
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 
Vol. 29,aNo. 2,a2016 

 

·231·

DOI: 10.3901/CJME.2015.1120.137, available online at www.springerlink.com; www.cjmenet.com 

 

 

Rapid Optimization of Tension Distribution for Cable-Driven Parallel 
Manipulators with Redundant Cables 

 
 

OUYANG Bo and SHANG Weiwei* 

Department of Automation, University of Science and Technology of China, Hefei 230027, China 
 

Received April 10, 2015; revised November 12, 2015; accepted November 20, 2015 

 

Abstract: The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid 

optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on 

the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by 

the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal 

point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are 

implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of 

magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on 

real-time by the proposed method. 
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1  Introduction 

 

Cable-driven parallel manipulators(CDPMs) are a 
special type of parallel mechanism in which a moving 
platform is driven by cables instead of rigid links. This 
particular structure provides CDPMs several advantages, 
such as larger workspaces, a higher payload-to-weight ratio 
and lower manufacturing costs, versus a parallel 
manipulator with rigid links. CDPMs are therefore more 
suitable for high-load and high-acceleration applications. A 
wide variety of CDPMs have been developed[1–3] and 
applied in engineering equipment, such as an aircraft wind 
tunnel test[4], a large radio telescope[5], a human movement 
training system[6–7], and a seven degree-of-freedom(7-DOF) 
cable-driven robotic arm[8]. 

However, cables are flexible and elastic, and they will 
sag under the effect of their own weights. Moreover, the 
mass of cables will change when the end effector moves[9]. 
These characteristics of cables bring huge challenge to the 
motion control of CDPMs[10]. The first key problem to the 
motion control is that cables of a CDPM can only work in 
tension, i.e., cables are unable to push the moving platform. 
To overcome this limitation, a wrench-closure workspace 
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has been proposed to generate only positive tension[11–13]. In 
general, the number of cables m must be larger than the 
DOF n to satisfy the wrench-closure condition. However, 
the range of tensions for a wrench-closure workspace is 
often assumed to be unlimited, even though this is 
impractical. Thus, a wrench feasible workspace should be 
defined so that the tension in each cable remains within a 
prescribed range[14–16]. However, for a completely(m=n+1) 
or redundantly restrained CDPM(m>n+1), there exist an 
infinite number of tension distributions. Therefore, the 
optimal tension distribution should be determined with 
respect to some useful objective function. 

For a completely restrained CDPM, the null space of a 
structure matrix is one dimensional, and the solution set is a 
line segment. To solve this single-variable optimization 
problem, FANG, et al[17], proposed an efficient algorithm 
for the completely restrained CDPM. In addition, LI, et 
al[18], applied the Levenberg-Marquardt method for a five 
hundred meter aperture spherical telescope(FAST) in which 
the gravity was considered as a virtual cable and the cable 
catenary was taken into account. For a 2-DOF CDPM with 
four cables, a hexagon is the most complex case of the 
solution set, and a fast optimization method is proposed by 
using the geometry property[19]. However, with the 
increasing number of DOFs and cables, the solution set 
becomes more and more complex, and the computational 
time increases rapidly. 

If the sum of all tensions is used as the objective function, 
then the optimization of tension distribution becomes a 
linear programming problem. However, MIKELSONS, et 
al[20], indicated that the tension distribution obtained by 
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linear programming was discontinuous and that 
high-frequency oscillations may result from changes in 
tension. As the number of cables increase, the method 
proposed by MIKELSONS et al is too complex to satisfy 
the real-time requirement. BOGSTROM, et al[21], 
introduced a slack variable in the inequality constraint to 
obtain the optimal tension distribution, but they did not 
prove the continuity of the tension distribution. HASSAN, 
et al[22], defined the two-norm of the tension distribution as 
the objective function and applied Dykstra’s method to 
compute the optimal tension distribution. However, their 
optimization method requires a large number of iterations 
to converge, and the computational efficiency still needs to 
be improved. 

