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Abstract: The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct 

bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node 

interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time 

assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error 

event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson 

process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to 

predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to 

demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment 

results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed 

data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using 

network error event data. 
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1  Introduction 
 

Controller Area Network(CAN) based industrial 
networks, especially DeviceNet and CANopen networks, 
are widely used in manufacturing applications due to 
mature hardware and software development supports, ease 
of configuration and installation, and low maintenance 
costs. In these systems, a reliable network is essential for 
continuous production and quality assurance due to the role 
of the network as the carrier of information and the costs 
associated with the system downtimes. However, as the 
networked systems underwent continuous operation with 
maintenance and reconfigurations in harsh environments, 
the health condition of the network will deteriorate and 
affect the performance of the network. Hence, network 
health monitoring is crucial for system health management 
and maintenance operations. 

In automotive manufacturing systems, node reliability 
degradation may cause part quality or even safety 
problems[1–2]. According to CAN specification, each node is 
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embedded with a transmit error counter(TEC). A node will 
turn to bus-off state if its TEC value exceeds 255 to prevent 
further disturbances to the network. However, missing a 
node in these systems will halt the production, and the 
affected network segment needs human intervention to 
recovery. Although node state monitoring is of great 
importance, there is a lack of systematic node reliability 
assessment method. Therefore, CAN node health 
assessment tools are highly demanded for monitoring and 
continuous improvement of the system maintenance. 

In literature, some studies has been conducted on 
reliability assessment for CAN networks. For example, 
GAUJAL, et al[3], studied the behavior of a node’s TEC 
value using a discrete time Markov chain, whose 
probability transfer matrix was obtained indirectly from bit 
error rate(BER). Similar work can be seen in Ref. [4]. LEI, 
et al[5], studied the bus-off time prediction of the CAN node 
based on the error distribution within the PLC polling 
cycles for intermittent connection problems. CAUFFRIEZ, 
et al[6] and JUMEL, et al[7], studied the network 
dependability of the distributed systems, especially at the 
controller level. CORNO, et al[8], studied the dependability 
of the CAN based networked systems using simulation 
models. Moreover, the performance analysis of CAN 
networks under different fault conditions had been studied. 
HANSSON, et al[9], studied the schedulability of CAN 
network under fault as a reliability measure. GUJARATI, et 
al[10], developed a probabilistic analysis that quantified the 
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tradeoff between fault tolerant and timeliness in CAN 
network. TRAN, et al[11], studied the multiple-bit error 
vulnerabilities in different BER environments in a CAN 
network. RODRIGUEZ-NAVAS, et al[12], discussed the 
effects of the errors on the packets transmission by 
constructing an error insertion system for CAN network. 
Similar concept is also developed in Ref. [13]. SHORT, et 
al[14], developed a Markov model-based algorithm for data 
scheduling while guaranteeing the reliability of message 
delivery in the presence of burst errors in TDMA-based 
CAN networks. CHEN, et al[15], developed a robust error 
detection and fault confinement mechanism for CAN 
network. CENA, et al[16], developed a software based 
testing system that can inject different types of CAN errors, 
which is useful for assessment of the synchronization and 
error handling of a CAN controller. In addition, new system 
architectures were developed to improve the CAN network 
reliability. BARRANCO, et al[17], proposed the design of 
CAN networked structure and solved dependability 
limitations by means of the active hub. YARAMASU, et 
al[18], used the impedance function to describe behavior 
transformation caused by intermittent connection fault on 
aircraft cable system. BARRANCO, et al[19–20], studied the 
reliability issues of the CANcentrate bus system. 
Furthermore, PRODANOV, et al[21], developed a simulation 
tool to study the impacts of network faults by constructing 
node behavior models. LEI, et al[22–24], developed a model 
based monitoring method for intermittent connection 
problems on CAN networks, and proposed a method to 
detect and locate the position of the intermittent connection 
problem. 

