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Abstract: The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing 

shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with 

kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further 

investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem 

for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural 

shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed 

cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a 

hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small 

central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. 

Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown 

behavior of structure are clearly. 
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1  Introduction 
 

Determining the structural shakedown behavior for 
structures under cyclic loading is important in structural 
evaluation and design. Generally, there are two different 
approaches to shakedown analysis, i.e., the static approach 
applying the static shakedown theorem and the kinematic 
approach applying the kinematic theorem. As the static 
approach results, in principle, in a conservative solution, it 
is more widely applied in engineering practices. The static 
shakedown theorem in its original formulation is valid only 
for elastic perfectly plastic(EPP) structures. However, in 
many engineering applications the materials exhibit 
kinematical hardening behavior, so kinematic hardening 
behavior needs to be taken into account to obtain more 
realistic results. 

Already, the original static shakedown theorem has been 
extended to be suitable for structures with unlimited 
kinematical hardening materials. However, in real materials 
the stress is bounded by the ultimate stress, and the 
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hardening is therefore limited. The limited kinematic 
hardening model is thus more realistic. The first explicit 
extended theorem for limited kinematic hardening materials 
was proposed by WEICHERT and GROß-WEEGE[1], 
employing a two-surface model. STEIN, et al[2–3], proposed 
another theorem employing an overlay model, which is 
actually an equivalent formulation of the former one. Even 
though WEICHERT and GROß-WEEGE only proved their 
theorem was valid for limited linear kinematical hardening, 
PHAM, et al[4–5], proved that in the generally-nonlinear 
case the shakedown theorem was valid for limited 
nonlinear kinematical hardening. Hence, the extended 
shakedown theorem for both the limited linear and 
nonlinear kinematic hardening can be expressed in the 
same formulation. As a consequence of the extended 
shakedown theorem, it was found that the specific type of 
kinematic hardening has little influence on the shakedown 
limit load; instead the initial yield stress and the ultimate 
stress are the main influence factors[4–7]. The extended 
shakedown theorem for both linear and nonlinear kinematic 
hardening mentioned above is referred to as the extended 
shakedown theorem for limited kinematic hardening in this 
paper. 

Many shakedown analysis methods that take kinematic 
hardening behavior into account were developed, and 
solutions for the shakedown limit load were determined for 
some specified structures with kinematic hardening 
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materials under specified loading conditions[8–10]. For 
example, shakedown behavior of a hollow tension 
specimen subjected to a constant tension and alternating 
torsion with zero mean shear stress was investigated with 
different material models, including the limited linear 
kinematic hardening[11], limited nonlinear kinematic 
hardening[12–13], limited generally-nonlinear kinematic 
hardening[14], unlimited kinematic hardening[14] and EPP[11, 

14] models. Moreover, HEITZER, et al[11], derived the 
analytical shakedown limit load solutions for the same 
specimen with constant tension and cyclic torsion with 
nonzero mean value for both the limited linear and 
nonlinear kinematic hardening model. Additionally, the 
kinematic hardening model has also been applied to some 
other problems, such as a flange pipe subjected to 
thermo-mechanical cyclic loading[14–16], a square plate with 
small central hole subjected to biaxial cyclic tension[17–18], a 
grooved rectangular plate subjected to varying tension and 
bending[18], a cantilever hook subjected to a cyclic 
loading[19], a circular shaft subjected to cyclic torsion and a 
helical spring subjected to dynamic quasi-periodic 
fluctuating load[20], bar truss structures and bridge truss 
subjected to a cyclic force[21–22], a functionally graded 
rotating disk subjected to cyclic temperature gradient 
loading[23]. 

By comparing these specific solutions with the kinematic 
hardening material model and EPP model, rules governing 
specific effects can be drawn up; the kinematic hardening 
behavior has different effects on the shakedown behavior 
for different structures under different loading conditions. 
For example, the shakedown limit loads for the hollow 
tension specimen with the EPP material model are smaller 
than those with the kinematic hardening material model 
with the same initial yield stress. The shakedown limit 
loads of different kinematic hardening models with the 
same initial yield stress and ultimate stress differ little. 
Applying the same kinematic hardening model with the 
same initial yield stress has shown that the shakedown limit 
load is larger with larger ultimate stress[11–16]. Moreover, for 
a square plate with small central hole subjected to biaxial 
cyclic tension, the shakedown limit load is equal for the 
EPP and kinematic hardening models with the same initial 
yield stress[17]. These results have greatly helped our 
understanding of the effect of kinematic hardening behavior 
on structural shakedown behavior. However, the reasons for 
the different shakedown behaviors and conditions under 
which kinematic hardening can increase the shakedown 
limit load have not yet been fully explored, and further 
research is required. To resolve these problems rules 
governing the general effects of kinematic hardening 
behavior on the structural shakedown behavior are clearly 
necessary. 

