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Abstract: Physical parameters are very important for vehicle dynamic modeling and analysis. However, most of physical parameter 

identification methods are assuming some physical parameters of vehicle are known, and the other unknown parameters can be 

identified. In order to identify physical parameters of vehicle in the case that all physical parameters are unknown, a methodology based 

on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented. The modal 

parameters of the vehicle are identified by the SVM, furthermore, the physical parameters of the vehicle are estimated by least squares 

method. In numerical simulations, physical parameters of Ford Granada are chosen as parameters of vehicle model, and half-sine bump 

function is chosen to simulate tire stimulated by impulse excitation. The first numerical simulation shows that the present method can 

identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%; 

and the effect of the errors of additional mass, structural parameter and measurement noise are discussed in the following simulations, 

the results shows that when signal contains 30 dB noise, the largest absolute value of percentage error of the identification is 3.78%. 

These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road 

vehicles. The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of 

vehicle without need to assume some physical parameters are known.  
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1  Introduction 
 

Physical parameters of the vehicle play a vital role in the 
dynamic modeling and analysis of road vehicles, and some 
of them determine the vehicle handing and ride 
performance[1–3]. Therefore, many researchers and 
engineers are interested in physical parameter identification. 
Several existing methods can measure some of the inertia 
parameters, such as mass, centre of gravity and mass 
moments of inertia, by using the Inertial Parameter 
Measurement Device[4]. These parameters are estimated by 
four categories of dynamic model: longitudinal, bounce, 
roll and yaw. Generally, the modal parameter identification 
is an important part of the physical parameter identification, 
and this identification method can identify modal 
parameters of the vehicle, such as natural frequencies, 
damping ratios and modal shapes. The modal parameter 
identification methods can be divided into two main 
categories: (1) frequency domain method, such as peak 
picking method(P-P), polynomial fitting, maximum 
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likelihood(MLI), PolyMAX method; and (2) time domain 
method, e.g. Ibrahim Time Domain(ITD), Eigensystem 
Realization Algorithm(ERA), Auto Regressive Moving 
Average(ARMA), Empirical Mode Decomposition(EMD), 
Stochastic Subspace identification(SSI). If adjacent natural 
frequencies are closed or damping ratios are high, the 
modal parameters are difficult to be identified by using 
frequency domain methods. However, time domain 
methods can still be suitable to identify the modal 
parameter in such case. Because modal frequencies of 
vehicle body are in the 13Hz range and the corresponding 
damping ratios are between 0.1 and 0.5, time domain 
methods would be more appropriate to identify the modal 
parameters of the vehicle[5].  

