. Many experts 
and scholars were dedicated to the research on EMD 
method. A series of improvement methods have been put 
forward. For example, based on the statistical properties of 
white noise, WU and HUANG[11] proposed a new EEMD 
method to overcome the mode mixing problem; and then 
aiming at multidimensional data(such as images or solid 
with variable density) analysis, WU and HUANG[12] 
proposed a multi-dimensional ensemble empirical mode 
decomposition(MEEMD) method which can be extended to 
any higher dimensional temporal-spatial data. 
BAGHERZADEH, et al[13], introduced the variable-span 
smoothing sifting for EMD and extracted the local mean of 
the signal at each point by applying some smoothing filters 
to its adjacent data points with the advantages of direct, 
local, and online. Based on EMD, LI, et al[14], proposed an 
optimized rational Hermite interpolation method and then 
applied the method to automatically select the suitable 
shape controlling parameter in each sifting process, which 
can improve the reliability and accuracy significantly.  



 
 

SHI Kunju, et al: Rolling Bearing Feature Frequency Extraction using Extreme Average 
Envelope Decomposition 

 

·1030· 

In the area of mechanical fault diagnosis, EMD has been 
used in predicting residual fatigue life of materials and 
detecting the faults of machinery components, such as 
rolling element bearings, gears and rotors. Some scholars 
combined EMD directly with other methods to form a new 
machinery fault diagnosis method. For example, ALI, et 
al[15], combined EMD energy entropy and artificial neural 
network for rolling element bearing fault diagnosis, and 
then presented a mathematical analysis method to select the 
most significant intrinsic mode functions(IMFs). 
GEORGOULAS, et al[16], proposed a novel approach based 
on the complex empirical mode decomposition combined 
EMD and Markov models, which applied to the diagnosis 
of rotor asymmetries in asynchronous machines. EMD-ICA 
method was proposed by ZHANG, et al[17]. Rolling bearing 
vibration signals were decomposed using EMD method and 
then based on mutual correlation criterion and FastICA 
method, source signals and noise signals were separated 
successfully. LIU, et al[18], integrated EMD and the 
LS-SVM to develop a novel fault diagnosis method of 
rotary machines.  

Several researchers improved EMD and make EMD 
more suitable for machinery diagnosis. For example, using 
EMD, UX, et al[19], decomposed ball bearings vibration 
signals and root mean square of intrinsic mode function 
involving fault characteristic frequency has a consistent 
trend with the diameter of flaws, then proposed two 
improved Paris models to find out a characteristic value of 
vibration signals monitored in the process of machine 
operation to describe the severity of the flaw in time 
domain and predict fatigue life. In order to make sure 
rolling element bearings vibration signal properly de-noised, 
VAN, et al[20], hybrid technique of non-local means 
de-noising and EMD, which can successfully extract 
impulsive features from noise signals. SUI, et al[21], 
proposed an adaptive envelope spectrum technique based 
on EMD, and applied the method to different bearing 
conditions. LU, et al[22], employed EMD to decompose a 
vibration signal into intrinsic mode functions (IMFs) and 
then used modified genetic algorithm to select dominant 
features for SVM to classify different fault patterns. ZHAO, 
et al[23], proposed an IMF-based adaptive envelope order 
analysis for bearing fault detection under harsh 
condition(e.g., time-varying speed and load, large shocks).  

Scholars also use improved EMD version for machinery 
fault diagnosis, such as EEMD, CEEMD and LMD etc. to 
achieve machinery diagnosis. Based on EEMD and SVM 
ZHANG, et al[24], presented a novel procedure for 
multi-fault diagnosis of rolling elements. An adaptively fast 
EEMD method combined with complementary EEMD was 
proposed by XUE, et al[25], to solve the problems of high 
computational cost, critical parameters determination, and 
the contamination of the residue noise in the signal 
reconstruction. In order to detect partially broken of rotor 
bars, GARCIA-PEREZ, et al[26], studied and evaluated the 
condition monitoring method based on CEEMD, and 

finally found CEEMD had the advantage of being an online 
diagnosis method, which does not require knowing a priori 
motor current of the healthy condition. FENG, et al[27], 
diagnosed planetary gear box by joint application of the 
LMD and Fourier transform. 

The above studies show that EMD and its improved 
methods can solve practical problems. However, the 
essence of these methods separates components by double 
enveloping tactics, which increase the envelope error. 

In order to improve the accuracy of the decomposition, a 
method named EAED(extreme average envelope 
decomposition) is proposed in this paper. EAED method 
provides an effective way to adaptively decompose the raw 
vibration signal into a series of components with different 
frequency bands properly. 

The rest of this article is organized as follows. The 
proposed EAED technique is analysised and discussed in 
section 2. The effectiveness of the proposed technique is 
tested by simulation signals in section 3. Vibration signals 
of rolling bearing are analyzed by EAED and EMD method 
to verify the new method in section 4. Some concluding 
remarks are summarized in section 5. 