As shown, the mean time to bus-off state(MTTB) is a 
direct quantitative measure of the node reliability. However, 
two challenges need to be tackled to assess the node MTTB 
of the CAN network: (1) The error counters embedded in 
the node hardware, which are directly related to the MTTB 
of the node, are generally inaccessible; (2) According to the 
CAN specification, the error packet in the CAN network 
only contains six consecutive bits, and the source of the 
error packet is not encoded. Moreover, error packets from 
different nodes can overlap. Therefore, it is difficult to 
determine which node initiating the error packet when the 
error occurs. Several studies had been conducted on 
network reliability under interferences. For example, the 
work in Ref. [3] uses BER to calculate Poisson error arrival 
model parameters. However, BER is an averaged error 
statistics and difficult to measure accurately in practice[25]. 
The bus-off estimation method in Ref. [5] can only work on 
polling based networks, and requires logging all the 
network traffic data. LEI, et al[23], studied model based 
CAN error monitoring method, however the node MTTB 
assessment method was not studied. In addition, the 
framework proposed in Ref. [17] requires major upgrade on 
the network hardware, which is usually not possible on 
existing systems. As it can be seen from the literature, the 
existing methods are difficult to directly apply on the 

practical CAN systems. Moreover, the two challenges 
stated above still remain and need to be solved. Therefore, 
a systematic node MTTB assessment method for 
CAN-based networks is dearly needed given that it is 
essential for system health evaluation and monitoring. 

The aim of this paper is to develop a novel data driven 
node time to bus-off assessment method for CAN networks 
by directly using the network error event data. The main 
advantages of the proposed method are in three folds: First, 
only the network errors are recorded and analyzed, which is 
easy to implement and reduces the complexity of data 
processing. Second, the MTTB of the node is directly 
estimated from the collected error information using a 
stochastic model. This approach describes stochastic 
behavior of the network errors, which is better than using 
the models derived from indirect averaged statistical 
measures. Third, the proposed method in this work is 
non-intrusive, which collects the error information 
passively without interrupting the system operation. The 
result of this work will enable one to have a clear overview 
of the health status of the network nodes under current 
interference condition, which should ultimately lead to 
rapid evaluation and improvements of the system health 
management. 

The rest of the paper is organized as follows: fault 
confinement mechanism of CAN network is briefly 
introduced in section 2, followed by formal definition of 
the problem in section 3. Section 4 implements the 
methodology of modeling process, followed by 
experimental setup in section 5. Experiments results are 
discussed in  section 6 and section 7. Finally, conclusion 
and future work are provided in section 8. 

 
2  Fault Confinement Mechanism of CAN 

 

As defined in CAN specification, a node could be in one 
of the following three communication states: error active, 
error passive and bus-off. The state of a node is determined 
by its embedded TEC value. When the TEC value exceeds 
127, this node will switch from error active state to error 
passive state. If the TEC value reaches threshold (255), this 
node will turn to bus-off state. 

A simplified changing rule of TEC value TECV  is 
illustrated in Eq. (1), where the increment( TECV ) is 
determined by the node’s communication state as well as its 
current TEC value.  

 

TEC

TEC TEC

TEC

0, frame transmitted, 0,

1, frame transmitted, 0,

8, frame transmission failed,  255.

V

V V

V



ì =ïïïï= - ¹íïïïïî ≤
 

            (1) 

 
As a rule of thumb, the TEC value of a node will be 

increased by 8 when an error is detected during the 
transmission, except in the following cases: (1) If the node 
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is in error passive state and detects an acknowledgment 
error while sending its passive error frame; (2) An error 
occurred in arbitration fields during transmitting. In these 
two cases, TEC value would remain unchanged. When a 
frame is successfully sent, the sending node’s TEC value 
will be decreased by 1, unless it is already 0.  

 

3  Problem Definition 

 

According to CAN fault confinement mechanism, the 
TEC value of the node is evaluated after a data frame is 
transmitted. When an error is detected during the 
transmission, all the nodes will response to this error, and 
the TEC value of the interrupted node will be increased 
accordingly. From network health management perspective, 
it is important to estimate how much time the network can 
sustain without losing a node under current network 
interferences. However, in industrial applications, the TEC 
values of the nodes are generally inaccessible. Therefore, 
the problem of node MTTB assessment can be defined as 

 

MTTB t r P(( ),( ), )T f E E T= ,            (2) 

 
where MTTBT  is the MTTB of a node, t( )E  denotes the 
sequence of 6 bits error events, r( )E  denotes the sequence 
of 712 bits error events, and PT  is the communication 
cycle of nodes. In other words, given passively acquired 
network error information including 6 bits error events and 
712 bits error events, how to estimate the MTTB of the 
individual node. In this work, we assumed the network 
communication mode is periodic (e.g. master node 
controlled polling, remote node controlled periodic 
transmission, or change-of-state transmission in cyclic 
operation environments), which are widely used in 
manufacturing systems. 