In recent decades, many parameter identification 
methods have been proposed to estimate parameters of the 
on-road vehicle. Kalman filter(KF) method is employed to 
identify parameters of the vehicle by many researchers. For 
example, VENHOVENS and NAAB used KF to estimate 
vehicle system dynamic parameter[6]; RUSSO, et al, 
presented a methodology based on KF to determine the 
parameters of a car on the basis of data obtained from 
standard, on-road handling manoeuvres[7]; HODEGSON 
and BEST designed a nonlinear KF to identify the real-time 
lateral and vertical tire force information[8]; WENZEL, et al, 
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proposed a dual extended Kalman filter(EKF) technique, 
which makes use of two KF running in parallel, for vehicle 
state and parameter estimation[9]; LI, et al, presented a new 
variable structure EKF for vehicle sideslip angle estimation 
on a low friction road[10]; ANTONOV, et al, proposed 
unscented Kalman filter(UKF) for the accurate vehicle state 
estimation[11]; LI, et al, used a signal fusion method to 
estimate the comprehensive tire-road friction coefficient of 
the vehicle under complex maneuvering operations[12]; 
these kinds of methods need to assume some physical 
parameters are known and measure input and output signals. 
However, other parameter identification methodologies 
also have been developed. For instance, THITE, et al, 
developed the frequency domain method using a matrix 
inversion approach for estimating the suspension 
parameter[13]. KUMAR and SHANKAR used global and 
substructure approaches in the time domain to identify the 
parameter of structures with nonlinearities[14]. The online 
parameter estimation method proposed by ROZYN and 
ZHANG used the equivalent suspension stiffness 
coefficient to represent suspension and wheel stations in 
order to simplify modeling[15]. MEJÍA, et al, presented a 
method for identification of the inertial parameters of a 
dynamic front suspension by using inertia and mass transfer 
to select the potential base parameters, and it would 
generate well-conditioned models that are very close to the 
original model behavior[16]. YANG, et al, developed a 
system identification technique to determine the lateral 
dynamics of an articulated freight vehicle subject to three 
different steering excitations and levels of measurement 
noise[17]. VENTURE, et al, presented a robotics approach, 
which is based on a multibody dynamic system that allows 
the automatic computation of the dynamic identification 
model, to estimate the dynamic parameters of a car[18]. 
LALTHLAMUANA and TALUKDAR proposed a method 
combined semi-analytical and particle filtering approach 
for identification of physical parameters of vehicle from the 
bridge dynamic response[19]. Based on subspace 
identification method of modal parameters, DONG et al. 
proposed a new parameter identification method for 
estimating roll and pitch moments of inertia of the on-road 
vehicle[5]. HUH, et al, designed a vehicle mass estimator 
for adaptive roll stability control[20]. KOULOCHERIS, et al, 
presented a parametric identification method to estimate 
structural parameters of commercial passenger vehicle[21]. 
All of these methods can only identify part of the physical 
parameters of the vehicle. It is still difficult to identify all 
physical parameters of the vehicle by using conventional 
parameter identification methods. 

This paper presents a new physical parameter 
identification method for two-axis on-road vehicle. The 
State Variable Method (SVM), which is presented by 
ZHANG and HAYAMA to identify the modal parameter 
and physical parameter of structural system[22], is employed 
to identify the modal parameter of vehicle. In order to 
identify the matrices M, C and K of the vehicle, a known 

additional mass matrix ∆M is designed to add into the mass 
matrix of the vehicle in order to increase the number of 
equations to ensure that the number of equations is more 
than that of unknowns. Therefore, physical parameters of 
on-road vehicle can be calculated by using least squares 
method. To validate the presented method, some numerical 
simulations are given in this manuscript to discuss the 
effect caused by the error of additional mass, the error of 
structural parameter and measurement noise. Numerical 
simulation results demonstrate that the presented method is 
effective and accurate for physical parameter identification 
of a two axis on-road vehicle. 

 
2  Solution Procedures 

 

2.1  Vehicle Dynamic Modeling 
A vehicle model shown in Fig. 1 can be described as a 

system of seven degrees of freedom(DOF), where the 
sprung mass is assumed to be a rigid body with freedoms of 
motion in the vertical, pitch and roll direction and each 
wheel has freedom of motion in vertical direction. In Fig. 1, 
the mass inertia parameters of vehicle are sprung mass ms, 
roll moment of inertia Ixx, pitch moment of inertia Iyy, 
unsprung mass mui (i=A, B, C, D), respectively. csi , ksi and 
kti (i=A, B, C, D) denote the suspension damping coefficient, 
the suspension stiffness and the tyre stiffness, respectively. 
The displacement of vehicle can be denoted by sprung 
mass vertical translation zs, the pitch angle θ, the roll angle 
, and four vertical translation of wheel zui (i=A, B, C, D), 
respectively. The displacements of ground input are 
denoted by zgi (i=A, B, C, D). a and b represent the distance 
from the front and rear axle to sprung mass of central 
gravity (CG). lf and lr denote the half width of the front and 
rear axle, respectively. 