 
2  Analysis of Extreme Average Envelope 

Decomposition 
 

The essence of extreme average envelope decomposition 
scheme is to iteratively subtract midpoint envelope data 
from original signal. Section 2.1 analyses two envelops 
strategies and finds that the middle envelope method can 
reveal the frequency component more precisely. The 
middle envelope data have the same frequency with the low 
frequency components in a signal but the former has a 
smaller amplitude, which is discussed in section 2.2. For 
this reason, we took iterative strategy to remove the low 
frequency information and separate various frequency 
components. Section 2.3 gives a method to determine 
middle point location by using similar triangle principle. 
Section 2.4 states EAED algorithm steps. Section 2.5 
studies the anti-noise ability in EAED and EMD. 

 
2.1  Comparison of two envelop methods in EAED 

and EMD 
The key part of EMD is average upper and lower 

envelope. We obtained the envelope curve by calculating 
the mean value of both local maximum point and local 
minimum point. The EAED envelope curve is formed by 
three order spline interpolation based on the local mean 
value namely middle envelope method.  

We took two component signals(Fig. 1 thick curve) 
( ) sin(2 20 ) sin(2 80 )x t t t = ´ + ´ for example to analyze 

the characteristics of two envelope methods. The dashed 
curve in Fig. 1 is the result of middle envelope method used 
by EAED. The thin curve in Fig. 1 is the result of average 
upper and lower envelope method used by EMD. The 
envelope method used in EAED can show more detail 
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information. The middle envelope curve has the same 
frequency of the raw signal, which is not reflected in 
average upper and lower envelope method. 

 

 
Fig. 1.  Comparison of two envelope methods 

 

2.2  Relations between middle point and low frequency 
components 

The signal ( ) sin(2 100 ) sin(2 200 )x t t t = ´ + ´  was 
chosen for example. In Fig. 2, the thick curve represents the 
original vibration signal. The dashed curve is a lower 
frequency component of the original signal and the thin 
curve is the result of three order spline interpolation based 
on the original signal middle points. Fig. 2 illustrations that 
the low frequency components and cubic spline middle 
point fitting curve are intersected at a point，such as point a, 
b and c. As for the low frequency signal and cubic spline 
curve, a period can be achieved from point a to point c. 
They have the same frequency but different amplitude. The 
midpoint which implicated the low frequency information 
is a signal intrinsic characteristic. So in section 2.3, in order 
to obtain the low frequency component information of the 
original signal, the algorithm needs to get the mid-range of 
the signal every time. 

 

 
Fig. 2.  Relations among the original signal, low frequency 

signal and cubic spline curve 

 

 

2.3  Time determination of middle point 
It is one of the critical steps to determine the location of 

the middle point. Generally cubic spline middle points are 
not sampling points because of the limitation of the 
sampling frequency(Fig. 3). We used similar triangle 
principle to determine the time of the midpoint value. 

 

 
Fig. 3.  Location of middle point and cubic spline curve 

 
Suppose a and b are sampling points of the original 

signal, t1 and t2 are the times of a and b, respectively. t3 is 
the time of c as shown in Fig. 4. Using similar triangle 
principle, we have 

 

3 1 2 1

( ) ( ) ( ) ( )

t t t t

val c val a val b val a

- -
=

- -
,        (1) 

 
then t3 can be rewritten as 

 

3 2 1 1
( ) ( )

( )
( ) ( )

val c val a
t t t t

val b val a

-
= ´ - +

-
.        (2) 

 

 
Fig. 4.  Relations between sampling points and middle point 

 
The discrete form of Eq. (2) is 
 

( ( )) ( ( ))
( 1)

( ( 1)) ( ( ))

val mid i val x j
k j j

val x j val x j

-
= ´ + + =

+ -
 

( ( )) ( ( ))

( ( 1)) ( ( ))

val mid i val x j
j

val x j val x j

-
+

+ -
.           (3) 

 
val(*) represents the value of *th point. For a signal x, 

mid(i) represents the ith middle point, x(j+1)and x(j) are 
the nearest point of mid(i). k is the time of mid(i) in signal x.  

 
2.4  Algorithm steps of EAED method 

The main idea of EAED algorithm is to extract particular 
frequency information using midpoint, and then accumulate 
the particular frequency information until the particular 
frequency information in the original signal frequency 
component is smaller than a certain threshold. We choose 
the accumulation of signal components as a component 
signal. Repeat the above process for the signals that the 
particular frequencies have been removed and the iteration 
should be stopped until mid-range less than two. 
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In summary, we state EAED as the following algorithm 
(Fig. 5 is the flow chart of EAED algorithm). 