In this paper, the extended static shakedown theorem for 
limited kinematic hardening is used to derive the general 
analytical solution for the structural shakedown limit load. 
Then, rules governing the general effect of kinematic 

hardening behavior on the shakedown behavior of 
structures are proposed. The shakedown behavior is also 
investigated with the unlimited kinematic hardening and 
EPP models, which are specific cases of the limited 
kinematic hardening model; this is studied by setting the 
ultimate stress to infinite for the unlimited kinematic 
hardening model and equal to the initial yield stress for the 
EPP model. Furthermore, the analytical shakedown limit 
load for fully reversed cyclic loading with zero mean load 
value and non-fully reversed cyclic loading with non-zero 
mean value are given based on the general solution. The 
analytical results are applied to some specific problems and 
the solutions are compared with the solutions in the 
literature. 

 
2  Static Shakedown Theorem 

 
2.1  Classic shakedown theorem 

The classic Melan's shakedown theorem for EPP 
materials can be formulated as follows. 

If there exist a time-independent and self-equilibrium 
residual stress field r ( )ij xσ , such that the yield condition 

Y Y( , ] 0ijf  =σ  is not violated for any loading path within 
the considered loading domain at any time t and in any 
point x of the structure, then the system will shake down 
The condition is expressed as 

 
e r EPP

Y Y[ ( , ) ( ), ] 0,ijf x t x +σ σ ≤          (1) 

 
where e ( , )x tσ  denotes the reference elastic stress field, 
which occurs in a fictitious, perfectly elastic reference body 
with the same geometric size under the same conditions as 
the elastic-plastic one, and EPP

Y  is the yield stress of the 
material.  

 
2.2  Theorem for kinematic hardening 

The extended static shakedown theorem for unlimited 
kinematic hardening structures can be formulated as 
follows. 

If there exist a time-independent and self-equilibrium 

residual stress field r ( )ij xσ  and a time-independent back 

stress field ( )ij xα , such that the following condition is 

satisfied for any loading path within the considered loading 

domain at any time t and in any point x of the structure, 

then the system will shake down. The condition is 

expressed as 
 

e r
Y Y[ ( , ) ( ) ( ), ] 0,ij ij ijf x t x x + -σ σ α ≤        (2) 

 
where Y  is the initial yield stress of the kinematic 

hardening material. 
WEICHERT and GROß-WEEGE introduced a bound 

surface H H( , ) 0ijf  =σ  with respect to the ultimate stress 
to restrict the hardening. The extended static shakedown 
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theorem for limited kinematical hardening can be 
formulated as follows. 

If there exist a time-independent and self-equilibrium 

residual stress field r ( )ij xσ  and a time-independent back 

stress field ( )ij xα , such that the yield condition 

Y H( , ) 0ijf  =σ  and the bounding condition 

H H( , ) 0ijf  =σ  are not violated for any loading path 

within the considered loading domain at any time t and in 

any point x of the structure, then the system will shake 

down. 
That is to say it needs to satisfy both inequality (2) and 

the following inequality: 

 
e r

H H[ ( , ) ( ), ] 0,ij ijf x t x +σ σ ≤            (3) 

 

where H  is the ultimate stress of the kinematic 

hardening material. Melan's original theorem for perfectly 

plastic materials can also be deduced from the above 

formulation if ( ) 0ij x =α  and H Y = . Melan's theorem 

for unlimited kinematic hardening can also be deduced 

from the above formulation if H ¥ . Thus inequality 

(3) is not relevant anymore for unlimited kinematic 

hardening. 

 
3  Analytical Shakedown Analysis 

 

3.1  Shakedown condition 
A cyclic load ( )P t  varies in the range cmin cmax[ , ]P P , 

where cmaxP  is the peak of the cyclic load and cminP  is 

the valley of the cyclic load, while cmax cmin( )P P  is the 

scope of the cyclic load. For a kinematic hardening 

structure under cyclic load the structure can shake down if 

the requirements of the shakedown theorem are satisfied at 

both of the vertices of the cyclic load. So the shakedown 

conditions for structures based on Eq. (2) and (3) are 

expressed as follows: 

 
e r

Y max Y[ ( ) ( ) ( ), ] 0,ij ij ijf x x x + -σ σ α ≤       (4) 

 
e r

Y min Y[ ( ) ( ) ( ), ] 0,ij ij ijf x x x + -σ σ α ≤       (5) 

 
e r

H max H[ ( ) ( ), ] 0,ij ijf x x +σ σ ≤           (6) 

 
e r

H min H[ ( ) ( ), ] 0,ij ijf x x +σ σ ≤           (7) 

 
where  e

maxij xσ  is the reference elastic stress field to the 
peak cyclic load cmaxP  and  e

minij xσ  is the reference 
elastic stress field to the valley cyclic load cminP . For 
shakedown analysis under the cyclic load c ( )P t , it is 
reasonable to assume that when the cyclic load c ( )P t  
reaches its peak value, i.e., c cmax( )P t P= , the structure is 
in the elastic-plastic state. Then according to above theorem, 

a self-equilibrium stress field r ( )ij xσ  is constructed as 
 

r 1 e
max( ) ( ) ( )ij ij ijx x x= -σ σ σ ,           (8) 

