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Abstract: Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often 

require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical 

engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop 

system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The 

paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic 

frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop 

frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain 

how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new 

PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and 

experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID 

parameter tuning method based on outputs of the closed loop system. 
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1  Introduction 
 

Owing to simple structure, the PID control has been 
widely applied in many real applications. Extensive 
theoretical studies have also been conducted on its 
parameter optimizing method. The well-known methods 
available in published literature include the Ziegler-Nichols 
method[1–2], the IMC method[3–5], and the loop-shaping 
method[6–7]. Unfortunately, these methods often require 
highly accurate system models, which necessitates 
time-consuming experiments for system identification in 
actual applications. Thus, the final closed loop performance 
will be certainly affected by the model inaccuracy. 
Although some robust design methods can be used to partly 
solve the problem, they can not be used extensively due to 
the often accompanied performance deterioration in the 
aspects of both servo tracking and disturbance suppression. 

In practical engineering applications, it is desirable for 
the PID tuning rules to be directly based on the 
input-output data of the closed-loop system[8–11]. It is also 
preferable for the tuning rules to be as simple and easy as 
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possible[12–13]. Thus in this paper, a new PID tuning strategy 
is proposed. The major advantage of the proposed method 
is that the problem of model uncertainty associated with 
system identification is avoided because model information 
of the controlled system are not explicitly required. 

The steady, response speed and the disturbance rejection 
capacity are some main performance to be considered 
during the design of a PID controller[14–16]. In model based 
scheme, the trade-offs among them are made through 
elaborate analysis and calculations. However, in our study, 
the main concerns are to develop tuning method that is 
independent of model information and simple to apply. 
Thus, the trade-offs among the different criteria are realized 
based on detailed analysis of the PID control structure and 
its influences to both the time domain and frequency 
domain characteristics of the closed loop system.  

The contents of this paper are organized as follows. In 
section 2, the frequency properties of the PID control 
structure are analyzed in detail. In section 3, the concepts of 
M-field and θ-field are introduced and analyzed to develop 
the relationship between the frequency properties of the 
open-loop system and those of the corresponding 
closed-loop system. Based on these results, the tuning rules 
are given and explained in section 4. Then, the simulations 
and experiments are conducted in section 5 to verify the 
effectiveness of the proposed tuning rules. Finally, 
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concluding remarks are made in section 6. 
 

2  Phase and Magnitude Analysis 
 

A PID controller are of the frequency domain form 
C(s)=Kp+Ki/s+Kds, and the phase and the magnitude at 
frequency ω are 
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Using Eq. (1), the influence of Kp, Ki, Kd on the phase 

and magnitude of the PID controller can be given in the 
form of partial derivative functions as follows: 
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From Eqs. (2)–(4), we can obtain the following 

equations: 
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From Eq. (5)–Eq. (7), it can be seen that the term 

i dK K  is important in describing the phase and 
magnitude characteristics of the PID controller. Thus in the 
following discussions, c i dK K =  is defined as the 
characteristic frequency of the PID controller. 

From Eqs. (3) and (4), we can also obtain the following 
relationships: 
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If c < , from Eq. (8), we have, 
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Similarly, from Eq. (9) we have, 
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When c > , from Eqs. (8) and (9), we have 
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Based on Eqs. (11)–(13), we can conclude that in order 

to enlarge or reduce the phase or the magnitude of PID 
controller at frequency ω, parameter iK ( dK ) should be 
firstly regulated if ω < ωc (ω > ωc ). 

 

3  M-filed and -field 
 

The M-circle[18–21], defined as Eq. (14), is useful in 
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determining the magnitude of the closed loop system based 
on the open loop transfer function: 
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The circle given in Eq. (14) is centered at 

2 2( ( 1) ,M M- -  0), with the radius equal to 
2( 1).M M - For an open loop system G(s) and a 

frequency ω, if 
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where X and Y are the same as that in Eq. (14). Suppose 
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( ) .H j M =  

 
For the convenient of discussion, we define mM  as a 

M-circle given by Eq. (14) with M = m. Specially, 1M  is 
the straight line X = −0.5. 