 

4  Node Reliability Assessment Method 

 

The overall procedure of the proposed method is 
illustrated in Fig. 1. As shown in the figure, the proposed 
node MTTB assessment method consists of three major 
modules: network error processing module, network error 
model fitting module and node MTTB prediction module. 
In network error processing module, the network errors are 
extracted and analyzed from the recorded multiple-layer 
network error log. In the network error model fitting 
module, the extracted network error information is fitted to 
a generalized zero inflated Poisson process(GZIP) model 
with an optimized time window, in which the stochastic 
properties of the network errors are modeled. Finally, in the 
node MTTB prediction module, the bus-off state prediction 
model is established by using stochastic information from 
the network error models. Details of the proposed method 
are introduced as follows.  

 
Fig. 1.  Overall flowchart of the proposed method 

 
4.1  Network error processing 

As mentioned previously, upon each network error, the 
change of TEC value is determined by the transmission 
status of the node. Therefore it is important to obtain the 
transmission status of the nodes upon each error as well as 
the stochastic properties of the CAN errors. However, the 
diagnosis information provided by the CAN error frame is 
very limited due to its simple format. Moreover, in most 
commercial CAN interface chips, the corrupted data frame 
will be discarded upon each error. As a result, it is not easy 
to determine which node’s transmission is interrupted. 
Therefore, a CAN error acquisition and analysis system is 
developed to retrieve these two important network error 
information for node MTTB assessment.  

The CAN error acquisition and analysis module consists 
of two functions: (1) error acquisition, (2) error analysis, as 
shown in Fig. 2.  

 

 
Fig. 2.  Structure and functions of the error acquisition 

and analysis module 

 
In error acquisition function, A Field Programmable Gate 

Array(FPGA) based multiple-layer error capturer system is 
developed to record and synchronize all the available error 
information from data link layer and physical layer. An 
online error detector circuit is developed to monitor the 
data link layer bit stream and enable the trigger signal when 
6 consecutive dominant bits, a minimal error frame length, 
are detected. The trigger signal is used to synchronize the 
data acquisition system which records the physical layer 
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signal before and after the trigger signal. To detect the end 
of the error frame, the error detector will continue counting 
the number of bits after the trigger signal until the error 
frame ends(by detecting a recessive bit). To detect the 
beginning of the error frame, physical layer bit signals are 
used. One needs to analyze the bit analog profile backwards 
bit by bit from the end of the error frame. As illustrated in 
Fig. 3, depending on the number of bits (k) after the trigger 
signal, the beginning of the error frame may vary. If 0k = , 
then the bit at point A is the beginning of the error frame. If 

[0,6]k Î , then the first bit that is different from the bit at 
point C will be the beginning of the error frame, since in 
this case the error frame is originated from one node and 
followed by the rest of the nodes.  

 

 
Fig. 3.  Detection of the beginning and end of an error frame 

 
In error analysis function, based on the synchronized 

multiple-layer error log, node addresses of the corrupted 
transmissions are extracted. If the source addresses in the 
arbitration fields of the corrupted frames are available, then 
they can be directly identified. If the source addresses are 
destroyed, analog feature sets learnt from normal node data 
frame will be used to extract the source of the corrupted 
data frame, as suggested in Ref. [26]. In addition, for error 
modeling purpose, the error patterns are identified based on 
lengths of the error frames caused by various physical 
causal factors. The error information extracted from 
network errors is filtered and rearranged for each node for 
CAN error modeling. Each error event can be marked as 
the following quadruple ( , ID ,ID , )e i e et l , where et  denotes 
the error frame occurrence time, IDi  denotes the address 
of the interrupted node when the error occurs, IDe  
denotes the address of the node that originates the error 
frame(in case of 6 bits error frame, IDe  is omitted), and 

el  denotes the total length of the error frame. Hence all the 
error events that related to a node, either the node address 
appears in IDe  or IDi , will be filtered and form a 
separate event sequence for this node, which will be used 
for further analysis.  

 
4.2  Network error model fitting 

The purpose of CAN error modeling is to describe the 
stochastic properties of the network errors for node MTTB 
assessment. Although the reactions of the network nodes 
follow the same rule upon each error, different error causal 
factors will result in different types of error frames in terms 
of error length depending on the affected region and timing. 
Among these factors, global causal factors usually include 

system electromagnetic interferences(EMI), grounding 
problems. Local causal factors usually include intermittent 
connection problems on the network, node electronic 
problems, and EMI on single nodes. Therefore an 
appropriate model needs to be selected to represent the 
stochastic properties of the errors. 

