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Abstract: Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact 

model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an 

increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In 

considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact 

surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest 

asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load 

increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation 

is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. 

For constant D and G, the slope of load-area relation is inversely proportional to property of the material , namely with the same load, 

the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study 

of the friction, wear and seal performance of rough surfaces. 
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1  Introduction 
 

Contact mechanics of rough surfaces has a significant 
impact on the phenomena of friction, wear, and lubrication 
as well as the conduction of heat and electricity. All 
engineered surfaces are microscopically rough, the contact 
between two rough surfaces is actually a series of contacts 
between the asperities, which leads to the real contact area 
being far less than the nominal contact area, carrying the 
capacity of conductive and heat conductivity per unit area 
according to the traditional contact theory has a certain 
amount of deviation with the actual situation, whereby 
resulting in premature failure of the normal working hours 
of contact elements. Therefore, how to characterize the 
relationship between the real contact area and the total 
contact load exactly is particularly important. 

Much research work has been done on the description 
and contact analysis of rough surface by domestic and 
foreign scholars, who have mainly used the statistical 
analysis and the fractal theory, the former have used the 
statistical parameters which are scale-dependent to describe 
the contact behaviors of rough surfaces, resulting in the 
rough surface characterization and analysis of the result are 
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not unique[1–3], the latter have used fractal parameters to 
characterize and simulate rough surfaces which are 
scale-independent to solve the problems[4–6]. MAJUMDAR, 
et al[4–5], developed the first fractal contact model(the MB 
model) using the Weierstrass and Mandelbrot fractal 
function(the WM function) and established the elastic, 
plastic regime of a single asperity. In considering the size 
distribution function in contact surface, the relations of the 
total contact load and the real contact area is obtained. 
However, the MB model ignores the elastoplastic 
deformation and holds that the critical contact area is scale 
independent. A transition from plastic to elastic contact 
occurs as the load and contact area increases. This 
phenomenon is essentially different from classical contact 
mechanics and seems to be impractical[7] Subsequently, 
many scholars have studied the mechanical properties of a 
single asperity in contact process and obtained the 
deformation mechanism which is contrary to the MB model. 
KOGUT, et al[8], used the finite element method to analyze 
the case of a single asperity contacting with a rigid flat 
surface(the KE model) and revealed three distinct stages 
that range from elasticity through elastoplasticity to full 
plasticity. MORAG, et al[7], presented a modified 
elastoplastic contact model of a single fractal asperity. The 
modified model showed the critical interference, the critical 
contact area and the critical load of a fractal single asperity 
are all scale dependent, with an increase in the load and 
contact area, a transition from elastic to plastic contact 
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mode takes place in this order. LIOU, et al[9–11], proposed a 
revised elastoplastic contact model of a single fractal 
asperity, whose behaviors accord with classical contact 
mechanics. Then, the revised model can be applied to 
sphere-based and cylinder-based fractal bodies in contact 
with a rigid flat surface. MIAO, et al[12], suggested a revised 
contact model of a fractal rough surface by extending the 
modified asperity contact model developed by MORAG, et 
al[7]. In the model, the critical area of a single asperity is 
scale dependent so that the asperity’s plastic to elastic 
model transition agrees with classical contact mechanics. 

Above all, based on the former reseach solutions, an 
elastoplastic contact model of a single asperity is developed. 
According to the elastoplastic contact model, the critical 
contact areas of a single asperity are scale dependent. In 
considering the size distribution function, analytic 
expression between the total contact load and the real 
contact area on the contact surface is obtained. For the 
load-area analytic expression, the total contact load is only 
relevant to the maximun contact area of a single asperity. 
The elastic, elastoplastic and plastic contact load is 
obtained by the critical elastic contact area of the biggest 
asperity and maximun contact area of a single asperity, not 
to consider elastoplastic or full plastic deformation of a 
single asperity so that computational process is simplified. 

 
2  Fractal Characterization of Rough Surface 

 
MAJUMDAR, et al[4–5], have used the WM function to 

define a 2D multi-scale surface profile, the expression is  
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where z(x) is the height of the surface profile, x is the 
shifting coordinates, D is the fractal dimension of the 
surface profile(for a physically continuous surface 1<D<2), 
G is a characteristic length scale of the surface and n  
determines the frequency spectrum of the surface. 