 

 
Fig. 1.  7-DOF vehicle model 

 
Based on Newton’s law, the dynamic equation of the 

vehicle system can be derived as follows: 
 

+ + = MX CX KX F ,              (1) 
 

where vectors X , X and X  ∈R7×1 denote the 
displacement, velocity and acceleration vectors of the 
vehicle, respectively. M, C and K ∈R7×7 are the mass, 
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damping and stiffness matrices of the vehicle system, and 
vector F is the road excitation force input of the vehicle. 

 
T

s u u u u( , , , , , , )A B C Dz z z z z =X ,    (2) 

 
,s u u u udiag( , , , , , )yy xx A B C Dm I I m m m m=M ,  

(3) 
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T

t g t g t g t g(0, 0, 0, , , , )A A B B C C D Dk z k z k z k z=F , (6) 

 
where superscript “T” denotes transposition of vector or 
matrix, and the matrices Cs, Ks, Kt, L are expressed as 
follows, respectively, 

 

s s s s sdiag( , , , )A B C Dc c c c=C ,         (7) 

 

s s s s sdiag( , , , )A B C Dk k k k=K ,         (8) 

 

t t t t tdiag( , , , )A B C Dk k k k=K ,         (9) 

 

f f r r

1 1 1 1
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t t t t
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L .            (10) 

 
2.2  Modal Parameter Identification based on SVM 

Introducing state vector T{ }= Y X X , Eq. (1) can be 

converted to the state-space equation: 
 

= +Y AY BF ,               (11) 
 

where matrices A and B are 
 

1 1
,
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The SVM modal parameter identification method relies 

on the free decay response of vehicle, so it can be assumed 
that the road excitation input F is zero vector. In the 
discrete time domain, the state-space equation can be 
described in the form: 

 

1= + Φ AΦ Φ ,               (14) 

where Φ  represents an measurement error matrix, and the 
state matrices Φ and Φ  are defined as 

 

( )(1), (2  ), , ( )=Φ Y Y Y N ,        (15) 

 

( )(2), (3), , ( 1)= +Φ Y Y Y N ,      (16) 

 
T T T T( ) ( ( ), ( 1), , ( )) ,k k k k p= + +Y X X X   (17) 

 
where Y(k) is the discrete vector of measurement, N is the 
number larger than the rank of state matrix Φ, X(k) 
represents the sensor measurements at t=k∆T, p is the 
parameter determined by the number of degrees of freedom, 
the number of measurement points and the signal to noise 
ratio of measurement. The transition matrix A1 can be 
determined by using least squares method and can be 
expressed as 

 
T T 1

1 ( )( )-=A ΦΦ ΦΦ .            (18) 

 
Solving the eigenvalue problem of the transition matrix 

A1 gives the eigenvalues zi and eigenvectors Pi (i=1, 2, , 
7) on the Z plane. 

On the other hand, based on the relation between the 
continuous system and the discrete system, the transition 
matrix A1 can be expressed as follows: 

 

1 exp( )T=A A ,               (19) 
 

where ∆T is the sampling interval. 
Therefore, the eigenvalues λi and eigenvectors Φi of state 

matrix A can be calculated as follows: 
 

lni iz T = / ,               (20) 

 

=i iΦ P , (i=1, 2, , 7).           (21) 

 
2.3  Physical Parameter Identification 

Once the eigenvalues and eigenvectors of state matrix A 
are obtained, the identification state matrix Aid can be 
calculated through the following formula: 

 
1* *

id ** * * *

-æ ö æ öæ ö÷ ÷ç ç÷ç÷ ÷÷ç ç= ç÷ ÷÷ç çç÷ ÷÷÷çç ç÷ ÷ç çè øè ø è ø

ΛΦ Φ Φ Φ
A

ΛΦΛ Φ Λ ΦΛ Φ Λ
,    (22) 

where 

1 2 7diag( ,  ),,   =Λ ,            (23) 

 

( )1 2 7, , , =Φ Φ Φ Φ ,             (24) 