Although the simplex method is well known for solving 
linear programming, it needs a feasible starting point to 
solve the optimization problem. Unfortunately, finding 
these starting points is generally nontrivial. In this paper, 
we present a projection algorithm designed for obtaining a 
feasible starting point fast by using the geometry property 
of a polyhedron. Interestingly, a starting point is also a 
candidate solution for avoiding the operating point on the 
lower tension limit. The efficiency of our projection 
algorithm comes from a reduced number of extreme points 
that need to be checked to obtain an optimal point. The key 
to this reduction is a rapid algorithm that finds the two lines 
intersecting at the optimal point based on convex analysis. 
With our projection algorithm, a new and efficient 
optimization method can be obtained for CDPMs with 
redundant cables. Simulation experiments implemented on 
a 6-DOF CDPM with eight cables show that this new 
optimization method is considerably faster than the simplex 
method. 

The rest of this paper is organized as follows. In section 
2, the static model of an n-DOF CDPM is established. In 
section 3, the cable tension solution is given for CDPMs 
with redundant cables. In section 4, a new rapid 
optimization method is proposed, and detailed design 
procedures are described. In section 5, simulation 
experiments are implemented on a 6-DOF CDPM with 
eight cables. Finally, concluding remarks are presented in 
section 6. 

 
 

2  Static CDPM Model 
 
 
A CDPM is a closed-loop mechanism including multiple 

kinematic chains in which a moving platform and static 
platform are connected by cables. The structural diagram of 
an n-DOF CDPM with m cables is shown in Fig. 1 in which 
coordinate frame O is the base frame and coordinate frame 
P is the local frame fixed on the moving platform. Here, the 
gravity of the cables is neglected, and each cable is 
considered a straight line in static equilibrium. 

Based on the force equilibrium of the moving platform, 

the static equation of the system is given by 
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where  ti—Cable tension,  

ri = PPi,  
F—External force applied on the move platform, 

M—Moment applied on the moving platform.   
 

 
Fig. 1.  Structural diagram of an n-DOF CDPM 

 

Let ui (PiBi) represent the unit vector of ti, and ti 
represents the magnitude of the cable tension. Then, the 
matrix form of Eq. (1) can be written as 
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Here let superscript p denote the vectors in coordinate 
frame P, and R represents the orientation of coordinate 
frame P with respect to the coordinate frame O, and R is 
defined by 
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where  c expresses cos, 
       s expresses sin,  

, , —Z-Y-X Euler angles.  
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3  Cable Tension Solution 

 
From the definition of CDPM with redundant cables, one 

knows the number of tension distributions is infinite. The 
optimal tension distribution need be found with an 
objective function, e.g., the energy of the actuators. The 
optimization problem can then be described as 
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where  Tmin—Lower tension limit, 

Tmax—Upper tension limit,  
C = (c1, c2, , cm)T.  

Here, ci is a constant. If take the sum of tensions in the 
cable as the objective function, one need ci=1, for i=1, 2,

 
 , m. For a completely restrained CDPM, the solution set 
is a line segment, and the optimal tension distribution can 
be obtained easily and fast. For an n-DOF CDPM with n+2 
cables, the kernel of structure matrix A lies in a 
two-dimensional space. Thus, we are able to divide the 
structure matrix A into two parts as 
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where  A1—A n-by-n invertible matrix,  

 B—n-by-2 matrix,  
  Ta—n-dimensional vector,  
  Tb—Two-dimensional vector.  

Ta can be related to Tb by 
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Because tmin≤ti≤tmax, i=1, 2, , m, Ta also should satisfy 

this constraint. Let Tb = [x, y]T. Then amin max
n nT TT≤ ≤ can 

be rewritten as 
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( )T

min max

min max

min ,

, ,

s.t.
,•

z x y h

T x y T

x

y

= +

ìïïïï æ öí ÷çï ¢ ¢÷çï ÷ç ÷çï è øïî

λ

T T

≤ ≤

≤ ≤

          (7) 

where  
T 1

1 2 1( ) ,n n nc c -
+ += -λ C A B  

 T 1
1 ,nh -=C A W  

T
nC =(c1, c2, , cn).  