According to Eq. (14), each point in the complex plane 
(excluding −1+0 • j) is on the border of a unique M-circle. 
Thus we can build a scalar field M(x, y), called M-field. 
The domain of M-field is the whole complex plane 
excluding −1 + 0 • j. 

The scalar field M(x, y) is C∞ continuous in its domain, 
so we can define its gradient vector field ( , )x yV . 

The norm and direction of ( , )x yV  are respectively 
denoted as ( , )V x y  and ( , )x yv . A lemma concerning the 
direction of ( , )x yV  is given in Appendix A. For M-circle, 
we have the following theorem.  

Theorem 1. Given a point P  in the domain of M-field, 
suppose the center of the M-circle passing through P  is 
O¢ . Let O PO ¢ = , the value of the M-field at P  be 

( )M P , and the gradient vector of M-field at P  be ( )PV , 
that is, ( ) ( ) ( ).P V P P= V v  Define the angle between the 
OP and the positive direction of X  axis be 

(0 π) ≤ ≤ , then we have the following conclusions: 
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Proof: Consider the case of M(P) > 1 as shown in Fig. 1. 

Suppose a and b are two unit direction vectors where a 
points from O  to P  and b is vertical to OP , then   
keeps increasing when P  moves along the direction of b. 

 
Fig. 1.  Figure for theorem 1 

 
Suppose P ¢  is a point different from P  and PP¢  is 

infinitely small, A  and B  are the projections of PP ¢


 
on a and b, respectively. We have 
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As PP¢  is infinitely small, the variation of ( , )x yV  

can be neglected when x jy+  is moved from P  to P ¢ . 
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According to Lemma 1 (Appendix A), ( )PV  points 

from P  to O¢, thus we have 
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In differential form, Eq. (20) can be rewritten as 
 

 d ( ) cos d ( ) sin d .M V P OP V P OP  =- +    
 
(21) 

 
Thus Eqs. (15) and (16) are proved for the case of 
( ) 1M P > . 
In the similar way, it can be proved that when ( ) 1M P < , 

Eqs. (15) and (16) still hold. This complete the proof of 
Theorem 1.                                   

For a control system, suppose: 1) the value of the closed 
loop magnitude at   is ( )M j , 2) the open loop 
transfer function ( )G s  at   can be denoted as 

( )G j x jy = + , and 3) the point in the complex plane 
corresponding to ( )G j  is ( , ).P x y Then ( )G j OP = , 
and arg ( )G j  corresponds to the value of the angle 
between the positive direction of X  axis and OP¢ . 
Theorem 1 tells us how ( )G j  and arg ( )G j  
influence ( )M j . 

From Eqs. (15) and (16), we can see that   plays an 
important role in determining both ( ) /M P OP¶ ¶  and 

( ) /M P ¶ ¶ . As a result, before introducing PID parameter 
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tuning rules, we firstly analyze the value of   at different 
points in the complex plane, and the results are given in the 
following Theorem 2.  

Theorem 2. Given a point P  in the domain of M-field. 
Suppose the M-circle passing through P  is mM , with 

1m ¹ . Let the center of mM  be O¢ , and point 
1 0U j=- +  . We have 

 
 ( [0, π]) ,O PO PUO  ¢ = Î  =  (22) 
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Proof: Let the coordinate of P  in complex plane be 

( , )X Y . When O PO ¢ = , according to the equation of 

mM  and the cosine theorem, we have 
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Fig. 2.  An example for theorem 2 

 
From Eq. (23), the following equation is satisfied, 
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Substitute Eqs. (23) and (25) into Eq. (24), we have 
 
 2 2 2(1 )( 1) (2 1)(cos ) .m X X - + = +  (26) 
 
Substitute Eq. (23) into Eq. (24), and substitute Eq. (25) 

into Eq. (24):  
 
 2 2 2 2 2( 1) ( )(cos ) .m X X Y + = +  (27) 

Furthermore, substitute Eq. (26) into Eq. (27):  
 
 2 2 2 2( 1) ( 2 1 )(cos ) .X X X Y + = + + +  (28) 
 
Hence 
 
 2 2 2 2(1 (cos ) )( 1) (cos ) .X Y - + =  (29) 
 
Thus, if ( , ) ( 1, 0),X Y ¹ - π 2 1.X =  =-  That 

means, π 2 =  is equivalent to P  is on the line 
1,X =-  as shown in Fig. 3. 