To illustrate the concept of different error types from 
different causal factors, let us consider intermittent 
connection induced errors. Consider a CAN network 
consists of three nodes: a master node(PLC), slave node 8 
and node 9, and assume that the intermittent connection 
problem exists either on the drop cable to node 8(case A) or 
on the backbone of the network(case B). In case A, if an 
intermittent connection problem occurs while node 8 is 
receiving data frame from PLC, only node 8 will detect the 
error in the received data since other nodes do not receive 
any error. Hence the error frame is originated by node 8, 
then node 9 and PLC will response to this error frame 
shortly. Therefore the total length of the final error frame 
will be 712 bits. On the contrary, if an intermittent 
connection occurs while node 8 is transmitting a data frame, 
node 9 and PLC will response to the error and send error 
frames simultaneously. Thus, the error frame will be 6 bits. 
As a result, localized intermittent connection problem will 
generate two types of error frames: 6 bits error frames and 
712 bits error frames. In case B, on the contrary, the 
network is divided into two groups by the intermittent 
connection point on the backbone. Therefore at any time, 
only one group will include the node that is transmitting 
data, and the node within this group will not notice any 
error when intermittent connection problem occurs, while 
the node in the other group will send the error frames firstly. 
Therefore it will only generate 712 bits error frames. 

As discussed above, there are two kinds of errors are 
related to each node, which are 6 bits error and 712 bits 
error. In this case, it is inappropriate to use a Poisson 
distribution to model all the errors related to each node. In 
this section, in order to model two different kinds of errors, 
the generalized zero inflated Poisson process model is 
adapted by imposing time windows on time stamped error 
data[24, 27]. A GZIP model for CAN network errors can be 
expressed as follows:  

 

1 1

1

( 0) 1 exp( )

exp( )
( ) ,

!

,
n n

i i i
i i

xn
i i

i
i

P X

P X x
x

  

 


= =

=

ìïï = = - + -ïïïïíï -ïï = =ïïïî

å å

å
      (3) 

 
where X denotes the number of errors within a time window, 

i  and i  represents the rate of the i-th shock and the 
average level parameter of each distribution respectively. In 
this paper, considering 6 bits and 712 bits errors, we 
would have 2n = , and ( , ; , )t t r r    = are the 
corresponding GZIP model parameters, where t  and t  
indicates the occurrence probability and the mean value of 
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the 6 bits error, r  and r  indicates the occurrence 
probability and the mean value of the 712 bits error, 
respectively. 

Given a sequence of error counting in N time windows 

1 2[ , , , ]N NE X X X=  , where iX  denotes the total 
number of errors within i-th window,   can be estimated 
by  
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where ( | , )k

qPr i X   denotes the posterior probability that 

qX  comes from the i-th error event given the presently 
iterated parameters k , which is calculated as 

 

0

( | )
Pr( | , )

( | )

k k
i i q ik

q N
k k
j j q j

j

P X
i X

P X

 

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=

=

å
.          (5) 

 
In this paper, the initial values setting rule is proposed as  
 

0
0 tol

0
max

(1 )
{ , },i i

i i w

N N
i t r

N T t

 



ìï = - /ï Îíï = /ïî

，

，
          (6) 

 
where 0  denotes the ratio of zeros in NE , wT  denotes 
the duration of the time window, maxt  is the recording 
time, and iN , tolN  stands for the numbers of i-th type of 
error and sum total of observations in the data log, 
respectively. 

Moreover, the likelihood confidence domain is used to 
obtain the confidence interval of GZIP model parameters. 
Let us assume the following hypothesis: 0

ˆ:H  = , 

1
ˆ:H  ¹ , and the rejection region W can be described as  

 
 2

1{ | 2 ln ( ) ( )},W x x k  -= >  (7) 
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where ̂ , 0  denotes the estimated and true value of 
modeling parameters, respectively. From Eq. (7) and Eq. 
(8), it can be inferred as  
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(9)
 

where   is the confidence interval with confidence level 
1  , and k represents the dimension of parameters. 