These parameters to characterize the WM function are D, 
G, and nmin, where 1.5 =  is found to be a suitable value 
for high spectral density and for phase randomization[4,7,13]. 
Since the rough surface is a non-stationary random 
process[14–15], the range of the index n indicating the 
frequency level is from nmin(corresponding to the largest 
asperity determined by the length of the sample as 

min 1n L = [4–7]) to nmax(corresponding to the smallest 
asperity determined by the resolution of the instrument). D 
and G can be found from the power spectrum of the WM 
function. 

 
3  Fractal Contact Model 

 

The contact between two rough surfaces can be 
simplified to an equivalent rough surface in contact with a 
rigid flat surface. These assumptions are as follows. The 

equivalent rough surface is isotropic and has fractal 
characteristics. Asperities are far away from one another so 
that there are no interactions between them, and no bulk 
deformation occurs during the contact. Work hardening due 
to contact, variation of material hardness with depth from 
the surface and the frictional force between the deformed 
asperities are neglected. 

 
3.1  Mechanical model of a single asperity 

According to the WM function, it is clear that the rough 
surface is composed of cosine waves of different 
wavelengths and amplitudes, superimposed on each other. 
For a wavelength of 1 nl = , the asperity shape before 
deformation is given as follows:  
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Fig. 1 shows the deformation of a single asperity, where l 

is the length scale(the base diameter) of a fractal asperity 
whose level is n,   is the roughness amplitude,   is the 
interference which is independent of   and can range 
from zero to the amplitude( 0  ≤ ≤ ), l¢  is the 
truncation diameter, and rl  is the real contact diameter. 

 

 
Fig. 1.  Deformation of contacting asperities 

 
The radius of curvature R at the tip of the asperity is  
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As Fig. 1 shown, the amplitude of the asperity   is  
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Hence, the interference   is  
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3.2  Regime of a single asperity 

The deformation with a single asperity in contact with 
the rigid flat surface can be elastic, elastoplastic, or full 
plastic, and the existence conditions of a single asperity in 
three distinct deformation states are discussed. 

 
3.2.1  Elastic deformation condition 

According to the Hertz theory[16], the critical interference 
induced by a single asperity with a radius of R in contact 
with a smooth rigid flat surface is 

 
2 2
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where H is the hardness of the softer material and K 
represents the hardness coefficient relating to the Poisson 
ratio υ of the material, namely K=0.454+0.41υ, E is the 
Equivalent Hertzian elastic modulus, H E =  is a 
property of the material. 

When the interference ec = , the single asperity is in 
elastic deformation. Because the radius of curvature of the 
asperity is far greater than the amplitude of the asperity, 
namely R  [5], the critical elastic contact area is 
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The elastic contact area can be expressed as  
 

πa R= .                  (8) 
 

Contrasting Eq. (7) and Eq. (8), we can be obtain that as 
the interference ec ≤ , the single asperity is in elastic 
deformation and the contact area belongs to eca a≤ . 
Substituting Eq. (3) into Eq. (7), the critical contact area 
can be written as  
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The elastic contact load is 
 

1 2 3 24

3
F ER = .             (10) 

 
By using Eq. (8) and Eq. (10), the elastic contact load 

can be expressed as 
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The relations between the contact load and contact area 

in elastic deformation is 23aF  , and the solution is in 

agreement with the Hertz theory. 
 

3.2.2  Elastoplastic deformation condition 
KOGUT, et al[8], have conducted research on the 

elastoplastic deformation between a deformable 
hemisphere and a rigid flat surface using the finite element 
method. The result shows that for ec ec110  < ≤ , the 
hemisphere is in elastoplastic deformation which can be 
divided into two stages. When the interference   meets 
with the requirement of ec ec6  < ≤ , the hemisphere 
is in the first elastoplastic deformation, or else the 
hemisphere is in the second elastoplastic deformation, 
namely ec ec6 110  < ≤ . 

The first critical elastoplastic interference epc  and the 

second critical elastoplastic interference pc  can be 

expressed as follows:  
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According to Eqs. (6), (12) and (13), the critical 

interferences are all dependent on the material property and 
the radius of curvature of the asperity. For same material, 
the radius of curvature is larger, the values of the critical 
interferences are greater. 
 