 

where 1 ( )ij xσ  is the elastic-plastic stress field to the peak 

cyclic load, i.e., cmaxP . The back stress 1 ( )ij xα  is selected 

as the time-independent back stress, which is the back 

stress to the peak cycle load. The combination of the 

reference elastic stress to the cyclic load and the stress 
1 ( )ij xσ  should then satisfy Eqs. (4)(7). The shakedown 

conditions for structures employing the stress given by Eq. 

(8) are then as follows: 
 

1 1
Y Y[ ( ) ( ), ] 0,ij ijf x x -σ α ≤            (9) 

 
1 E 1

Y Y[ ( ) ( ) ( ), ] 0,ij ij ijf x x x - -σ σ α ≤        (10) 

 
1

H Y[ ( ), ] 0,ijf x σ ≤               (11) 

 
1 E

H H[ ( ) ( ), ] 0,ij ijf x x -σ σ ≤            (12) 
 

where ( )E
ij xσ  is the elastic-plastic stress field under the 

scope of the cyclic load, and where ( ) ( )E e
maxij ijx x= -σ σ

( )e
minij xσ  applies. 

Since the structure is assumed to be in the 

elastic-plastic state under cmaxP , Eq. (9) is naturally 

satisfied. Then the shakedown conditions reduce to Eqs. 

(10) and (11), and the shakedown limit load is the 

maximum load range that satisfies Eqs. (10) and (11). 
The shakedown behavior of the structure is 

determined by the weakest critical point. For simplicity, 
only the situation for the structural critical point is 
discussed next. The shakedown conditions above are all 
converted to the conditions of the stress state of the critical 
point. The material is assumed to follow the von Mises 
criterion, and the subsequent yield surface Y Y( , ) 0ijf  =σ  
and the bounding surface H H( , ) 0ijf  =σ  of the 
kinematic hardening material are described by the von 
Mises criterion and are expressed as follows: 

 

Y Y

2 2
m m Y

( , )

[( )( ) 3( ) ] 2 3 0

ij

ij ij ij ij

f 

  

=

- - - - / - / =

σ

σ α σ α ,
  

(13)
 

 

( )2 2
H H m H( , ) 3 2 3 0ij ij ijf   = - / - / =σ σ σ ,    (14) 

 
where ijσ  is the elastic-plastic stress, ijα  is the back 

stress, ijσ  and ijα  are the deviatoric stress tensors of ijσ  

and ijα  
respectively, m  and m  are the mean stresses 

of ijσ  and ijα  respectively. 
Substituting the left terms of Eqs. (9) and (10) into the 

expression of Eq. (13) yields 
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1 1 1 1 1
Y Y

1 1 2 2
m m Y

( , ) [( )( )

3( ) ] 2 ( ) 3,

ij ij ij ij ijf 

  

= - - -

- / - /

σ σ α σ α
       

(15)
 

 
1 E 1 1 1 1 1

Y Y

1 1 2 1 1 E E
m m

1 1 E E 2
Y

( , ) {( )( )

3( ) [2( ) ]

3[2( ) ] } 2 ( ) 3,

ij ij ij ij ij ij ij

ij ij ij ij

m m m m

f 

 

    

- - = - - -

- - - - +

- - / - /

σ σ α σ α σ α

σ α σ σ   

(16)

 

 

respectively, where 1
ij
¢σ , 1

ij
¢α  and E

ij
¢σ  are the deviatoric 

stress tensors of 1
ijσ , 1

ijα  and E
ijσ  respectively. 

Substituting the left term of Eqs. (11) and (12) into Eq. 
(14) yields 

 
1 1 1 1 2 2

H H m H( , ) [ 3( ) ] 2 3,ij ij ijf   = - / - /σ σ σ      (17) 

 
1 E 1 1 1 2 1 E E

H m

1 E E 2
m m m H

( , ) 3( ) (2 )

3(2 ) 2  ( ) 3,

ij ij H ij ij ij ij ijf  

   

é- = - - - +êë
ù- / - /úû

σ σ σ σ σ σ σ

(18)
 

 
respectively. 