In addition, the optimal time window( opwT ) is a 

significant factor in the GZIP model, since if the value of 
time observation window is too large, it filters the diversity 
of probability, otherwise there exists little difference 
between frequency of error frames with a small window. 

opwT  is determined by minimizing the differences between 

the model and data in terms of probability density function:  
 

wopw model data
0

min | ( ) ( ) | ,i
T

k

T f k f k
¥

=

ì üï ïï ïí= ýïî
-

ïï ïþ
å       (10) 

 
where model ( )if k  denotes the probability density function 
of the model after i-th iteration, data ( )f k  denotes the 
normalized histogram of the data, and k denotes the error 
index.   

 
4.3  Node mean time to bus-off prediction 

In previous subsection, for each node, we assumed the 
errors related to this node follow a GZIP distribution 
(related means this node is transmitting a data frame when 
an error occurs). Moreover, as shown in Eq. (1), the 
increment of this node’s TEC value is a stochastic process, 
that is, consider { , 1}nY n≤  as a sequence of independent 
random variable, where nY  denotes the increment of the 
TEC on n-th failed transmission of this node. Let nT  
denote the minimum number of errors needed for this node 
going to bus-off state, that is, its TEC value reaches 256. 
Therefore, we had   

 

1

min : 256
n

n i
i

T n Y
=

ì üï ïï ï= =í ýï ïï ïî þ
å .           (11) 

 
Since nT  is a stopping time for nY , according Wald’s 

equation, the following equation holds 
 

1

E (E[ ])(E[ ]),
nT

n n
n

Y Y T
=

é ù
ê ú =ê ú
ê úë û
å           (12) 

 
where E[ ]nT  denotes the expectation of nT .  

Then, the expected time to reach bus-off state can be 
calculated by Eq. (11) and Eq. (12), as shown in Eq. (13):  

 

opw opw
bus-off

256
,

E[ ] E[ ] E[ ]n

T T
T T

N Y N
            (13) 

 
where E[ ]N  denotes the expected number of transmission 
errors within opwT . 

Given a sequence of time stamped errors related to a 
node, one can fit a GZIP distribution model with the 
optimized time window, and use the probability density 
function expressed in Eq. (3) to calculate E[ ]Y . Let us 
assume there are kf  number of observation windows with 
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k errors (k=0,1,) in the data log obtained from previous 
subsection, the increments of TEC in such a time 
observation window can be determined by  

 

( ) opw
TEC

1
8 ,

1 E[ ]k k
p

T
V P X k k f

N T


æ ö÷ç ÷ç= = - ÷ç ÷ç ÷+çè ø
      (14) 

 

where opw

1

1 E[ ] pT T
N

æ ö÷ç ÷ç ÷ç ÷ç +è ø
/  represents the expected 

number of successful transmission in a time window, and 

pT  denotes the communication cycle of this node, 

( )P X k=  is the probability density of the fitted GZIP 

distribution in Eq. (3). 
Therefore, for all possible k errors within timing 

windows, we had 
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where I is an indicator ( 1I =  only if TEC
1

0
k

m

k

V
=
å ≥ , 

otherwise 0I = ), and n is determined by the maximum 
number of errors measured within each timing window. The 
indicator I is introduced to ensure that TEC 0V ≥ . 

 
5  Test Bed Setup 

 

To demonstrate the proposed method, a laboratory 
DeviceNet based test-bed has been constructed, which uses 
CAN protocol in its physical layer and data link layer. The 
schematic layout of the test bed is shown in Fig. 4. The 
test-bed consists of a master device(PLC) and several 
remote I/O nodes. The network sets a polling mode with 
communication speed at 500 kbps. The test bed also 
includes the in-house developed network data logging 
system and a network error injection system, as shown in 
Fig. 5. Additionally, a network error frame capturer is 
developed to trigger the network error frame acquisition 
using the network data logging system, in which the length 
and time stamp of each error frame can be analyzed in real 
time.   

 

 
Fig. 4.  Schematic layout of the test bed 

 
Fig. 5.  Test bed system for network MTTB assessment  

 
The network errors are injected by emulating the 

intermittent open-circuit connection problems, one of the 
major failure modes in industrial applications, using a 
computer controlled high-speed analog switch on a drop 
cable. There are two reasons of using the intermittent 
connection problem on the drop cable of the network in the 
case studies: First, it will create both 6 bits and 712 bits 
error frames. The patterns of two types of frames are 
consistent when multiple faults exist simultaneously. 
Second, not only the node that has the intermittent 
connection problem can be offline, sometimes the nodes 
without the problems can be offline as well, which is very 
special among other causal factors. The interval between 
two open-circuit events of the switch follows a Poisson 
distribution, as shown in Eq. (16):  

 

exp( )
( )

!

k

P T k
k

  -
= = ,           (16) 

 
where   denotes the mean interval time of the Poisson 
distribution, which controls the emulated error injection 
rate, k denotes the random time interval between two 
consecutive error events. Please note that although the 
open-circuit events follow a Poisson distribution, the 
resultant errors do not follow a Poisson distribution since 
the open-circuit event during network idle period will not 
trigger an error.  