 

 

Fig. 3.  Value of θ in t he domain of M-field 

 
If ( , ) ( 1,0)X Y ¹ -  and π 2, ¹  we have 
 

 tan tan .
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Y
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X
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+
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That is, PUO = =  or πPUO = = - . 
Let P  and Q  be any two points in mM  (as shown in 

Fig. 3). Q  is on the line 1X =-  (which means 
π 2,QUO = π 2OQO ¢ = ).  

If P  is on the left side of the line 1X =- , it is easy 
to show that OP OQ> . According to the cosine theorem, 

π 2OPO OQO ¢ ¢=  < = . However, it is obvious that 
π 2OUP = > . 

On the other hand, if P  is on the right side of the line 
1,X =- then π 2O PO ¢=  >  and π 2.PUO = <  

So we can conclude that if 1,m >  then π . = -  
When 1m < , π 2,PUO = <  as O  is inside 

mM , π 2.O PO ¢=  <  So  = . 
Thus Theorem 2 is proved. 
According to Theorem 2, given a point P  in the 

complex plane with coordinate { }( , ) (0,0), ( 1,0)X Y Ï - , 
there is a unique value of   corresponding to P . Thus 
we can define a scalar field ( , )X Y , named -field, 
shown as Fig. 4. 
-field is useful in determining how ( )G j  and 

arg ( )G j  influence ( )M j . For example, if ( )G j  is 
in the line segment of UO, then ( ( )) π,G j  =  according 
to Eqs. (15) and (16), ( )M j  increases if ( )G j  
increases, while arg ( )G j  has no influence on ( )M j ; 
if ( )G j  is in the line segment of 1( 0)X Y=- ¹ , then 
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( ( )) π 2,G j  = ( )M j  decreases if arg ( )G j  
increases, while ( )G j  has no influence on ( )M j . 

 

 
Fig. 4.  θ-field 

 

Using the -field, the complex plane can be divided into 
the following three parts. 

Part I: { }| 1 1, ,X jY X X jY X R Y R+ - + ¹- Î Î≤ ， , 
in this part, π 2. ≤  

Part II: { }| 1 0.5 , ,X jY X X R Y R+ - < <- Î Î，  in 
this part, π 2 π.< ≤  

Part Ⅲ: 
{ }| 0.5 0, , ,X jY X X jY X R Y R+ - + ¹ Î Î≥ ， in this 

part, π 2. ≤  
 

4  Tuning Method 
 

In real applications, there are several main requirements 
of the dynamical characteristics of PID control system: the 
first one is the steady, i.e., the oscillation in step response 
should be as low as possible; the second one is the response 
speed, i.e., the system should get to the desired set point as 
quick as possible; and the third one is the disturbance 
attenuation performance, i.e., the system should be 
insensitive to the external disturbances. The proposed 
method of this paper is based on a balance of these 
requirements. The whole tuning process is composed of 
two main sub-steps: The first one is to regulate the 
parameters based on the preceding analysis to reduce the 
oscillation, and the second one is to enlarge the parameter, 
especially the proportion gain Kp, to improve the 
disturbance attenuation capacity and response speed. 

In this section, we will mainly discuss how to reduce the 
oscillation in system response, and a set of PID parameter 
tuning rules are proposed based on the preceding results. 

Suppose the frequency of the oscillation in the PID 
control system output is .o  o  can be roughly 
measured in the way shown in the lower figure of Fig. 5. In 
fact, o  can also be obtained through frequency domain 
analysis algorithm, i.e., FFT. The open loop transfer 
function of the system is: 

 
G(s) = (4+12/s+0.2s)exp(–0.1s)/(1+s). 

 
Fig. 5.  The closed loop magnitude and step response 

 
Suppose ( )H s  is the transfer function of the closed 

loop system. That is, ( ) ( ) (1 ( ))H s G s G s= / + . In order to 
attenuate the oscillation of the closed loop response, one of 
the effective scheme is to reduce ( )H   in the frequency 
section around o  through regulating properly the 
controller parameters.  