3.2.2.1  The first elastoplastic deformation 

As ec epc  < ≤ , the single asperity is in the first 

elastoplastic deformation. The contact load and contact area 
can be written as follows:  
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Replacing   in Eq. (15) with epc  in Eq. (12), the 

first critical elastoplastic contact area of a single asperity 
becomes  
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For ec < ≤ epc , we can obtain the contact area of a 

single asperity which belongs to eca a< ≤ epca , the single 

asperity is in the first elastoplastic deformation. Therefore, 
Eq. (14) can be written as  
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Eq. (17) shows that in the first elastoplastic deformation, 
the load-area relation is 1.254 4F aµ . 
 
3.2.2.2  The second elastoplastic deformation 

As epc pc  < ≤ , the single asperity is in the second 

elastoplastic deformation. The contact load and contact area 
can be written as follows:  
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Replacing   in Eq. (19) with pc  in Eq. (13), the 

second critical elastoplastic contact area of a single asperity 
becomes  
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For epc pc  < ≤ , we can obtain the contact area of a 

single asperity which belongs to epc pca a a< ≤ , the single 

asperity is in the second elastoplastic deformation. 
Therefore, Eq. (18) can be written as  
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Eq. (21) shows that in the second elastoplastic 

deformation, the load-area relation is 1.1021F aµ . 
 

3.2.3  Full plastic deformation condition 
As pc > , the single asperity is in full plastic 

deformation. The contact load and contact area can be 
written as follows[17]:  

 
2πa R= ,                 (22) 

 
F Ha= .                  (23) 

 
For pc > , we can get pca a> , which means when 

the contact area of a single asperity is larger than the 
second critical elastoplastic contact area, the asperity is in 
full plastic deformation, the load-area relation is F aµ . 

These expressions are used to describe the relations 
between the contact area, contact load of an asperity and its 
interference in different states. The equations at critical 
points are discontinuity, the deviations are given as follows:  
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Where e is deviation, subscripts a  and F  represent the 
contact area and contact load and 1, 2, 3 reprsent the three 
critical points respectively. According to the calculation 
solutions, all of the deviations are less than 10% at the 
critical point so that the discontinuity effects can be 
ignored. 

Above all, the critical contact areas(aec, aepc, apc) are 
related not only to the material property and the fractal 
parameters, but also to the radius(R) of the asperity, As 

eca a≤ , the asperity is in elastic deformation. As 

ec epca a a< ≤  the asperity is in the first elastoplastic 

deformation. As epc pca a a< ≤ , the asperity is in the 

second elastoplastic deformation. As pca a> , the asperity 

is in full plastic deformation. 
 

3.3  Real contact area 
WANG, et al[17], have noted that when a fractal rough 

surface contacts with a rigid flat surface, the size 
distribution function can be witten as  
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Therefore the real contact area can be written as  
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where aL is the largest contact area, φ is the domain 
extension factor which is variable about D, satisfying the 
following formula:  
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The real contact area of two contacted rough surfaces 
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includes elastic, the first elastoplastic, the second 
elastoplastic and the full plastic contact areas[18]. 

The real contact area can be written as  
 

r re rep1 rep2 rpA A A A A= + + + ,         (27) 

 
where Are, Arep1, Arep2, and Arp represent the contact area for 
the elastic, the first elastoplastic, the second elastoplastic 
and the full plastic deformation respectively. 

 

( ) ( ) ( )ec 2 2 2 2 2
re ec L

0
d

2

a D D DD
A n a a a a a

D
 - -= =

-ò ,  (28) 

 

( )epc

ec
rep1 d

a

a
A n a a a= =ò  

( ) ( ) ( )2 2 2 2 2 2 2
epc ec L2

D D D DD
a a a

D
 - - -é ù-ê úë û-

,    (29) 

 

( )pc

epc
rep2 d

a

a
A n a a a= =ò  

( ) ( ) ( )2 2 2 2 2 2 2
pc epc L2

D D D DD
a a a

D
 - - -é ù-ê úë û-

,     (30) 

 

( )L

pc
rp d

a

a
A n a a a= =ò  

( ) ( ) ( )2 2 2 2 2 2 2
L pc L2

D D D DD
a a a

D
 - - -é ù-ê úë û-

,     (31) 

 
According to Eq. (25), the real contact area is only 

dependent on the largest contact area aL, nothing to do with 
the critical contact areas because the critical contact area is 
incorporated out. From Eq. (27), Are, Arep1, Arep2, and Arp are 
dependent on the critical contact areas(aec, aepc, apc) and the 
largest contact area aL. In the MB model, the critical 
contact area is scale-independent, that is, it is a constant for 
any asperity. In the present model, the critical contact areas 
of a single asperity are scale-dependent, they are vairiable 
for asperities whose levels is different. In general, the 
critical contact areas(aec, aepc, apc) are corresponding to the 
largest contact area aL from initial contact to complete 
contact. Accordingly the rationality of the selection is 
discussed in the following. 