 

 
Fig. 5.  Flow chart of EAED algorithm 

 

(1) Initialize: h0=x(t), j=0, k=1. 
(2) Extract the kth monocomponent signal Sk(t) and set 

bj,0=0, v=0. 
(a) Suppose hj(t) has p local maximum points and q local 

minimal points. Find out all local maximum pmaxj,p and 
pminj,q points of hj(t). 

(b) Find out the corresponding time tmaxj,p and tminj,q of 
pmaxj,p and pminj,q. 

(c) tmaxj,p and tminj,q divide hj(t) into (p+q-1) intervals. 
Suppose the ith interval has n sample points and calculate 
the average of Sj(t) within every interval mj,i by Eq. (4): 

 

,
1

,

( )

.

n

j i
l

j i

h l

m
n

==
å

                (4) 

 
(d) The corresponding time ta,j of mj,i is calculated by 

using Eq. (3). 
(e) Interpolate and produce envelops of all adjacent 

average points using mj,i and ta,j, and then obtain a function 
bj,v(t). 

(f) Let hj(t)=hj(t) -bj,v(t), v=v+1. 

(g) R is calculated by using Eq. (5). If R>W, go to step 
(a). Else set Sk(t)=hj(t). 

 

max min

max min

( ( )) ( ( ))
.

( ( )) ( ( ))
j j

j j

b t b t
R

h t h t

-
=

-
          (5) 

 
(3) hj+1(t)=hj(t)-Sk(t), k=k+1. If hj+1 still has at least 2 

extreme points the next step then go to step (2) with j=j+1. 
If not, the decomposition process is finished and we set 
Sr(t)=hj+1(t). Sr(t) is the residue. 

 

2.5  Analysis of anti-noise ability in EAED and EMD 
The signal often contains noise. Adaptive signal 

decomposition method, such as EAED and EMD, 
decomposes the signal from high frequency to low 
frequency. The noise signal can be decomposed in previous 
several layers. In order to identify the degree that the noise 
can affect the decomposition results, the signal 

( ) sin(2 100 ) sin(2 200 )x t t t = ´ + ´  was added noise 
and then calculate the similarity degree between the first 
decomposition layer and the noise signal. The correlation 
coefficient was selected to express the similarity degree 
quantitatively. The calculation results are showed in Fig. 6. 
Value of correlation coefficient is near 0.87(EAED method) 
and 0.72(EMD method), respectively. In addition, the 
correlation coefficient fluctuations are small. 

 

 
Fig. 6.  Similarity degree between the first 
 decomposition layer and the noise signal 

 

3  Simulation and Discussion  
 

In this section, we choose typical signals to conduct 
EAED and EMD. As compared with EMD method, the 
decomposition ability of the method was studied. 

 

3.1  Decomposition of signal containing noise 
As for the signal containing noise, adaptive 

decomposition method can separate the noise signal. x(t) 
is a compound signal containing noise, x(t)=x1(t)+x2(t)+ 
x3(t)(Fig. 7). x1(t) is stochastic noise. 2 ( ) cos(2 )x t t= . 

3 ( ) 0.5cos(8 )x t t= . EAED and EMD decomposition are 
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implemented respectively and the results are shown in Fig. 
8 and Fig. 9. EAED method can decompose the noise into 
two components. S3 and S4 components are high 
frequency x2(t) and low frequency components x3(t) of the 
original signal, respectively. S5 is the residual component. 
EMD method decomposes the noise signal into four 
components. The IMF5, IMF6 components are the 
original signal of high frequency x2(t) and low frequency 
components x3(t) respectively. The number of component 
layers decomposed by EAED method is relatively small 
and decomposition results have less distortion. 

 

 
Fig. 7.  Signal containing noise 

 

 
Fig. 8.  Decomposition of signal containing noise  

based on EAED 

 

 
Fig. 9.  IMF components of signal containing noise 

 
3.2  Multi-component frequency signal decomposition 

As for the signal containing multi-frequency components 
x(t)=x1(t)+x2(t)+x3(t). x(t) consists of three different 
frequency components(Fig. 10). 1( ) 0.5cos(4 )x t t= . 

2 ( ) 5sin(20 )x t t=  3 ( ) 20cos(70 )x t t= . With EAED and 
EMD method, the results are presented in Fig. 11 and Fig. 

12. The former three components decomposed by EAED 
method can better recover the three components of the raw 
signal. The EMD method has a large distortion and 
decomposes many components. 