Because the structure is assumed to be in the 

elastic-plastic state under cmaxP , Eq. (9) concerning the 

critical point is thus reduced to ( ) ( )1 1
Y Y[ , ] 0ij ijf x x - =σ α . 

Substituting this equation and Eq. (15) into Eq. (16) yields 
 

1 E 1 1 1 E E
Y Y

1 1 E E
m m m m

( , ) 1 2[2( ) ]

3[2( ) ] 2.

ij ij ij ij ij ij ijf  

   

- - =- / - - +

- - /

σ σ α σ α σ

(19)
 

 
By substituting Eq. (17) into Eq. (18), we obtain 
 

1 E 1 1 E E
H H H H

1 E E
m m m

( , ) ( , ) [2( )

3(2 ) ] 2.

ij ij ij ij ij ijf f 

  

- = - - +

- /

σ σ σ σ σ σ

  (20)
 

 
According to the generalized version of Hooke's law the 
following two equations hold: 

 
e e e

v2ij ij ijG  = +σ ε ,             (21) 
 

e e
m vK = ,                 (22) 

where 

/ [(1 )(1 2 )]E   = + - ,          (23) 
 

3(1 2 )K E = / - ,             (24) 
 

2(1 )G E = / + .              (25) 
 

Where e
ijε  is the elastic strain corresponding to e

ijσ , e
v  

is the corresponding volumetric strain and ij  is the unit 

tensor. If i=j, then 1ij = . If i≠j, then 0ij = . E is the 

elastic modulus,   is the Poisson ratio and G is the shear 

modulus. Substituting Eqs. (21)(25) into Eqs. (19) and (20) 

yields 

 
1 E 1 1 1 E E

Y Y

1 1 E E
m m m v

( , ) [2( ) ]

[2( ) ] ,

ij ij ij ij ij ij ijf G

G



   

- - =- - - +

- -

σ σ α σ α σ ε

   (26)
 

 
1 E 1 1 E E

H H H H

1 E E
m m v

( , ) ( , ) [(2 )

(2 ) ].

ij ij ij ij ij ijf f G 

  

- = - - +

-

σ σ σ σ σ ε

  (27)
 

 
According to the relation between the stress tensor and the 
deviatoric stress tensor we have 

 

ij ij m ij ¢= +σ σ ,              (28) 

 
e e e

mij ij ij ¢= +ε ε ,               (29)
 

 
where e

ij
¢ε  is the deviatoric tensor of e

ijε , e
m  is the mean 

strain of e
ijε . Substituting Eqs. (28), (29) into Eqs. (26), (27) 

yields 
 

{ }1 E 1 1 1 E E
Y Y( , ) [2( ) ] ,ij ij ij ij ij ij ijf G ¢ ¢¢- - =- - -σ σ α σ α σ ε  (30) 

 
1 E 1 1 E E

H H H H( , ) ( , ) (2 ) .ij ij ij ij ij ijf f G  ¢ ¢ ¢- = - -σ σ σ σ σ ε   (31) 

 
Substituting Eq. (30) and inequality (31) into inequalities 

(10) and (12), respectively, yields 
 

1 E 1 1 1 E E
Y Y( , ) [2( ) ] 0,ij ij ij ij ij ij ijf G ¢ ¢¢- - =- - -σ σ α σ α σ ε ≤

 
(32) 

 
1 E 1 1 E E

H H H H( , ) ( , ) (2 ) 0.ij ij ij ij ij ijf f G  ¢ ¢ ¢- = - -σ σ σ σ σ ε ≤
 

(33) 

 
Therefore, the shakedown conditions for the limited 

kinematic hardening structure are converted to inequalities 

(11), (32) and (33), corresponding to inequalities (11), (10) 

and (12), respectively. For the unlimited kinematic 

hardening structure, it only needs to satisfy inequality (32), 

as the ultimate stress is infinite. For the EPP structure, it 

then needs to satisfy inequalities (11), (32) and (33) 

simultaneously with H Y = . 
 

3.2  Shakedown limit load 
The shakedown limit load is the maximum range of the 

cyclic load under which the structure can reach shakedown. 

The shakedown limit load is expressed as cmin cmax[ , ]s sP P , 

where cmax
sP  and cmin

sP  are the peak and valley of the 

shakedown limit load, respectively, while cmax cmin
s sP P-  is 

the scope of the shakedown limit load. 
The stresses ijσ , e

ijσ  and strain e
ijε  are represented in 
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one coordinate system to describe the shakedown condition 

of inequality (32). Vectors are used to represent the states of 

stress and strain, which are illustrated in Fig. 1. 