 
*Λ  and *Φ  are the conjugate matrices of Λ  and Φ , 

respectively. 
It can be found that the number of equations are less than 
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that of unknowns in Eq. (12). So the mass matrix M, the 
damping coefficient matrix C and the stiffness matrix K of 
the vehicle cannot be determined by solving Eq. (12). To 
make it possible to calculate matrices M, C and K of the 
vehicle, a known mass matrix ∆M is added into the vehicle 
system to increase the number of equations. Then, the new 
state matrix A  of vehicle with additional mass can be 
expressed as 

 

1 1( ) ( ) - -

æ ö÷ç ÷=ç ÷ç ÷÷ç- + - +è ø

O I
A

M M K M M C
.    (25) 

 

Combining Eqs. (12) and (25), the number of equations 
is more than that of the unknowns. Let A21 and A22 denote 
the sub-matrices of state matrix A, 21A  and 22A  denote 
the sub-matrices of state matrix A . The expressions of 
sub-matrices 21A , 22A , 21A  and 22A  are, respectively, 

 
1

21
-=-A M K ,                 (26) 

 
1

22
-=-A M C ,                 (27) 

 
1

21 ( ) -=- +A M M K ,             (28) 

 
1

22 ( ) -=- +A M M C .             (29) 
 
Since the damping coefficient matrix C of the vehicle is 

a singular matrix, and the sub-matrices A22 and 22A  
contain the damping coefficient matrix C, so the inverse 
matrices of A22 and 22A  cannot be determined. However, 
the stiffness matrix K, and the sub-matrices A21 and 21A  
are non-singular matrices. Therefore, the mass matrix M 
can only be calculated by Eqs. (26) and (28). Then, the 
mass matrix M of the vehicle can be calculated as  

 
1

21 21 21( ) -= -M MA A A .          (30) 

 
Once the mass matrix M is obtained, the damping 

coefficient matrix C can be determined by solving Eq. (27) 
or (29). The coefficient matrix C can be expressed as 

 
1

21 21 21 22( ) -=- -C MA A A A ,        (31) 

 
or 

 
1

21 21 21 22 22( ( ) ) -=- - +C M A A A A A .    (32) 

 
Similarly, the stiffness matrix K can be obtained by solving 
Eq. (26) or Eq. (28): 

 
1

21 21 21 21( ) -=- -K MA A A A .        (33) 

 
If A21, A22, 21A and 22A  are chosen to be the 

sub-matrix of the state matrix A and A  identified by 
SVM, the matrices M, C and K of the vehicle can be 
calculated through Eqs. (30)(33). Furthermore, all of 
physical parameter of the vehicle including the mass inertia 
parameters, suspension damping coefficients, suspension 
stiffnesses and tyre stiffnesses can be determined by using 
least squares method. 

 
3  Numerical Simulations 

 
3.1  Simulation of the road-tyre excitation 

In the 7-DOF vehicle model, the excitations of the 
vehicle system are four road-tyre excitations including 
ktAzgA, ktBzgB, ktCzgC and ktDzgD. In order to obtain the free 
decay response of the vehicle, the half-sine bump zg can be 
chosen as the road input functions, and the excitations zgA, 
zgB, zgC and zgD are used for simulating the tires stimulated 
by impulse excitation. Assume the function of zg can be 
described as follows: 

 

g

0.09sin(5 ( 0.1)), 0.1 0.3,
( )

0, 0.1 or 0.3.

t t
z t

t t

ì -ïï=íï < >ïî

≤ ≤
  (34) 

 
For the 7-DOF vehicle model, there are seven 

body-wheel motion modes. These motion modes can be 
classified as two groups: the body-dominated and 
wheel-dominated motion mode. Three body-dominated 
motion modes are body-dominated bounce mode, 
body-dominated pitch mode and body-dominated roll mode, 
respectively. In general, their frequencies are range 
between 1 and 3 Hz, and vehicle body has much larger 
displacement than wheels in their mode shapes. Four 
wheel-dominated motion modes are wheel-dominated 
bounce mode, wheel-dominated pitch mode, wheel- 
dominated roll mode and wheel-dominated warp mode, 
respectively. Generally, their frequencies are range between 
10 to 15 Hz, and vehicle body has much smaller 
displacement than wheels in their mode shapes. According 
to the vibration characteristic of the body-wheel motion 
modes of the vehicle, the numerical simulations are divided 
into three cases:  