For a 2-DOF CDPM with four cables, the most complex 
case of the solution set is only a hexagon. Thus, this 
optimization problem is not difficult to solve. In fact, the 
solution can be obtained by linear programing or by the 
method proposed by BORGSTROM, et al[19],  However, as 
the number of DOFs increases, the solution set becomes 
complex. To address this increased complexity, a new and 
efficient optimization method for the n-DOF CDPM with 
redundant cables is proposed in this paper. 

 

4  Proposed Rapid Optimization Method 
 

Eq. (7) is a linear programming problem, and it can be 
solved by the simplex method. Furthermore, the feasible 
solution set to Eq. (7) is a convex polygon as shown in Fig. 
2. The geometry property of convex polygon can be used to 
improve the computational efficiency[23]. 

 

 
Fig. 2.  Solution set of the optimization problem 

 
4.1  Projection algorithm 

In general, a solution for a linear programming problem 
must be an extreme point. The edges of the solution set for 
the optimization problem can be divided into four parts E1 
to E4, as shown in Fig. 2. One can find an optimal point on 
the corresponding part of the edges with respect to symbols 
1 and 2 in Eq. (7). This paper just introduction the case 
that 1 and 2 are positive, and the cases can be easily 
deduced from it. The optimal point is therefore on the edge 
E4. The next problem is to obtain the two lines intersecting 
at the optimal point (e.g., V1V5 and V2V5) and the ranges of 
x and y, respectively. 

Although it is easy to obtain the ranges of x and y, it is 
difficult to obtain the intersecting lines Lx(V2V5) and Ly 
(V1V5). Therefore, the two lines intersecting at the optimal 
point(V5) should be found. Here, finding line Lx and ymin are 
described, and the processes for determining Ly, ymax, xmax 
and xmin can be deduced from this description. To improve 
the efficiency, the linear matrix inequality (6) is first 
rewritten as: tli≤x+kiy≤tri, 1,  2, ,  ,i n=  and l and r 
represent the left and right side of the inequality, 
respectively. Then, it is easy to compute the symbol of the 
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slope and range of y. Let 1
xL  and 2

xL  denote the two lines 
intersecting at point V2. The main steps of the projection 
algorithm can be described as follows: 

(1) Let ymin=Tmin, 
1
xL : y = Tmin and 2

xL : y = Tmin. 
(2) Select two inequalities from the linear matrix 

inequality (6): tli≤x+kiy≤tri, tlj≤x+kjy≤trj, i=1, 2, , n, 
j=1, 2, , n, and i¹ j. Moreover, there are q=n(n–1)/2 
combinations for the selection. 

(3) If ki>kj and Tmin<(tli–trj)/(ki–kj)<Tmax, then 1
xL : 

tli=x+kiy, 2
xL : trj=x+kjy, and ymin=(tli–trj)/(ki–kj). If ki<kj 

and Tmin<(tri–tlj)/(ki–kj)<Tmax, then 1
xL : tri=x+kiy, 2

xL : 

trj=x+kjy, and ymin=(tri–tlj)/(ki–kj). When ki=kj, the two 

lines are parallel, and they do not need to be calculated. 
(4) If all of the combinations have been computed, one 

can obtain the intersecting lines and the range of y. If they 
are not computed, go to step (3). 

The flowchart of the projection algorithm is shown in 
Fig. 3. After obtaining the intersecting lines, line Lx and 
line Ly can be defined by the slope. The process can be 
described as follows. 

 

 
Fig. 3.  Flowchart of the projection algorithm 

 

(1) If the slopes of the intersecting lines are both 
negative, then line Lx is the line whose slope is larger, and 
the slope of line Ly is smaller. 

(2) If the slopes of the intersecting lines are different, 
then line Lx (Ly) are the lines whose slope is negative. 

(3) If the slopes of the intersecting lines are both positive 
by convex analysis, then the optimal point can be obtained. 
The optimal point is at point V (xmin, ymin), as shown in Fig. 
4. 
 

 
Fig. 4.  Edge E4 is only a point 

 

Now, the projection algorithm is obtained. For the 

completely restrained CDPM, the optimal point V1 can be 
found by using the projection algorithm, as shown in Fig. 5. 
Furthermore, once one obtains the ranges of x and y, a 
feasible point can be found. 