 

 

Fig. 1.  Analytical analysis of inequality (32) 

 

Setting 1
ij
¢=OA σ  and Point B to be the center of the 

subsequent yield surface, results in 1
ij
¢=OB α  and =BA

1 1
ij ij
¢ ¢-σ α . Since E

ij
¢σ  and 1 1

ij ij
¢ ¢-σ α  are in the same 

direction, then BC  and BA  are in the same direction if 
E
ij
¢=BC σ  is set, which is illustrated in Fig. 1. Setting 

1 12( ) 2ij ij
¢ ¢= - =BD σ α BA  results in 12( ij

¢= -CD σ

1 E)ij ij
¢ ¢-α σ . According to the generalized version of 

Hooke's law, E E 2ij ij G¢ ¢= /ε σ , 2(1 )G E = / + , so E
ij
¢σ  

and E
ij
¢ε  are in the same direction. Setting E

ij
¢=DE ε , 

causes DE  and BC  to be in the same direction. Eq. (30) 
is thus expressed as 

 
1 E 1

Y Y •, •( )ij ij ijf G- - =-σ σ α CD DE .      (34) 

 
Eq. (34) can further be expressed as 
 

1 E 1
Y Y( , • • •) cosij ij ijf G - - =-σ σ α CD DE ,   (35) 

 

where   is the angle between vectors CD  and DE . 

Since 0,G >  the positive and negative of 1 E
Y ( ij ijf - -σ σ

1
Y, )ij α  is determined by the angle   between vectors 

CD  and DE . It is clear that if <BC BD , then the 

angle   is zero. So 1 E 1
Y Y( , ) 0ij ij ijf - - <σ σ α , and 

inequality (32) holds. If =BC BD , then 0=CD  and 
1 E 1

Y Y( , ) 0ij ij ijf - - =σ σ α , then inequality (32) holds too. 

If >BC BD , then the angle   is 180°. Therefore, 
1 E 1

Y Y( , ) 0ij ij ijf - - >σ σ α , and inequality (32) does not 

hold anymore. The condition for which inequality (32) is 

true, is thus BC BD≤ , which is expressed in the form 

of stress 

E 1 12ij ij ij
¢ ¢ ¢-σ σ α≤ ,              (36) 

 
where E

ij
¢σ  is the modulus of E

ij
¢σ , 1 1

ij ij
¢ ¢-σ α  is the 

modulus of 1 1
ij ij
¢ ¢-σ α . 

Eq. (36) can be further expressed as 
 

E
Y2ij ¢σ ≤ ,                  (37) 

 
where Y  is the radius of the subsequent yield surface. 

For kinematic hardening materials, Y  is constant. 

Therefore, for inequality (32) to hold the condition of 

external load is 
 

cmax cmin e2P P P- ≤ ,              (38) 

 

where eP  is the elastic limit load of the structure for the 

critical point, and is referred to as the elastic limit load 

from hereon. 

The condition under which inequality (33) holds true is 

discussed in the same way. As illustrated in Fig. 2, when 
1OA σij
¢= , EOC σij

¢= , and 
12OF   ij , then 12CF σij

¢= -
Eσij
¢ . Setting EFE  ij

¢= , inequality (31) is then expressed 

as 
 

1 E 1
H H H H( , • •) ( , )ij ij ijf f G - = -σ σ σ CF FE .    (39) 

 

 
Fig. 2.  Analytic analysis of inequality (33) 

 

Similarly, if OC OF≤ , then the angle between 

vectors CF  and FE  is zero. In that case, • •G- CF

0FE ≤ . If >OC OF  then the angle between vectors 

CF  and FE  is 180°. Therefore • • 0G- >CF FE  

and the condition for inequality 1 E E(2 ) 0ij ij ijG ¢ ¢ ¢- -σ σ ε ≤  

to hold is OC OF≤ , which can be expressed in the 

form of stress 

E 12ij ij
¢ ¢σ σ≤ ,                (40) 
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where 1
ij
¢σ  is the modulus of 1

ij
¢σ . 

Because we have assumed that cmaxP  exceeds the 

elastic limit load in the derivations of this paper, we also 

know that 1
Y ij  ¢≤ . So if Eq. (37) holds, then Eq. (40) 

holds. If Eq. (11) also holds, then Eq. (33) holds too. That 

is to say, if the conditions for Eqs. (11) and (32) hold, then 

Eq. (33) holds too. The shakedown condition is reduced to 

Eqs. (11) and (32). 
The corresponding external load to fulfill Eq. (11) should 

satisfy 
 

cmax HP P≤ ,                (41) 
 

where HP  is the plastic limit load with respect to the 
ultimate stress

 H . 
The shakedown conditions of the external load are thus 

reduced to inequalities (38), and (41).  
Therefore, the shakedown limit load for structures with 

limited kinematic hardening materials is the maximum load 
range that fulfills both inequalities (38) and (41). 