(1) Bounce mode excitation, four road input function zgA, 
zgB, zgC and zgD are both equal to zg;  

(2) Pitch mode excitation, the front road input function 
(zgA, zgB) or the rear road input function(zgC, zgD) are equal 
to zg;  

(3) Roll mode excitation, the left road input function(zgA, 
zgC) or the right road input function(zgB, zgD) are equal to zg.  

The purpose of these mode excitations is to concentrate 
the excitation energy to stimulate the relative mode 
vibration. 

 
3.2  Physical parameters of vehicle model 

A Ford Granada is chosen as a vehicle case in numerical 
simulations. The physical parameters of Ford Granada are 
listed in Table 1. All the parameters in Table 1 are given in 
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Ref. [3]. 
 

Table 1.  Physical parameters of Ford Granada 

Parameter Value

Sprung mass ms/kg 1380

Sprung mass inertia of the pitch Iyy/(kg • m2) 2440

Sprung mass inertia of the roll Ixx/(kg • m2) 380 

Unsprung mass of the front muf/kg 40.5

Unsprung mass of the rear mur/kg 45.4

Suspension stiffness of the front ksf/(kN • m–1) 17 

Suspension stiffness of the rear ksr/(kN • m–1) 22 

Tire stiffness of the front ktf/(kN • m–1) 192 

Tire stiffness of the rear ktr/(kN • m–1) 192 

Suspension damping coefficient of the front csf/(kN • s • m–1) 1.5 

Suspension damping coefficient of the rear csr/(kN • s • m–1) 1.5 

Distance from the sprung mass CG 
to the front axle a/m 

1.25

Distance from the sprung mass CG 
to the rear axle b/m 

1.51

Half width of the front axle tf/m 0.74

Half width of the rear axle tr/m 0.74

 

3.3  Identification Results 
How to choose the additional mass would affect the 

accuracy of physical parameter identification. Fig. 2 shows 
the relationship between the relative variation of modal 
parameter with the incremental percentage of mass. With 
the incremental percentage of mass varying from 2% to 
14%, the relative variety of modal parameters range from 
–0.98% to –6.8%. If the incremental percentage of mass is 
less than 10%, the decreasing percentage of modal 
parameter is less than 5%. Considering the measurement 
signal contains noise, if the incremental percentage of mass 
is too small, it will cause large physical parameter 
identification error of the vehicle. It is suggested that the 
incremental percentage of mass should be over 10% in 
order to achieve better identification accuracy. In this 
manuscript, it is assumed the additional mass ∆M is as 
follows: 

 
diag(130, 250, 40, 4, 4, 5, 5) =M .    (36) 

 

 
Fig. 2  Relationship between the relative variation of the modal 

parameter with the incremental percentage of mass 

In numerical simulation, Wilson-theta method is 
employed to calculate the acceleration responses of the 
vehicle stimulated by the road-tyre excitation. In the 
physical parameter identification procedures, all physical 
parameter of vehicle are identified and listed in Table 2. It 
shows the comparison of the parameters of identification 
with the ones of vehicle, the largest absolute percentage 
error of identification is 0.205%. It proves that the theory of 
presented method is correct and effective for identifying 
physical parameter of the vehicle. 
 