 

 
Fig. 5.  Optimal point of a completely restrained CDPM 

 

Theorem 1: Point Pc= [(xmin+xmax)/2, (ymin+ymax)/2] is 
in the feasible set of Eq. (7), where xmin and xmax are the 
minimum and maximum value of x, and ymin and ymax are 
the minimum and maximum value of y. 

Proof: Because the feasible set is a convex set, one can 
find a feasible point on every side of the rectangle, i.e., V1 
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to V4, as shown in Fig. 2. Diagonal line L1 must be located 
between line V1V4 and line V2V3, and diagonal line L2 
between line V1V2 and line V3V4. Because Pc is the 
intersection of L1 and L2, Pc is within the quadrilateral 
V1V2V3V4. Therefore, point Pc is in the feasible set. 
Although one can only find three points sometimes, i.e., 
one of the three points is a vertex of the rectangle, it is easy 
to prove that Pc is a feasible point. 

Based on Theorem 1, one can fast obtain a feasible 
solution of Eq. (7). It can be applied as the starting point of 
the simplex method. Furthermore, because point Pc is 
nearly at the middle of the feasible set, it is a candidate 
method for avoiding the operating point on the lower 
tension limit. 

 
4.2  Algorithm for determining the optimal point 

If one of the slopes of line Lx and line Ly is positive, the 
optimal point can be found, as shown in Fig. 4. When the 
slopes of line Lx and line Ly are both negative, the solution 
set of the optimization problem (7) can be classified into 
six cases, as shown in Fig. 6. 

 

 
Fig. 6.  Six cases of the solution set 

 
The algorithm for determining the optimal point in each 

case is described as follows. 
Case 1: Line Lx and line Ly are the same line, and xmin¹

Tmin and ymin¹ Tmin. In this case, the optimal point is V1 or 
V2. If –1/2 is larger than the slope of line V1V2, then V2 is 
the optimal point. Otherwise, V1 is the optimal point. 

Case 2: Line Lx and line Ly are different, and xmin¹ Tmin 

and ymin¹ Tmin, and V3 is a feasible point. In this case, the 
optimal point must be one of the three vertexes(V1, V2 and 
V3). If –1/2 is larger than the slope of V2V3, then V2 is the 
optimal point. If –1/2 is smaller than the slope of V1V3, 
then V1 is the optimal point. Otherwise, V3 is the optimal 

point. 
Case 3: Line Lx and line Ly are different, and xmin¹ Tmin 

and ymin¹ Tmin, and the intersection point of line Lx and line 
Ly is not a feasible point. In this case, it is not easy to 
determine the optimal point. One can apply V1 or V2 to 
initialize the simplex method. Thus, the optimal point can 
be found fast. On the other hand, based on convex analysis, 
one knows that the slope of the line intersecting at the 
optimal point is larger than the slope of Ly and smaller than 
the slope of Lx. Furthermore, its corresponding inequality 
can be described as: x+ky≥tl, where k>0 and tl>0. Thus, 
the number of the lines satisfying the two conditions is 
small. Moreover, the slopes from line Lx to line Ly are 
descending. For instance, the slope of line V1V3 is smaller 
than that of line V3V4, and the slope of line V3V4 is smaller 
than that of line V4V2. Thus, the number of intersection 
points is small as well. The optimal point can also be 
determined by checking whether the intersection point is 
feasible and is the smallest. 

Case 4: Line Lx and line Ly are the same, and xmin=Tmin or 
ymin=Tmin. In this case, V2 (V1) can be obtained by the 
projection algorithm first, and then V1(V2) can be 
determined because line Lx and line Ly are the same. The 
optimal point is V1 or V2. If –1/2 is larger than the slope 
of line V1V2, then V2 is the optimal point. Otherwise, V1 is 
the optimal point. 

Case 5: Line Lx and line Ly are different, and xmin=Tmin or 
ymin=Tmin. In this case, one should find V1(V2) first, and it 
can be used as the start point of the simplex method as well. 
Further, the vertex V1 is the smallest of the feasible 
intersection points between line x=Tmin (y=Tmin) and the 
lines whose slopes are smaller than Ly (bigger than Lx), and 
the corresponding inequality can be written as x+ky≥tl. 
After obtaining V1, one can also find the optimal point by 
using the method in Case 3. 