For these asperities whose levels range from nmin to nmax, 
the asperity whose level is nmin is the biggest asperity and 
the asperity whose level is nmax is the smallest asperity. 
From initial contact to complete contact, the asperity whose 
level is nmin possesses the maximum contact area with a 
same interference, namely ( ) ( )min minL L 1n na a +> > >

 

( )maxL .na When the asperities in each level are completely 

deformed, we can obtain the ratio of contact areas between 
two different levels asperities:  
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where aL(n+i) and aL(n) represent the contact area at level n+i 
and at level n respectively. For 1.5 = , 1i =  the ratio 
equals 44.44%. For 2i = , the ratio equals 19.75%. When 

3i≥ , the ratio will less than 8.779%. Above all, for 
certain interference, the largest contact area in the biggest 
asperity and the critical contact areas are corresponding to 
the biggest asperity. 

 
3.4  Total contact load 

According to the real contact area, the total contact load 
can be written as follows:  

 

r re rep1 rep2 rpF F F F F= + + + ,           (33) 

 
where Fre, Frep1, Frep2, and Frp represent the contact load for 
the elastic, the first elastoplastic, the second elastoplastic 
and the full plastic deformation respectively. 
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Substituting Eqs. (34)(37) into (33) can obtain the 

relation between the total contact load and the real contact 
area in dimensionless form:  
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are the dimesionless parameters; lmax is the size of the 
maximum asperity, Aa represents the nominal contact area, 
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4  Results and Discussion 

 

Based on the former calculation results, the mechanical 
properties of the rough surface in contact process is 
analyzed in this chapter. Related parameters are shown in 
Table 1[3, 19]. 

 
Table 1.  Calculation parameters of the surface 

Related parameter Value 

Nominal contact area Aa / m2 9´1012 

Fractal dimension D 1.1, 1.3, 1.5, 1.7, 1.9
Fractal roughness parameter G / m 2.5´(107, 108, 109)
Material property  102, 103, 104 
Poisson ratio υ 0.3 
The size of the maximum asperity lmax / um 1 
The resolution of the instrument Ls / nm 1 

 

Fig. 2 shows the relation between critical areas and 
radius of curvature. For same radius of curvature, the 
elastic critical area is minimum, the second elastoplastic 
critical area is maximum, first elastoplastic critical area is 
between them. When the radii of curvature are different, 
these critical areas are proportional to radii of curvature. 
When a single asperity is under contact load, elastic 
deformation firstly takes place. As the load increases, 
elastoplastic and full plastic deformation will take place 
consequently. These solutions accord with classical contact 
mechanics. 

 

 
Fig. 2  Relation between critical areas and radius of curvature 

Figs. 3(a), (b) and (c) show the relations between the 
dimensionless contact load and the dimensionless contact 
area in the stage of elastic, elastoplastic and full plastic 
deformation respectivily for different values of D . In 
elastic stage, the load-area relation is * *3 2

r rF Aµ . In 
elastoplastic stage, the load-area relation is * *1.254 4

r rF Aµ  
or * *1.102 1

r rF Aµ . In full plastic stage, the load-area 
relation is * *

r rF Aµ . Because the ratio of elastic and 
elastoplastic stage to full plastic stage is small, the 
load-area relation is approximately linear. As the fractal 
dimension D increases, the slope of the load-area curve is 
increasing. This phenomenon shows that as the fractal 
dimension D increases, the profile of the rough surface is 
more complex and the number of asperity is much more. 
For a same contact load, the real contact area is 
proportional to the fractal dimension D. 

 
Fig. 3  Relations between the dimensionless contact area 

 and the dimensionless contact load for different values of D 
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Figs. 4(a), (b) and (c) show the relations between the 
dimensionless contact load and the dimensionless contact 
area in the stage of elastic, elastoplastic and full plastic 
deformation respectivily for different values of G. The 
load-area relation is similar to those in Fig. 3. As the 
characteristic length scale G increases, the slope of the 
load-area curve is decreasing. When the characteristic 
length scale G increases, the height of a single asperity 
grows and the radius of curvature decreases. For a same 
contact load, the real contact area is inversely proportional 
to the G. 