 
6  Case Studies 

 

In this section, the proposed method is demonstrated 
through accelerated case studies with different error 
injection rates. The brief descriptions of case studies are 
shown in Table 1. The average error injection intervals 
shown in Table 1 are the carefully chosen so that the node 
can switch into bus-off state in a reasonable shorter span of 
time.  

In the first case study, we illustrated the analysis 
procedures for the nodes in detail. In the second case study, 
different error injection rates were used to demonstrate the 
effects of errors on the MTTB of the nodes. In the third 
case study, we demonstrated that the node without 
connection problems can go offline. In the last case study, 
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we demonstrated that the proposed method works well on 
multiple faults scenario. In the first three case studies, the 
network consists of three nodes, specifically, PLC, node 8 
and node 9. Moreover, the intermittent connections are 
emulated on the drop cables of node 8. In the last case 
study, there are 5 nodes on the bus, which are PLC, node 5, 
node 7, node 8 and node 9. In order to represent the 
multiple faults scenario, the intermittent connections are 
emulated on the drop cables of node 5 and node 9, 
respectively. 

 
Table 1.  Settings and purposes for different case studies  

Case 
studies 

Network 
topology 

Average error 
injection interval 

t/ms 
Purpose 

1 
3-node 
network 

1.1  
Illustrate the analysis 

procedures 

2 
3-node 
network 

1  
MTTB prediction with 

different error injection rate 

3 
3-node 
network 

1  Special phenomenon 

4 
5-node 
network 

1.4 for node 5 

2.2 for node 9 
Multiple faults scenario 

 
6.1  Case study 1 

In this case study, we demonstrated the procedures of the 
MTTB assessment for two nodes. The first one is node 8 
which has intermittent connection problems, and the second 
one is node 9 which is free of intermittent connection 
problems. We set the average error injection interval time 
  in Eq. (16) as 1.1 ms. First, we demonstrated the 
analysis procedures for node 8. From the recorded error 
information, opw 0.772 sT =  can be obtained by Eq. (10), 
which is used to establish the error events distribution GZIP 
model of node 8. Fig. 6 shows the comparison of the fitted 
GZIP model with the histogram of the number of errors 
within the optimal time window. Based on the Eqs. (4)(9), 
the GZIP model parameters ( , ; , )t t r r      as well as 
their confidence intervals can be determined, as shown in 
Table 2.  

 

 
Fig. 6.  Distribution of the number of errors of node 8  

within its optimal time window in case study 1 

 
Table 2 shows the estimated TEC value as well as the 

MTTB of node 8. As shown in the table, the estimated TEC 
value of node 8 almost reaches the threshold 256. The 

predicted bus-off time agrees well with the observed value 
(55.8 s), and the observed bus-off time is within the 
estimated range of the Bus-offT . 

 
Table 2.  Parameters of node 8 which reaches bus-off state  

at 55.8 s in case study 1 (Topw=0.772 s) 

Parameters Point estimation Upper limit Lower limit 

t  0.255 4 0.255 4 0.094 6 

t  3.340 9 3.343 8 0.246 

r  0.743 0.743 0.519 2 

r  7.285 5 9.000 2 7.283 
( )E TEC  255.2 255.36 253.24 

Bus-off
T  t/s 57.31 95.72 55.38 

 
Table 3 illustrates the estimation results using different 

time windows wT . The table shows positive correlation 
between the estimated value and the time window, because 
larger time window will include higher percentage of 
successful transmissions, which results in lower TEC value 
and longer bus-off time. As it can be seen from the table, 
the result using the optimal time window ( opw 0.772 sT = ) 
is much more consistent with the actual value. 