Case 6: Line Lx and line Ly are different, and xmin=Tmin 

and ymin=Tmin. In this case, vertex V1 and vertex V2 are not 
known. If the two vertices are determined, then the optimal 
point can be found by the methods of Cases 1 through 3. 
Moreover, the method for determining V1 and V2 is the 
same as Case 5. 

The flowchart of the new optimization method, when 1 
and 2 are positive, is shown in Fig. 7. 

 

5  Simulation Experiments 
 
To verify the proposed optimization method for tension 

distribution, simulation experiments were conducted on a 
6-DOF CDPM with eight cables, as shown in Fig. 8, where 
the winches is installed on the vertices of the fixed platform. 
The fixed platform is a cube, and each side has a width of 1 
m. The moving platform is a 0.3 m×0.2 m×0.1 m block, 
and the center of mass is at the geometric center of the 
block. The range of each cable tension is 1 to 540 N. The 
Euler angles , , and   of the CDPM are 2, 3 and 1, 
respectively.   
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Fig. 7.  Flowchart of the optimization method when 1 and 2 are positive 

 

 
Fig. 8.  Structural diagram of the 6-DOF CDPM 

 with eight cables 

The optimization process ware was implemented in 
Matlab on an Intel Core i3-2120 3.3 GHz with 4G RAM. 
The computational efficiency of the new optimization 
method were compared with the simplex method. Here, the 
sum of the tensions was taken as the performance index. 
First, we fixed the external wrench and changed the 
position of the moving platform. The range of x, y, and z 
were 0.4 to 0.6 m, and the sample interval is 0.01 m. The 
simulation results are shown in Table 1. We then fixed the 
coordinate of the moving platform and varied the external 
wrench in the range of 4.5 to 6.5 N, with a step size of 0.5 
N. The range of the external moment was 0.4 to 0.8 N·m at 
a 0.1 N increment. The simulation results are given in Table 
2.  
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Table 1.  Total computational time of the proposed method 
and simplex method when the external wrench is fixed 

External wrench 
Proposed method 

tp/s 
Simplex method

ts/s 

[5.0, 5.5, 5.0, 0.5, 0.4, 0.5] 6.03 35.55 

[5.5, 5.0, 5.5, 0.4, 0.5, 0.4] 5.88 34.23 
[5.5, 5.0, 5.5, 0.4, 0.5, 0.4] 5.85 34.33 

 
Table 2.  Total computational time of the proposed method 

and simplex method as the coordinate is fixed 

Coordinate of the moving 
platform/m 

Proposed method 
tp/s 

Simplex method 
ts/s 

[0.5, 0.5, 0.5] 4.57 54.63 
[0.5, 0.55, 0.5] 2.82 50.73 
[0.45,0.5, 0.45] 4.43 50.30 

 
From the simulation results in Tables I and II, one can 

see that total computing time of proposed method tp was 
one order of magnitude less than that of simplex method 
(ts), and thus, it can satisfy the real-time computational 
requirement. Now, let the external wrench W=[5.5, 5, 5.5, 
0.4, 0.5, 0.4]T (force in N and moment in N. m ), and let the 
moving platform move on the line x=y=z. For the linear 
trajectory, the start point was [0.4, 0.4, 0.4](m), the end 
point was [0.65, 0.65, 0.65](m) and the sample interval was 
0.002 m. First, one can obtain a feasible solution for Eq. (7) 
based on Theorem 1, and the tension distribution is shown 
in Fig. 9. One can see that this method avoids the lower 
tension limit successfully, but the tensions are too large. 

Moreover, the tension distribution by using the proposed 
method is shown in Fig. 10. One can see that the tensions 
are considerably smaller than tensions obtained by 
Theorem 1, and it is continuous as well. On the other hand, 
one can define ||T||2 as the objective function, i.e., quadratic 
programming, and use an active-set algorithm to obtain the 
optimal tension distribution. One can find that the tension 
distributions are the same as those obtained by using linear 
programming. It is known that the optimal tension 
distribution with linear programming can be discontinuous 
in theory, and the quadratic programming can obtain 
continuous tension distribution. Thus, the discontinuous 
tension distribution does not happen often. 