Before the discussion on how to reduce the oscillation, 
we should firstly study the position of ( )oG j  in the 
-field, which is important for determining the parameter 
tuning rules. Three facts are given as follows: 

First: if the point corresponding to ( )G j  is in part 
Ⅲ in the -field, then ( ) 1H j < , so ( )oG j  can’t be 
in part Ⅲ of the -field. 

Second: for most actual control system, the open loop 
transfer function presents low pass characteristic. That is, 
as   increases, both ( )G j  and arg ( )G j  decreases. 
So, in the frequency section where arg ( )G j <- , 

( )G j  should be much smaller than 1 (for a stable 
system). So, it is very rare that the phase of the open loop 
transfer function at the oscillation frequency o  is smaller 
than –π, which means that the position of ( )oG j  in the 
complex plane should be under the real axis. 

Third: if the point corresponding to ( )G j  is in partⅠ
of the -field ( ( ( )) π 2G j  < ), according to Eqs. (15) 
and (16) in Theorem 2, neither ( )G j  nor arg ( )G j  
can be regulated to increase ( )H  . On the other hand, 
both ( )G j  and arg ( )G j  decrease as   increases in 
this domain (low pass characteristic of ( )G j ). As a result, 

( )oG j  can’t be in part I of the -field. 
Based on the above three facts, the following assumption 

is given,  
Assumption 1. ( )oG j  is in Part II of the -field 

( π 2 ( ( )) πoG j < < ) and is under the real axis. 
With Assumption 1, the PID parameter tuning rules can 

be designed as follows,  
Case 1: low frequency oscillation ( o c < ). 
Considering Eqs. (15) and (16), the variation of dK  is 

less effective than that of iK , so pK  or iK  should be 
adjusted. Furthermore, according to assumption 1 and   
Eq. (15)–Eq. (16) in Theorem 2, in order to decrease 

( )oH  , we should decrease ( )oG   and increase 
arg ( )oG  . As c < , according to Eq. (5)–Eq. (7) in 
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sectionⅡ , only decreasing iK  or increasing dK  can 
decrease ( )oG   and increase arg ( )oG   at the same 
time. Considering Eqs. (11) and (12), we should decrease 

iK  to decrease ( )oH   for this case. 
However, there are two special conditions in case 1. 
Special case 1-1: ( )oG j  is close to the real axis. In 

this condition, ( ( ))oG j   is close to . According to Eqs. 
(15) and (16) in Theorem 2, the variation of arg ( )oG   
has little influence on ( )oH  , however, as decreasing 

( )oG   can decrease ( )oH  , decreasing iK  is still an 
effective tuning method. 

Special case 1-2: ( )oG j  is closed to the line 
1X =- . In this condition, ( ( ))oG j   is close to π 2 . 

According to Eqs. (15) and (16) in Theorem 2, the variation 
of ( )oG   has little influence on ( )oH  , and 
increasing arg ( )oG j  can decrease ( )oH  . As we 
want ( )oG   to be as large as possible for the capacity of 
servo tracking and disturbance suppression, increasing pK  
is a better tuning rule than decreasing iK  for this special 
condition. 

Case 2: high frequency oscillation ( o c > ). 
Considering Eq. (13), the variation of iK  is less 

effective than that of dK , so pK  or dK  should be 
adjusted. Furthermore, similar to case 1, ( )oG   should 
be decreased and arg ( )oG   should be increased to 
decrease ( )oH  . As c > , only decreasing pK  can 
decrease ( )oG   and increase arg ( )oG j  at the same 
time according to Eqs. (5)–(7) in section II. Thus the 
parameter tuning method for case 2 is to decrease pK . 

There are also two special conditions for case 2. 
Special case 2-1: ( )oG j  is closed to the real axis. As 

that in case 1, in this condition, the variation of arg ( )oG   
has little influence on ( )oH  , and decreasing ( )oG   
can decrease ( )oH  . As both decreasing pK  and 
decreasing dK  can decrease ( )oG  , and decreasing 

pK  leads to the decreasing of ( )G   in frequency 
section where c <  (which weakens the capacity of 
servo tracking and disturbance suppression). Thus, in this 
special condition, decreasing dK  is a better method. 