 

 
Fig. 4  Relations between the dimensionless contact area 

 and the dimensionless contact load for different values of G 
 

Figs. 5(a), (b) and (c) show the relations between the 

dimensionless contact load and the dimensionless contact 
area in the stage of elastic, elastoplastic and full plastic 
deformation for different values of  respectivily. The 
load-area relation is similar to those in Fig. 3. With the 
property of the material  increases, the slope of the 
load-area curve is decreasing, namely with the same load, 
the material of rough surface is softer, the total contact area 
is larger. 

 

 
Fig. 5  Relations between the dimensionless contact area  

and the dimensionless contact load for different values of  

 
Fig. 6 presents the ratios of elastic contact area to real 

contact area for different values of D. For a certain fractal 
dimension D, rough surface is first in elastic deformation 
under contact load. In this stage, the real contact area 
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equals to the elastic area, so that Are /Ar=1. As the contact 
load increases, elastoplastic deformation takes place, elastic 
area becomes less than real contact area. The ratio of elastic 
contact area to real contact area is gradually decreasing and 
approaches to zero. As the fractal dimension D increases, 
the radius of curvature of asperity grows, so that the elastic 
area of rough surface enlarges. The ratio of elastic contact 
area to real contact area with D=1.9 is greater than ratios of 
which D=1.1 and D=1.5. 

 

 
Fig. 6  Ratios of elastic contact area to real contact area 

for different values of D 

 
Fig. 7 shows the ratios of elastoplastic contact area to 

real contact area for different values of D. When the rough 
surface is in elastic deformation, the elastoplastic contact 
area equals to zero, Arep/Ar=0. As the contact load 
increases, elastoplastic deformation takes place in the rough 
surface. Arep/Ar is gradually increasing which range from 0 
to 1. In the second elastoplastic deformation stage, 
elastoplastic contact area is much greater than elastic 
contact area, Arep/Ar approaches to 1. As the full plastic 
deformation initially takes place, Arep/Ar reaches the 
maximum value, and then, Arep/Ar is gradually decreasing. 
As the fractal dimension D increases, Arep/Ar is similar to 
those in Fig. 6. 

 

 
Fig. 7  Ratios of elastoplastic contact area to real contact  

area for different values of D 

 

5  Comparison with Other Models 
 

Fig. 8 shows the comparison between the present fractal 
model and other models such as GW model[1], MB model[4] 
and the experiment data of BHUSHAN[20], where D=1.49， 
G*=10–10 and 05.0 . It can be observed that there is a 
same tendency between the present fractal model and other 
models, whose dimensionless contact area is proportional 
to dimensionless contact load. Noting that for Fr

*<2´10–5, 
the present fractal model and MB model are in agreement 
with experimental data. As 2´10–5<Fr

*<2.5´10–5, MB 
model is in agreement with the experimental data. As 
2.5´10–5<Fr

*<5´10–5, the present fractal model is in 
excellent agreement with experimental data, MB model and 
the GW model have some deviations. As 5´10–5<Fr

*< 
8´10–5, the deviations between the GW model and the 
experimental data are the least. The results indicate that at 
the low and medium loads, the present fractal model is 
better than the statistics model, and at high loads, the 
statistical results are more accurate. 

 

 
Fig. 8  Comparison between the present fractal 

 model and other models[21] 

 

6  Conclusions 
 

(1) The critical interferences, the critical contact areas 
and the critical loads of a fractal single asperity are all scale 
dependent. For a constant material property, the critical 
contact areas are proportional to the square of the radius of 
the curvature of a single asperity. 

(2) The fractal asperity transition from elastic, 
elastoplastic to full plastic takes place in this order with an 
increase in the load and contact area. 

(3) For determined material property and fractal 
parameters, the contact load is dependent on the biggest 
contact area of asperity and the critical elastic contact area. 

(4) For constant characteristic length scale G, the slope 
of the load-area relation is proportional to the fractal 
dimension D. For constant fractal dimension D, the slope of 
the load-area relation is inversely proportional to G. For 
constant D and G, the slope of load-area relation is 
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inversely proportional to the property of the material . 
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