Further, one can fix the moving platform at point [0.5, 
0.5, 0.5] (m) and change the external wrench W=[w1, w2, 
 , w6]

T according to: w1=5(N), w4=w5=w6=0.4 (N·m), 
and w2=w3=6sin (N), where Î[45, 90] with a step 
size of 0.5. The tension distribution is shown in Fig. 11. 
One can see that the tension distribution is continuous. One 
can also know that the tension distribution obtained by 
using quadratic programming is the same with the linear 
programming. However, tensions such as t1 and t4 are 
considerably smaller compared with those in other cables, 
and tension t1 is nearly constant and on the lower tension 
limit. The distribution of tensions calculated by applied 
Theorem 1(shown in Fig. 9) can be applied to solve this 
problem, but these tensions are larger. Thus, the proposed 

method need be developed to the distribution more 
uniform. 
 

 
Fig. 9.  Tension distribution obtained by Theorem 1 

 

 
Fig. 10.  Tension distribution of the CDPM when the position  

is varied and the external wrench is constant 

 

 
Fig. 11.  The tension distribution of the CDPM when  

the external wrench is changed and the position is fixed 
 
 

6  Conclusions 
 
(1) A new and rapid method is proposed for optimizing 

the tension distribution of CDPM with redundant cables.  
(2) The computational efficiency of the new optimization 

method is considerably higher than the simplex method, 
and it can be executed in real time.  

(3) The simulation results are also verified the method 
for avoiding the operating point on the lower tension 
limit.  

(4) The tension distribution is continuous in all of the 
simulation experiments although the tension distribution 
may be discontinuous in theory. 



 
 

OUYANG Bo, et al: Rapid Optimization of Tension Distribution for Cable-Driven Parallel 
Manipulators with Redundant Cables 

 

·238· 

 
References  

[1] YUASA K, MAE Y, INOUE K, et al. A hybrid drive parallel arm 
for heavy material handling[J]. IEEE Transactions on Robotics and 
Automation, 2002, 9(1): 45–54. 

[2] BEHZADIPOUR S, KHAJEPOUR A. Design of reduced DOF 
parallel cable-based robots[J]. Mechanism and Machine Theory, 
2004, 39(10): 1051–1065. 

[3] HILLER M, FANG S, MIELCZAREK S, et al. Design, analysis and 
realization of tendon-based parallel manipulators[J]. Mechanism 
and Machine Theory, 2005, 40(3): 429–445. 

[4] LAFOURCADE P, LLIBER M, REBOULE C. Design of a parallel 
wire-driven manipulator for wind tunnels[C]//Proceedings of the 
Workshop on Fundamental Issues and Future Directions for 
Parallel Mechanisms and Manipulators, Quebec City, Quebec, 
Canada, October 3–4, 2002: 187–194. 

[5] WANG W L, DUAN B Y. A new type of flexible parallel link 
manipulator actuated by cable[J]. Control Theory and Application, 
2001, 18(3): 328–332. 

[6] MAO Y, JIN X, DUTTA G G, et al. Human movement training with 
a cable driven arm exoskeleton(CAREX)[J]. IEEE Transactions on 
Systems and Rehabilitation Engineering, 2015, 23(1): 84–92. 

[7] LAU D, EDEN J, OETOMO D, et al. Musculoskeletal static 
workspace analysis of the human shoulder as a cable-driven robot[J]. 
IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 978–984. 

[8] MUSTAFA S K, YANG G L, YEO S H, et al. Self-calibration of a 
biologically inspired 7 DOF cable-driven robotic arm[J]. 
IEEE/ASME Transactions on Mechatronics, 2008, 13(1): 66–75. 

[9] YUAN H, COURTEILLE E, DEBLAISE D. Static and dynamic 
stiffness analyses of cable-driven parallel robots with non-negligible 
cable mass and elasticity[J]. Mechanism and Machine Theory, 2015, 
85: 54–81. 