Table 2.  Comparison the parameters of identification  
with the ones of vehicle 

Notation Known Identified Percentage error/%

Ms 1380 1379.85 –0.011 
Iyy 2440 2439.73 –0.011 
Ixx 380 379.91 –0.023 
muf 40.5 40.54 0.093 
mur 45.4 45.44 0.095 
ksf 17 000 16 971.05 –0.170 
ksr 22 000 21 982.85 –0.078 
ktf 192 000 191 932.79 –0.039 
ktr 192 000 191 938.46 –0.032 
csf 1500 1498.45 –0.103 
csr 1500 1498.70 –0.087 
a 1.25 1.282 –0.141 
b 1.51 1.508 –0.130 
tf 0.74 0.738 –0.205 
tr 0.74 0.739 –0.161 

 

4  Discussion 
 

4.1  Effect of the error of additional mass 
In practical problem, the additional mass may contain 

some errors caused by weigh or measurement. Therefore, it 
is necessary to discuss the parameter identification affected 
by the error of additional mass. For the convenience of 
discussion, physical parameters of the vehicle are divided 
into inertia parameters: ms, Iyy, Ixx, muA, muB, muC, muD; 
dynamic parameters: ksf, ksr, ktf, ktr, csf, csr; and structural 
parameters: a, b, tf, tr. In current study, the inertia 
parameters are identified firstly through Eq. (30); then, the 
dynamic parameters are calculated by using the elements of 
matrices C and K, which only contain the dynamic 
parameters; finally, the structural parameters are 
determined by using the elements of matrix K, which only 
contain the linear term of structural parameters. Eq. (30) 
shows that the mass matrix M is proportional to the 
additional matrix ∆M, thus the percentage error of mass 
matrix caused by the error of additional mass is 
proportional to the error of additional mass. Figs. 37 show 
the percentage errors of identified dynamic parameters and 
identified structural parameters affected by the errors of 
∆ms, ∆Iyy, ∆Ixx, ∆muf and ∆mur, respectively. Fig. 3 shows 
that the error of ∆ms can obviously affects the accuracy of 
parameters ksf, ksr, csf, csr, a, b, tf and tr. When the 
percentage error of ∆ms increases from –5% to 5%, the 
percentage errors of identification parameters ksf, ksr, csf and 
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csr decrease linearly from about 4% to –4%, and the 
percentage error of identification structural parameter 
increases proportionally from about –5% to 5%. However, 
the effect of parameters ktf and ktr is very small. Figs. 4 and 
5 show that the error of additional pitch moment inertia and 
roll moment inertia will not affect the accuracy of dynamic 
parameters and they only affect corresponding structural 
parameters. When the percentage error of moment inertia 
increases from –5% to 5%, the percentage error of 

structural parameter decreases linearly from about 2.4% to 
–2.6%. Figs. 6 and 7 show that the error of additional 
unsprung mass can affect all of the dynamic parameters and 
structural parameters. With the increasing of the percentage 
error of additional unsprung mass from –5% to 5%, the 
largest absolute value of the percentage error of dynamic 
parameter and structural parameter is about 5.6% and the 
effect of the parameters ktf and ktr is more obvious than that 
of parameters ksf, ksr, csf and csr.  

 

 
Fig. 3  Identification of parameter affected by the percentage error of ∆ms 

 

 
Fig. 4  Identification of parameter affected by the percentage error of ∆Iyy 

 

 
Fig. 5  Identification of parameter affected by the percentage error of ∆Ixx 
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Fig. 6  Identification of parameter affected by the percentage error of ∆muf 

 

 
Fig. 7  Identification of parameter affected by the percentage error of ∆mur 

 

4.2  Effect of the Error of Structural Parameter 
The structural parameter can also be obtained directly or 

indirectly through measurement. For example, the 
parameters tf and tr can be measured directly, and the 
parameters a and b can be calculated by using the 
relationship between the front and rear axle loads. These 
structural parameters may contain some measurement 
errors and the effect of the error of structural parameter in 
the physical parameter identification will be discussed in 
this section. The inertia parameters are also calculated by 
using Eq. (30), after that, the dynamic parameters are 
calculated by using the elements of matrices C and K. Eq. 
(30) illustrates that the inertia parameters only relate to 
additional mass and the sub-matrix of identification state 
matrices. Therefore, the error of structural parameter will 
not affect the identification of inertia parameters. Fig. 8 
presents how the dynamic parameters are affected by the 
error of structural parameter. It shows that the effect of the 
parameters a and b is significantly bigger than that of the 
parameters tf and tr. Furthermore, the effect of parameters 
ktf and ktr caused by the error of structural parameters is 
very small. The percentage error of identified dynamic 
parameters is approximately linear with the percentage 
error of structural parameters. When the percentage error of 