 
Table 3.  Bus-off times in different time window Tw 

in case study 1 (node reaches bus-off at 55.8 s) 

wT

t/s 
Bus-offT

t/s 

Upper limit 

t/s 

Lower limit 

t/s 

0.772 57.31 95.72 55.38 

0.556 42.30 64.00 28.90 

0.704 51.17 73.13 38.30 

1.041 81.20 148.27 49.692 1 

 
Secondly, we demonstrated the analysis results for node 

9. Similar to the analyzing procedures for node 8, by fitting 
the error GZIP model with the optimized time window 
( opw 0.677 sT = ), the model parameters ( , ; , )t t r r    =
(0.3219,1.514 2;0.669 7,4.593 6)  for node 9 can be 
determined. The estimated TEC value and the estimated 
MTTB of node 9 are shown in Table 4. 

 
Table 4.  Parameters of node 9 without reaching bus-off  

in case study 1 

opw 0.677 sT   ( )E TEC  Bus-offT
t/s 

Point estimation 181.07 77.53 

Upper limit 182.87 199.88 

Lower limit 179.75 65.64 

 
Fig. 7 shows the comparison of the distribution of the 

fitted GZIP model with the histogram of the data. As shown 
in Fig. 7, the GZIP model of node 9 shows different 
stochastic properties from node 8, because node 9 does not 
have intermittent connection problem, and the governing 
natures of the error generation of two nodes are completely 
different, specifically, the probability of successful 
transmitting of the node 8 is lower than node 9. Moreover, 
the expected number of errors within the time window of 
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node 8 is larger than that of node 9, because node 8 is 
affected directly by the intermittent connection problem. In 
addition, further analysis shows that node 9 is in the error 
passive state when node 8 reaches bus-off state, which 
indicates that the estimated TEC value using our proposed 
method is within a reasonable range. Furthermore, by 
comparing to node 8, it is noted that the estimated MTTB 
of node 9 is significantly longer than that of node 8, which 
is expected since the node with intermittent connection 
problem has the tendency to fail first. 

 

 
Fig. 7.  Distribution of the number of errors related to node 9 

within time window in case study 1 

 
In addition, the comparison between GZIP model with 

single event stochastic models like Poisson or geometric 
models are shown in Fig. 8, which uses the error data from 
node 9. The comparison result shows that GZIP model is 
preferred, which is expected because there are two kinds of 
errors are related to each node and the GZIP model can 
represent the events with different labels, while the Poisson 
model and Geometric model can only represent one kind of 
event. 

  

 
Fig. 8.  Comparison of the probability density functions of 

different models using the error event data from node 9 

 
6.2  Case study 2 

In this case study, we illustrated the impacts of higher 
error rates on the node MTTB assessments. The 

degradation of the network connection problems is realized 
by reducing the average error injection interval from 1.1ms 
to 1ms. Comparing to case study 1 in which node 8 turns to 
bus-off state at 55.8 s, in this case study, the observed 
bus-off time of node 8 is 43 s. The errors occur in higher 
frequency, and hence the bus-off phenomenon occurs faster. 
The estimated model parameters of node 8 are shown in 
Table 5. 

 
Table 5.  Parameters of node 8 which reaches bus-off state  

at 43 s in case study 2 (Topw=0.524 s) 

Parameters Point estimation Upper limit Lower limit 

t  0.634 7 0.641 0.628 8 

t  3.880 5 8.340 2 3.878 3 

r  0.285 1 0.289 7 0.276 8 

r  3.796 1 10.919 9 3.793 1 
( )E TEC  251.25 252.66 250.16 

Bus-offT  t/s 44.31 72.49 29.08 

 
As expected, higher error injection rate contributes to 

lower successful transmission rate, which weakens the 
accuracy of TEC estimation. That is, lower error injection 
rate contributes to more accurate prediction of the node 
MTTB, since the GZIP model requires higher rate of 
successful transmission by definition. Nevertheless, as 
shown in Table 5, even in the extreme harsh setup of the 
test bed, the predicted bus-off time agrees with the actual 
bus-off time ( Bus-offT ) of nodes. 

Similar to the procedure demonstrated in case study 1, 
we could estimate the MTTB of node 9, which is 

 

Bus-off 60.36 [46.09 s, 279.87 s]T s= Í ,        (17) 

 
It is noted that the MTTB of the node 9 is significantly 

longer than node 8, since node 8 is affected directly by the 
intermittent connection problems. 

 
6.3  Case study 3 

In this case study, we demonstrated a special 
phenomenon that may occur in practice where the node 
without intermittent connection problem can be affected by 
remote problematic node, and turn to bus-off state before 
the problematic node does. The average error injection time 
interval in this experiment is set to 1 ms. Based on the 
proposed methods, the model parameters as well as the 
MTTB of the nodes are shown in Table 6, where node 9 
turns to bus-off state at 89.4 s. 