It can be concluded from inequalities (38) and (41) that 

the shakedown behavior of the limited kinematic hardening 

structure is influenced by the elastic limit load and the 

plastic limit load with respect to the initial yield stress and 

the ultimate stress, respectively. For a general cyclic load, 
( )P t  varies in the range cmin cmax[ , ]P P , while the scope of 

its shakedown limit load, s s
cmax cminP P- , is bounded by 

twice the elastic limit load, and the peak of the shakedown 

limit load, s
cmaxP , is bounded by the plastic limit load 

corresponding to the ultimate stress. 
For unlimited kinematic hardening, the bounding surface 

is no longer effective. Inequality (41) always holds. 
Therefore, the structure can shake down only if inequality 
(38) holds, i.e., if the scope of the cyclic load does not 
exceed twice the elastic limit load.  

For EPP materials, the ultimate stress is equivalent to the 
yield stress, so the bounding condition is equivalent to the 
plastic limit condition with the yield stress of the EPP 
model. Therefore, the scope of the shakedown limit load is 
bounded by twice the elastic limit load, and the peak of the 
shakedown limit load is bounded by the plastic limit load 
with the yield stress of the EPP model. 

 
3.3  Solutions for particular loading cases 

The shakedown limit loads for fully reversed cyclic 
loading with zero mean value and cyclic loading with 
nonzero mean value are determined based on the above 
general analytical solution. 

 
3.3.1  Fully reversed cyclic loading 

If the cyclic load that varies in the range 

cmin cmax( ) [ , ]P t P PÎ  is fully reversed loading with zero 

mean value, then the peak and valley loads satisfy 

cmax cminP P=- .               (42) 

Substituting that into inequality (38) yields  
 

cmax eP P≤ .                  (43) 

 
For a limited kinematic hardening structure, the peak 

load should also satisfy inequality (41). Thus the peak of 

the shakedown limit load s
cmaxP  is the smaller one of eP  

and H ,P  i.e. 
 

s
cmax e Hmin( , )P P P= .              (44) 

 
By substituting Eq.(44) into Eq.(42), the valley of the 

shakedown limit load s
cminP  is obtained as: 

 
s

cmin e Hmin( , )P P P=- .             (45) 

 
For an unlimited kinematic hardening structure, only 

inequality (43) should be satisfied. Then the peak and 
valley of the shakedown limit load are  

 
s

cmax eP P= ,                  (46) 

 
s

cmin eP P=- .                 (47) 

 
For an EPP material, HP  is equivalent to the plastic 

limit load with yield stress, which is denoted as EPP
HP . 

According to Eqs. (44) and (45), the shakedown limit loads 

of the peak and valley loads are as follows: 
 

s EPP
cmax e Hmin( , )P P P= ,             (48) 

 
s EPP

cmin e Hmin( , )P P P=- .            (49) 

 
3.3.2  Non-fully reversed cyclic loading 

If the cyclic load that varies in the range 

cmin cmax( ) [ , ]P t P PÎ  is not fully reversed loading, but 

instead has a nonzero mean load mP , then the peak and 

valley load can be expressed as follows 
 

max max min( ) 2 mP P P P= - / + ,          (50) 

 

min max min m( ) 2P P P P=- - / + .         (51) 

 
Substituting Eqs. (50) and (51) into inequality (38) yields  

 

cmax e mP P P+≤ .              (52) 

 
By combining inequality (52) with inequality (41), we 

find that the peak of the shakedown limit load 
s

cmaxP  for 

limited kinematic hardening is the smaller one of either 

e mP P+  or H ,P  i.e. 

s
max e m Hmin( , )P P P P= + .           (53) 
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Then, with respect to inequality (38), the valley of the 

shakedown limit load s
cminP  can be obtained as 

 
s

min e m H emin( , ) 2P P P P P= + - .         (54) 

 
For a special case, if cmin 0P = , i.e., the variation range 

of the cyclic load is cmax[0, ]P , then the mean load must 

satisfy m cmax 2P P= / , and by substituting this into Eq. (53) 

the peak of the shakedown limit load is found to be 
 

s
cmax e Hmin(2 , )P P P= .            (55) 

 
For unlimited hardening, the peak of the shakedown 

limit load is 
 

s
cmax e2P P= .                (56) 

 
For an EPP material, HP  is equivalent to the plastic 

limit load EPP
HP  with respect to the yield stress. Therefore, 

according to Eq. (55) the peak of the shakedown limit load 

is 
 

s EPP
cmax e Hmin(2 , )P P P= .           (57) 

 

4  Discussion 
 

The above analytical results are applied to some specific 
problems. The shakedown analysis results obtained are 
compared with the ones in the literature. 

 
4.1  Hollow tension specimen 

A hollow tension specimen is subjected to alternating 

torsion with zero mean shear stress such that max max - =  

and a constant tensile stress 0 > . The geometry of the 

specimen is illustrated in Fig. 3.  
 