structural parameters a and b increases from –5% to 5%, 
the percentage errors of identified parameters ksf and csf 
increase from about –4.8% to 4.7%, and the ones of 
identification parameters ksr and csr increase from about 
–5.8% to 5.9%. When the percentage error of parameters tf 
increases from –5% to 5%, the percentage errors of 
identified parameters ksf and csf increase from about   
–0.74% to 4%. When the percentage error of parameters tr 
increases from –5% to 5%, the percentage errors of 
identification parameters ksf, ksr and csr increase from about 
–0.48% to 0.25%, and the ones of identified parameter csf 
increase from about –0.35% to 0.15%. Since the rear 
suspension stiffness ksr is larger than the front suspension 
stiffness ksf, the error of tr can affect both the front and rear 
suspension dynamic parameters significantly. 
 
4.3  Effect of Noise 

The real response of the vehicle is measured by sensors 
such as displacement sensor, acceleration sensor and 
gyroscope. It is inevitable that the measured signal contains 
noise. This section will discuss the effect of noise. The 30 
dB noise is added into the simulation in order to simulate 
the real vehicle response. The MATLAB firls function is 
the linear-phase FIR filter function designed by using 
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least-squares error minimization. This filter function is 
employed to filter the signal contained noise. Since the 
frequencies of the vehicle are between 1 to 15 Hz, the low 
pass filter is selected to filter, and the pass band cutoff 
frequency is chosen as 16 Hz. Fig. 9 shows that the 
comparison between the filtered signal and the signal 
contained noise. In the parameter identification procedure, 
the structural parameters are obtained by measurement. 
Table 3 shows the comparison of the parameters of 
identification with the values of vehicle. It illustrates that 

the noise indeed affects the accuracy of the identification. 
Although the low pass filter has filtered the high-frequency 
noise, the low-frequency noise signal can still affect the 
modal parameter identification. Furthermore, the physical 
parameters are also affected by the low-frequency noise. 
The largest absolute value of the percentage error of the 
identification is 3.784%. It demonstrates that the present 
method can be applied to identify the physical parameter, 
even the vehicle system contains 30 dB noise signal. 

 

 
Fig. 8  Identification dynamic parameter affect 

 by the error of structural parameter 

 
 

 
Fig. 9  Comparison the filtered signal 

 with the signal contained noise 

 
Table 3.  Comparison the parameters of identification  

with the ones of vehicle 

Notation Known Identified Percentage error/% 

Ms 1380 1348.17 –2.307 

Iyy 2440 2526.28 3.536 

Ixx 380 368.91 –2.918 

muf 40.5 41.28 1.928 

mur 45.4 44.32 –2.379 

ksf 17 000 17271.05 1.594 

ksr 22 000 21167.61 –3.784 

ktf 192 000 187 684.01 –2.248 

ktr 192 000 194 985.47 1.555 

csf 1500 1445.30 –3.647 

csr 1500 1534.06 2.271 
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5  Conclusions 
 

(1) A new physical parameter identification method 
based on the State Variable Method for two-axis vehicles 
has been presented. The modal parameters of vehicle are 
identified by using SVM. Furthermore, the physical 
parameters of vehicle are estimated by least squares 
method. 

(2) A numerical simulation example given in this paper 
shows that the presented method can effectively identify all 
physical parameters of the vehicle from the free decay 
responses of vehicle.  

(3) The sensitivity investigation results demonstrate that 
even if the practical problem caused by measurement exists, 
the presented method is still effective for vehicle parameter 
identification.  
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