Special case 2-2: ( )oG j  is close to the line 1X =- . 
As that in case 1, the variation of ( )oG   has little 
influence on ( )oH  , and increasing arg ( )oG j  can 
decrease ( )oH  . So we should decrease pK  or increase 

dK . Suppose u  is the frequency, s.t., arg ( ) π,uG  =-
as u  is a high frequency ( c o u  < < ), increasing 

dK  can lead to the increasing of ( )uG  . As 
( ( )) π,uG j  =  ( )uH   is very sensitive to ( )uG  . 

Thus in this condition, we should decrease pK . 
In conclusion, the tuning rules are summarized in the 

following Table 1. 
Remark I: In real applications, it is difficult to 

distinguish whether the system fulfils the special condition 
or not based only on the system response. However, for 
each case, there are only one special condition that requires 
a different tuning method, so for each case, the tuning 
methods can be selected by trial and error directly. 

Table 1.  Methods of alleviating system oscillation 

Cases Tuning methods 

Case 1 (ω0 < ωc) 
Decreasing Ki 

Increasing Kp 
* 

Case 2 (ω0 > ωc) 
Decreasing Kp 

Decreasing Kd 
** 

Note: * If ( )oG j  is close to line 1X =- . 
**If ( )oG j  is close to the real axis. 

 
Remark II: Generally, we want the magnitude of the 

open loop transfer function to be as large as possible due to 
the requirements of disturbance suppression and servo 
tracking. Thus, for case 1, increasing pK  should be tried 
first. In case 2, as decreasing pK  can reduce the 
magnitude of the open loop transfer function in the low 
frequency section, thus weakens the capacity of disturbance 
suppression, so decreasing dK  should be tried first. 

A flow chart of PID parameter tuning procedure is given 
in Fig. 6, where decrease (increase) a parameter, means 
gradually decrease (increase) it until the oscillation 
disappears or the decreasing (increasing) of this parameter 
can no longer reduce the oscillation. 

 

 
Fig. 6.  Flow chart of tuning method 

 

The tuning procedure shown in Fig. 6 tells which 
parameter should be regulated (increased or decreased), but 
there can be cases that the parameters are over tuned. To 
solve this problem, multi-round tuning strategy is proposed, 
shown in Fig. 7. 

In Fig. 7, the steps enclosed in the thick line constitute 
one round of tuning. Suppose i

pK , i
iK  and i

dK  are the 
values of pK , iK  and dK  after the ith round of tuning. 
  is defined as follows: 

 

 
1 1 1

,
i i i i i i
p pi i i d d

i i i
p i d

K K K K K K

K K K


- - -- - -
= + +

  

 (31) 

 

where δ0 is a pre-defined positive number. If the results of 
current round and the last round fulfills the inequality in the 
box, then the variation of parameters would be very small if 
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tuning continues, so the tuning procedure can be stopped. 
With a smaller δ0, the difference between the resulted PID 
controller and the ideal one would be smaller. So the value 
of δ0 depends on the requirement of the performance of the 
resulted system and the number of tuning rounds that is 
acceptable. 
 

 
Fig. 7.  Flow chart of multi-round tuning strategy 

 
In the actual application, a PID controller should contain 

a low pass filter as follows: 
 

 ( ) ,
1

i d
p

K K s
C s K

s s
= + +

+
 (32) 

 
where   is determined according to the requirement of 
noise filtering. 

To apply the magnitude and phase properties given in 
Eqs. (1) and (32) can be transformed as 

 

 

2

( )
1

(1 ) (1 )

(1 )

( ) ( )
.

1

i d
p

p i d

p i i d p

K K s
C s K

s s

K s s K s K s

s s

K K K s K K s

s


 


 



= + + =
+

+ + + +
=

+
+ + / + +

+

      

(33)

 

 
Define 
 

 

,

,

( ) ,

p p i

d d p

p i d

K K K

K K K

C s K K s K s





¢ = +

¢ = +

¢ ¢ ¢= + / +
 

and we have:  
 

 
( )

( ) .
1

C s
C s

s
¢

=
+

 

 
It should be noted that the tuning method given in this 

paper doesn’t need the model information of the controlled 
plant, so 1 (1 )s/ +  can be treated as a part of the plant 
and the tuning procedure can be remained unchanged. 