 
Fig. 3.  Geometry of the hollow tension specimen 

 
The analytical and numerical shakedown analyses are 

documented in the literature[11–14]. The normalized 
shakedown domain for the specimen is shown in Fig. 4. All 
the stress loads are normalized by the pure shakedown 
tension stress EPP

s  and the pure shakedown shear stress 
EPP
s  for the perfectly plastic material model.  
For the EPP material model with only cyclic torsion 

acting on the specimen, it is clear that the elastic limit load 
is smaller than the plastic limit load, i.e., EPP

e H < . 
According to Eq. (48), the peak of the shakedown limit 
load should satisfy s EPP

max e Hmin( , )  = ; thus it can be 
obtained that max e

s = . However, the relation between the 
plastic limit load, HP , with respect to the ultimate stress, 

H , and the limit load, EPP
HP , with initial yield stress, Y , 

is[11] 
 

EPP
H H Y H( •)P P = / .             (58) 

 

 
Fig. 4.  Normalized shakedown domains of hollow  

specimen under constant tension and fully  
reversed alternating torsion[11–14] 

 
Then the equality EPP

e H Y H( •)   < /  holds, and so 
according to Eq. (44) the shakedown limit load of the 
torque for limited kinematic hardening is e . For unlimited 
hardening, the shakedown limit load of the torque is e  
according to Eq. (46). These results are consistent with the 
results presented on the vertical axis intercept in Fig. 4. 

The hollow tension specimen illustrated in Fig. 3, which 
is subjected to constant moment, M and cyclic tension 

max[0, ]N NÎ  with nonzero mean value max 2N /  was 
investigated by analytical and numerical methods[11]. The 
results are illustrated in Fig. 5. 

 

 
Fig. 5.  Normalized shakedown domains of hollow  

specimen under constant torsion and non-fully  
reversed alternating tension[11] 

 
For the hollow specimen with an EPP material model 

subjected only to tension, we know that the elastic limit 
load is equal to the plastic limit load, i.e., EPP

H eN N= , 
owing to the homogeneous stress field in the specimen. 
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According to Eq. (57), the shakedown limit load for this 
loading case should satisfy EPP EPP

s e Hmin(2 , )N N N= . 
Thus the shakedown limit load satisfies EPP EPP

s HN N= =

e e2N N<  in this case. For unlimited kinematic hardening, 
with respect to Eq. (56), the shakedown limit load of pure 
tension, sN , is equal to e2N . Then, combining this with 
Eq. (55) and Eq. (58) under the condition H Y( ) 2 / <  

we deduce that the shakedown limit load of pure tension for 
limited kinematic hardening must satisfy s H(N = /

EPP
Y s H Y e) ( ) ,N N  = / if H Y( ) 2 / ≥ , while the 

shakedown limit load of pure tension must satisfy 

s e2N N= . These results are consistent with the results 
illustrated on the vertical axis intercepts of Fig. 5, such as 
for EPP case, EPP

s e ,N N= for H Y 1.3, / = EPP
s s1.3 ,N N=

for unlimited hardening s e2N N= . 
When there is only constant torsion, the shakedown limit 

load is equal to the plastic limit load. Therefore, according 
to Eq. (58) we obtain that the shakedown limit load for 
limited kinematic hardening is a proportional enlargement 
of the perfectly plastic shakedown load limit by a factor of 

H Y / . For unlimited kinematic hardening, with respect 
to Eq. (56), the shakedown limit load of pure constant 
torque is equal to e2M . Thus we obtain that if 

H Y( ) 2 / < , then the shakedown limit load of pure 
torsion for limited kinematic hardening is s H(M = /

EPP EPP
Y H H Y s) ( )M M  = / , and if H Y( ) 2 / ≥  then 

the shakedown limit load of pure torsion for limited 
kinematic hardening must satisfy s e2M M= . This is 
consistent with the results illustrated on the horizontal axis 
intercepts of Fig. 5, such as for the case when 

H Y 1.3 / = and EPP
s s1.3 ,M M=  for unlimited 

hardening s e2M M= . 
 

4.2  Flanged pipe  
A flanged pipe is subjected to an internal pressure, p, and 

an axial force, Q, which vary independently in the ranges 

max[0, ]p pÎ  and max[0, ]Q QÎ , respectively. The 

flanged pipe is illustrated in Fig. 6. 

 

 
Fig. 6.  Sketch and loadings of the flanged pipe[14] 

 
The shakedown domain of a flanged pipe was 

investigated in Refs. [14–16]. The shakedown analysis 
results are presented in Fig. 7. 