 
Table 6.  Model parameters and estimated MTTB  

of the nodes in case study 3  

Parameters Node 9 Node 8 

opwT  t/s 1.257 0.968 

t  0.039 5 0.492 5 

t  1.997 8 6.830 3 

r  0.955 4 0.499 6 

r  7.133 8.709 

Bus-offT  t/s 92.79 [71.64,96.72]  94.86 [75.44,140.49]  
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Comparing with case study 2 where the problematic 
node, i.e., node 8 turned to bus-off firstly, in this particular 
case, the predicted TEC value of node 9 almost reaches the 
threshold, and the node 9 turns to bus-off first at 89.4 s. As 
shown in Table 6, our method can effectively tackle this 
special phenomenon, the actual bus-off time of node 9 is 
within the confidence interval of the Bus-offT , and the 
predicted MTTB of node 9 agrees well with the actual 
value. 

 
6.4  Case study 4 

In this study, we demonstrated that the proposed method 
works well on multiple faults scenario. As mentioned 
earlier, the intermittent connections are emulated on the 
drop cables of node 5 and node 9, respectively. The average 
error injection intervals are 1.4 ms for node 5 and 2.2 ms 
for node 9, respectively. The result shows that node 5 
reaches the bus-off state firstly at 20.16 s. Using the 
proposed analyzing procedures, the estimated TEC value 
and bus-off time are shown in Table 7. As it can be seen, 
the predicted bus-off time agrees well with the observed 
value, and the actual bus-off time is within the confidence 
interval of the Bus-offT . 

 
Table 7.  Parameters of node 5 which reaches bus-off state  

at 20.16 s in case study 4 (Topw=0.198 s) 

Parameters Point estimation Upper limit Lower limit 

t  0.954 5 0.958 9 0.948 6 

t  1.810 4 3.632 1 1.809 4 

r  0.037 5 0.041 0 0 

r  1.422 4 7.541 8 1.388 1 
( )E TEC  244.30 245.03 243.98 

Bus-offT  t/s 20.54 27.41 12.57 

 
7  Discussion 

 

In this paper, according to Eq. (13), the estimation 
accuracy of the node MTTB is determined by the estimated 
GZIP model, which is not directly related to the 
communication speed of the network. In practice, for 
monitoring or diagnosis purposes, the network is usually 
given, and the communication speed cannot be changed in 
production systems. However, given the same network 
communication setup, faster communication speed will 
result in shorter transmission time and longer network 
idling time. Therefore, given the same error condition, the 
rate of successful transmission will be higher, which has 
similar effects as lower error occurrence rate under the 
same network speed. In this paper, by comparing case study 
1 and 2, we could see that lower error occurrence rate will 
slightly increase the accuracy of the estimation, but the 
improvement is not significant. 

In addition, the methodology proposed in this paper is 
general and can be applied to scenarios with multiple faulty 
nodes or fault modes, since these two scenarios will also 
generate aforementioned 6 bits and/or 712 bits error 
frames. In either scenarios, appropriate GZIP model order 

should be selected. Since the GZIP model can represent the 
mixture of different Poisson models, ideally if the number 
of faulty nodes or fault modes(k) is known, we could 
determine the order of the model accordingly as 2n k= ´  
in Eq. (3). However, in practice k is usually unknown, 
therefore we could take a numerical approach: let us 
initially set the order of the GZIP model according to the 
number of error types ( 2n = , that is 1k = ), then increase 
the model order gradually ( 2,k =  ). Since the tradeoff 
between model complexity and accuracy is needed to take, 
hence if the difference between the probability density 
function of the fitted model and the data does not decrease 
significantly (5%), then the appropriate model can be 
selected. 

 

8  Conclusions 
 

(1) A new data driven node mean time to bus-off 
assessment method for CAN network is developed by 
directly using network error information.  

(2) A GZIP model is constructed to describe the 
distribution of the error frames in each observation timing 
window. 

(3) Accelerated experiments are conducted on a 
laboratory CAN network and the network errors are 
generated by a computer controlled error injection system. 
The experimental results demonstrated in this paper agree 
well with the observations, which show the accuracy and 
effectiveness of the proposed method.  

Future work includes improving current method by 
integrating TEC value observations from one or more 
TEC-accessible nodes, and developing robust node MTTB 
assessment method using incomplete network information. 
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