Eq. (1) can be rewritten as: 
 

 
2

2

arg ( ) arctan ,

( ) .

i
d p

i
p d

K
C j K K

K
C j K K

 


 


ì æ öæ öï ÷ï ç ÷ç¢ ¢ ¢ ÷= - /÷ï çç ÷÷çï ÷ç ÷çè øè øïïíï æ öï ÷ï ç¢ ¢ ¢= + - ÷ï ç ÷÷ï çè øïî

 (34) 

 

Thus the tuning method given in this paper can be 
applied based on Eq. (34). In this case, the characteristic 
frequency of the PID controller is defined as: 

 

 .i i
c

d d p

K K

K K K



¢ = =

¢ +
 (35) 

 

5  Simulations and Experiments 
 

In this section, the proposed PID parameter tuning 
method is verified through both simulations and real 
experiments. 

 
5.1  Simulations 

In the simulations, the proposed tuning method is applied 
on the plant from Ref. [17], with the transfer function given 
as: 

 

1 3

( 0.3 1)(0.08 1)
( ) .

(2 1)( 1)(0.4 1)(0.2 1)(0.05 1)
p

s s
G s

s s s s s

- + +
=

+ + + + +
 

 
In Fig. 8, curves a–q show the system outputs in 

different tuning steps, and the corresponding PID 
parameters are given in Table 2. The stop value of δ0 is 0.1. 

From Fig. 8 and Table 2, in the second tuning step, 
increasing pK  is firstly tried, and oscillation in system 
output (shown as curve c in Fig. 8) is not reduced. So in the 
third tuning step, pK  is restored to 2 and then iK  is 
decreased.  

There are totally 3 rounds of tuning procedure for this 
simulation. From curve a to curve h form the first round, 
and δ at the end of this round is 1.3. From curve i to curve k 
form the second round, and the final δ is 0.43. From curve l 
to curve n form the third round and δ is 1.5. If the PID 
parameters are increased again, it can be verified that the 
parameters would be tuned back to very close to the 
parameter settings corresponding to curve n. That is, δ 
would be very small (far smaller than δ0=0.1). So the 
tuning procedure is stopped. 
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Fig. 8.  Curves of simulation 1 

 
Table 2.  PID parameters in tuning steps of simulation 

Curve Kp Ki Kd Case Tuning method δ 

a 1 1 1 1 Increasing Kp – 
b 2 1 1 1 Increasing Kp – 

c 2.5 1 1 1 
Restore parameter  

and decrease Ki 
– 

d 2 0.7 1 1 Decreasing Ki – 
e 2 0.6 1 2 Decreasing Kp – 
f 1.7 0.6 1 1 Decreasing Ki – 
g 1.7 0.45 1 1 Decreasing Ki – 
h 1.7 0.4 1 – – 1.3 
i 2 0.5 1.25 2 Decreasing Kp – 
j 1.8 0.5 1.25 1 Decreasing Ki – 
k 1.8 0.45 1.25 – – 0.43 
l 3.6 0.9 2.5 2 Decreasing Kp – 

m 2.5 0.9 2.5 1 Decreasing Ki – 
n 2.5 0.5 2.5 – – 1.5 

 
The final tuning result is compared with the tuning 

results of two well-known PID tuning methods. Curves o–q 
in Fig. 8 show the performance of set-point servo tracking 
and step disturbance suppression of PID control systems 
tuning by different methods: o-the Ziegler-Nichols method; 
p-the SIMC method[17]; q-the method given in this paper. 

From these figures, it can be seen that the set-point servo 
tracking property of the system tuned by the proposed 
method is much better than that of the other two methods. 
As to the step disturbance suppression capacity, the system 
tuned by the proposed method is a little weaker than the 
Ziegler-Nichols method but is better than the SIMC 
method. 
 
5.2  Experiments 

Experiments are also applied on a rotating platform as 
shown in Fig. 9 to verify the priority of the proposed 
method. This platform is driven by a torque motor enclosed 
in the basement, and the rotating speed, which is the output 

in our experiments, is measured using a gyro, ADIS16135, 
produced by Analog Devices incorporation.  