 

 
Fig. 10.  Multi-component frequency signal 

 

 
Fig. 11.  Decomposition of multi-component  

frequency signal by EAED 

 

 
Fig. 12.  IMF components of multi-component frequency signal 

 
4  EAED in Bearing Fault Diagnosis 

 

In order to verify the effectiveness of the EAED method, 
EAED and EMD method were used respectively to 
decompose vibration signals of inner race fault in rolling 
bearing. The test data is from the data center of Case 
Western Reserve University bearing drive end bearing 
vibration. The specific bearing parameters are shown in 
Table 1. The vibration signals were collected by using 
accelerometers attached to the housing of induction motor 
near to the test bearing with the sampling frequency fs of  
12 000 Hz. The rotating speed of the rolling bearing was 
1750 r/min. Based on the rotating speed, the rotating 
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frequency of the rolling bearing fR is 29.17 Hz. 
 

Table 1.  Structural parameters of rolling bearings 

           Parameter Value 

Number of bearing elements z 9 
Bearing elements diameter d/mm 7.94 
Bearing medium diameter D/mm 39 
Contact angle /() 90 

 
According to the data in Table 1 and Eq. (6), the 

characteristic frequency with inner race failure is calculated 
to be fIR=157.94 Hz: 

 

IR 0
1

1 cos 157.94 Hz.
2

d
f Z f

D


æ ö÷ç= + =÷ç ÷çè ø
      (6) 

 
Fig. 13 and Fig. 14 are a part of EAED and EMD 

decomposition results of inner race fault vibration data 
respectively. It can be observed that the layer number of 
EAED decomposition is fewer. Simultaneously, the result 
of EAED decomposition preserves impact characteristics of 
the signal more accurately. 

 

 
Fig. 13.  Vibration signal of inner race fault  

after EAED decomposition 

 
The Fourier transform was performed on each layer data 

respectively. Analysis results are shown in Fig. 15 and Fig. 
16. The main frequency of each component is shown in 
Table 2 and Table 3, respectively. It can be seen that S7, S5 
and S4 respectively correspond to the inner race fault 
frequency fIR, its 2nd harmonic frequency triple, and its 3rd 
harmonic frequency as displayed in Fig. 15. S9 and S8 
correspond to rolling bearing rotating frequency fR and its 
4th harmonic frequency after EAED decomposition. Only 

IMF11 component corresponds to rolling bearing rotating 
frequency fR and other sensitive frequency components are 
difficult to find. 

 

 
Fig. 14.  Vibration signal of inner race fault  

after EMD decomposition 

 

 
Fig. 15.  Spectrum analysis of fault vibration signal 

 from inner race after EAED decomposition 

 

 
Fig. 16.  Spectrum analysis of inner race fault vibration  

signal after EMD decomposition 
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Table 2.  Main frequency components of inner race fault 

vibration signal after EAED decomposition 

EAED 
component 

Frequency  

f /Hz 

EAED 
component 

Frequency 

f /Hz 

S1 2813 S7 158.2 

S2 2338 S8 117.2 

S3 603.5 S9 29.3 

S4 445.3 S10 17.58 

S5 316.4 S11 5.859 

S6 275.4 S12 5.85 

 
Table 3.  Main frequency components of inner race fault 

vibration signal after EMD decomposition 

EMD 
component 

Frequency  

f /Hz 

EMD 
component 

Frequency 

f /Hz 

IMF1 2813 IMF10 76.17 

IMF2 1922 IMF11 29.3 

IMF3 720 IMF12 70.31 

IMF4 603 IMF13 41.02 

IMF5 445 IMF14 23.44 

IMF6 287 IMF15 23.44 

IMF7 216 IMF16 17.58 

IMF8 76.17 IMF17 11.72 

IMF9 93.75 IMF18 11.72 

 
The EAED and EMD analysis results of bearing 

vibration signals show that these two methods can adaptive 
decompose the raw signal from high frequency to low 
frequency. EAED analysis results not only can find more 
physical meaning component but also can separate the high 
frequency noise, bearing fault signal and the bearing 
rotation signal properly. In addition, compared with EMD, 
EAED can obtain fewer decomposed layers. 

 
5  Conclusions 

 

(1) A method of adaptive signal decomposition named 
EAED is presented. In order to find local real information 
of raw signal properly, EAED uses the arithmetic mean of 
maximum and minimum rather than the average of upper 
and lower envelope. EAED method adopts a strategy that 
replaces two envelopes with one envelope, which reduced 
the envelope errors of the signal decomposition. Using the 
similar triangle principle, we can accurately calculate the 
location according to the middle point, which improved the 
precision of decomposition. Theoretical analysis proves the 
validity of EAED method. 

(2) Typical simulation signals have been decomposed, 
and the result shows that EAED method can separate the 
complex signal, restore the different frequency signal and 
noise signal. The vibration signal of rolling bearing has 
been tested by EAED and EMD method. The results 
demonstrated that signals decomposed by EAED have a 
clear physical meaning and can clearly find the characteristic 
frequency of the bearing fault and bearing rotation 
frequency after Fourier transformation. Experimental 
results indicate that the signal decomposed by EAED 

method contains more detailed information and can provide 
a new way for signal analysis. 
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