[10] LAU D, OETOMO D, HALGAMUGE S K. Inverse dynamics of  
multilink cable-driven manipulators with the consideration of joint 
interaction forces and moments[J]. IEEE Transactions on Robotics, 
2015, 31(2): 479–488. 

[11] PHAM C B, YEO S H, YANG G L, et al. Force-closure workspace 
analysis of cable-driven parallel mechanisms[J]. Mechanism and 
Machine Theory, 2006, 41(1): 53–69. 

[12] OUYANG B, SHANG W W. Efficient computation method of 
force-closure workspace for 6-DOF cable-driven parallel 
manipulators[J]. Journal of Mechanical Engineering, 2013, 49(15): 
34–41. 

[13] OUYANG B, SHANG W W. A new computation method for the 
force-closure workspace of cable-driven parallel manipulators[J]. 
Robotica, 2015, 33(3): 537–547. 

[14] GOUTTEFARDE M, DANEY D, MERLET J P. Wrench-feasible 
workspace of parallel cable-driven mechanisms[C]//IEEE 
International Conference on Robotics and Automation, Roma, Italy, 

April 10–14, 2007: 1492–1497. 
[15] BOSSCHER P, RIECHEl A T, EBERT-UPHOFF I. Wrench- 

feasible workspace generation for cable-driven robots[J]. IEEE 
Transactions on Robotics, 2006, 22(5): 890–902. 

[16] OUYANG B, SHANG W W. Wrench-feasible workspace based 
optimization of fixed and moving platforms for cable-driven parallel 
manipulators[J]. Robotics and Computer-Integrated Manufacturing, 
2014, 30(6): 629–635. 

[17] FANG S Q, FRANITZA D, TORLO M, et al. Motion control of a 
tendon-based parallel manipulator using optimal tension 
distribution[J]. IEEE/ASME Transactions on Mechatronics, 2004, 
9(3): 561–568. 

[18] LI H, ZHANG X Y, YAO R, et al. Optimal force distribution based 
on slack rope model in the incompletely constrained cable-driven 
parallel mechanism of FAST telescope[J]. Cable-Driven Parallel 
Robots Mechanisms and Machine Science, 2013, 12: 87–102. 

[19] BORGSTROM P H, JORDAN B L, BORGSTROM B J, et al. 
NIMS-PL: A cable-driven robot with self-calibration capabilities[J]. 
IEEE Transactions on Robotics, 2009, 25(5): 1005–1015. 

[20] MIKELSONS L, BRUCKMANN T, HILLER M, et al. A real-time 
capable force calculation algorithm for redundant tendon-based 
parallel manipulators[C]//IEEE International Conference on 
Robotics and Automation, Pasadena, CA, May 19–23, 2008: 
3869–3874. 

[21] BORGSTROM P H, JORDAN B L, SUKHATME G S, et al. Rapid 
computation of optimally safe tension distributions for parallel 
cable-driven robots[J]. IEEE Transactions on Robotics, 2009, 25(6): 

1271–1281. 
[22] HASSAN M, KHAJEPOUR A. Analysis of bounded cable tensions 

in cable-actuated parallel manipulators[J]. IEEE Transactions on 
Robotics, 2011, 27(5): 891–900. 

[23] BOYD S, VANDENBERGHE L. Convex optimization[M]. 
Cambridge: United Kingdom at the University Press, 2009. 

 

Biographical notes   
OUYANG Bo, born in 1989, is currently a master candidate at 
Department of Automation, University of Science and Technology 
of China. He received his bachelor degree from Southwest 
University, China, in 2011. His research interests include parallel 
robot and optimization. 
E-mail: boouyang2-c@my.cityu.edu.hk 
 
SHANG Weiwei, born in 1981, is currently an associate professor 
at Department of Automation, University of Science and 
Technology of China. He received his PhD degree from University 
of Science and Technology of China, in 2008. His research interests 
include parallel robots, humanoid robots and robot vision. 
Tel: +86-551-63601332; E-mail: wwshang@ustc.edu.cn

 