 

 
Fig. 9.  Experimental rotating platform 

 
All the parameter settings during the tuning process are 

listed out in Table 3, and Fig. 10 supplies curves of the 
most typical system output in the tuning process, which are 
from a to d. The stop value of δ0 is given as 0.1. 

 
Table 3.  PID parameters in tuning steps of experiment 

Curve Kp Ki Kd Case Tuning method δ 

a, b 1.5 1.5 1.5 2 Decreasing Kd – 
b 1.5 1.5 1.2 2 Decreasing Kd – 
c 1.5 1.5 1 1 Increasing Kp – 
d 2 1.5 1 – – 0.67
 2.67 2 1.3 2 Decreasing Kd – 
 2.67 2 1 1 Increasing Kp – 
 4 2 1 – – 1 
 6 3 1.5 2 Decreasing Kd – 
 6 3 1 – – 1 
 8 4 1.33 2 Decreasing Kd – 
 8 4 1 – – 0.33
 10 5 1.25 2 Decreasing Kd – 
 10 5 1 – – 0.25

 

 
Fig. 10.  Typical system outputs in the experiment 1 
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As given in Table 3, the initial setting for the PID 
controller is 1.5 1.5 1.5kG s s= + / + . Under these control 
parameters, the closed loop response is shown as Fig. 10(a), 
from which we can see that the high frequency oscillation 
appears, since c i dK K = =1, we can directly conclude 
that o c > , thus from Fig. 6, decreasing Kd is conducted. 
After that, we can obtain a new closed loop response as 
shown in Fig. 10(b), and the same phenomenon appears 
thus we continue decreasing Kd and obtain the new closed 
loop as shown in Fig. 10(c). The tuning procedure is 
conducted until a good enough closed loop response is 
obtained (Table 3).  

There are totally 5 rounds of tuning procedure. δ in these 
tuning rounds are respectively 0.67, 1, 1, 0.33, and 0.25. It 
can be verified that if another tuning round is carried out, 
then δ would be very small (far smaller than δ0 = 0.1). So 
the tuning procedure is stopped. 

Fig. 10(e) and Fig. 10(f) give out the performance 
comparisons for different methods, where Fig. 10(e) is the 
result of the proposed method and Fig. 10(f) is the result of 
the Ziegler-Nichols method. 

From these results, it can be seen that the set-point servo 
tracking property of the system by the proposed method is 
much better than that of the Ziegler-Nichols method. As to 
the step disturbance suppression, though the system output 
of proposed method has a longer recovering time, the 
fluctuation has a much smaller magnitude than that of the 
Ziegler-Nichols method. 

 
6  Conclusions 

 
In this paper, input-output responses based PID 

parameter tuning problem is researched. The main 
contributions of this paper are as following two aspects,  

(1) A new kind of frequency domain analyzing method 
for PID control based on the concepts of M-filed and θ field 
is proposed. 

(2) A set of PID parameter tuning rules are designed, 
whose main advantages are that only input-output step 
response data are required and the tuning procedure is 
easily implemented.  

Simulations on an often referred-to dynamical system 
and experiments with respect to a real rotating platform 
driven by the motor are conducted. The detailed PID 
parameter tuning procedure are explained to show the 
validity of the proposed scheme. Furthermore, the final 
closed loop performance is compared to that based on some 
other PID parameter tuning scheme and the results show 
the priority of our proposed algorithm.  
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Appendix A 
 
Lemma 1. Given mM , and a point X jY+  belonging 

to mM , if 1 ( 1)m m> < , then gradient vector ( , )X YV  
points to the inside (outside) of mM  along the normal line 
of mM  at X jY+ . 
Proof: 

Let t and n be the direction vector of the tangent line and 

the normal line of mM  at X jY+ , T  and N  be the 
projections of ( , )X YV on t and n. Then we have: 

 
          ( , ) .X Y T N= + V t n          (A1) 

 
According to the definition of M-circle, ( , )M x y  is 

constant on mM . Thus according to the definition of 
gradient vector, we have 

 

            ( , ) 0.X Y T= =V t          (A2) 

 

This means ( , ) ,X Y N= V n and the following 
conclusions are obvious: 

(1) When 1,m > ( , ) is inside ;mM X Y m X jY M>  +  
(2) When 1,m < ( , ) is outside .mM X Y m X jY M>  +  

 