 

 

Fig. 7.  Normalized shakedown domains of flanged pipe[14–16] 

 
As shown in Fig. 7, for an EPP model with only cyclic 

internal pressure, the shakedown limit load is larger than 
the elastic limit load, ep , and smaller than twice the elastic 

limit load 2 .ep According to Eq. (57), 
EPP EPP
s e Hmin(2 , )p p p=  

should be satisfied. Thus EPP EPP
s H e2p p P= <  holds in this 

case. For an unlimited kinematic hardening model, with 
respect to Eq. (56), the shakedown limit load of pure 
internal pressure is equal to e2 p . Combining with Eqs. (55) 

and (58) we then obtain that if EPP
H H Y H e( ) 2p p P = / < , 

the shakedown limit load of pure pressure for limited 

kinematic hardening must satisfy EPP
s H Y s( )p p = / , 

while if EPP
H H Y H e( ) 2p P P = / ≥ , the shakedown limit 

load of pure pressure must satisfy s e2p p= . This is 

consistent with the results illustrated on the horizontal axis 
intercepts of Fig. 7, such as for the case in which 

H Y 1.25 / = , EPP
s s1.25p p= , for H Y 1.5 / = , 

EPP
s s1.5p p= ，for unlimited hardening s e2p p= . 

As shown in Fig. 7, for an EPP model with only cyclic 

axial force, Q, the shakedown limit load is equal to twice 

the elastic limit load, eQ , i.e., EPP
s e2Q Q= . According to 

Eq. (57), EPP EPP
s e Hmin(2 , )Q Q Q= must be satisfied. This 

therefore demonstrates that EPP EPP
s e H2Q Q Q= <  holds in 

this case. Further, when we combine the above with Eq. (58) 

we obtain that the limit load HQ  satisfies 
EPP EPP

H H Y H H e( ) 2Q Q Q Q = / > > . Then, according to Eq. 

(55), the shakedown limit load of pure axial force must 

satisfy s e2Q Q=  for the limited kinematic hardening 

model. For an unlimited kinematic hardening material 

model, with respect to Eq. (56), the shakedown limit load 

of axial force is also equal to e2Q . These results coincide 

with the ones illustrated on the vertical axis intercepts of 

Fig. 7, such as for the case of H Y 1.25 / = , 

H Y 1.5 / =  and for unlimited hardening, when the 

shakedown limit load of pure axial force always satisfies 

s e2Q Q= . 
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4.3  Square plate with a central hole  
The square plate with a small central hole is subjected to 

a system of uniform horizontal and vertical tensile stresses 

1F  and 2F , respectively. The two stress loads vary 

cyclically in the ranges max
1 1[0, ]F FÎ  and max

2 2[0, ]F FÎ , 

respectively. The plate is illustrated in Fig. 8.  

 

 
Fig. 8.  Sketch and loadings of square plate 

with a central hole 

 
The shakedown domains of the square plate for an EPP 

and unlimited linear kinematic hardening model, in which 
the initial yield stress was the same as the yield stress for 
the EPP model, were investigated by ABDALLA, et al[17]. 
The shakedown analysis results are presented in Fig. 9. 

 

 
Fig. 9.  Normalized load domains of square plate[17] 

 

As shown in Fig. 9, for an EPP model with only 

horizontal or vertical cyclic tension stress, twice the elastic 

limit load is less than the plastic limit load when H Y = , 

i.e., EPP
e H2F F< . And according to Eq. (57), the 

shakedown limit load must satisfy EPP EPP
s e Hmin(2 , )F F F=  

so that EPP
s e2F F=  holds in this case. For unlimited 

kinematic hardening materials, with respect to Eq. (56), the 

shakedown limit load of the tension stress is also equal to 

e2F . In this case the shakedown limit load for the 

unlimited kinematic hardening and EPP models are the 

same. These results agree with the ones illustrated on the 

intercepts of the two axes of Fig. 9, as Fig. 9 shows that for 

EPP and unlimited hardening, the shakedown limit load 

must always satisfy s e2F F= . 
 

5  Conclusions 
 

(1) For a structure with limited kinematic hardening 
material, the shakedown limit load is correlated to the 
initial yield stress and the ultimate stress. The scope of the 
shakedown limit load is bounded by twice the elastic limit 
load, and the peak of the shakedown limit load is bounded 
by the plastic limit load with respect to the ultimate stress. 

(2) A structure with unlimited kinematic hardening 
material can reach shakedown only if the scope of the load 
does not exceed twice the elastic limit load. 

(3) For a structure with EPP material, the scope of the 
shakedown limit load is bounded by twice the elastic limit 
load, and the peak of the shakedown limit load is bounded 
by the plastic limit load with respect to the yield stress. 

(4) The results for some specific problems that are 
obtained by applying the analytical solutions are consistent 
with the results in the literature for those same problems.  
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