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Abstract Computational intelligence is one of the most

powerful data processing tools to solve complex nonlinear

problems, and thus plays a significant role in intelligent

fault diagnosis and prediction. However, only few com-

prehensive reviews have summarized the ongoing efforts of

computational intelligence in machinery condition moni-

toring and fault diagnosis. The recent research and devel-

opment of computational intelligence techniques in fault

diagnosis, prediction and optimal sensor placement are

reviewed. The advantages and limitations of computational

intelligence techniques in practical applications are dis-

cussed. The characteristics of different algorithms are

compared, and application situations of these methods are

summarized. Computational intelligence methods need to

be further studied in deep understanding algorithm mech-

anism, improving algorithm efficiency and enhancing

engineering application. This review may be considered as

a useful guidance for researchers in selecting a suit-

able method for a specific situation and pointing out

potential research directions.

Keywords Computational intelligence � Machinery

condition monitoring � Fault diagnosis � Neural network �
Fuzzy logic � Support vector machine � Evolutionary
algorithms

1 Introduction

With the rapid development of science and technology in

modern society, the developmental law of machinery and

equipment has become considerably large scale, complex,

and automated. Machinery condition monitoring and fault

diagnosis are critical for modern industrial manufacturing.

Effective condition monitoring enables the early detection

of faults, with the consideration of downtime, maintenance

cost, operation reliability, and production efficiency.

Research on machinery condition monitoring and fault

diagnosis are practically significant [1, 2].

The purposes of machinery condition monitoring and

fault diagnosis are to determine the cause of abnormality

and conduct necessary countermeasures by capturing the

past and present condition data of equipment, such as

vibration, noise, temperature, and lubrication state. A

comprehensive condition monitoring program consists of

three phases, namely, feature extraction, fault diagnosis,

and prediction [3]. Feature extraction and fault diagnosis

are usually used in detecting the abnormal state, deter-

mining the fault location, and predicting the failure extent

[4]. Prognostic techniques relate to the remaining useful

life (RUL) prediction, which is used in planning an

effective maintenance strategy that can improve system

reliability [5]. The realization of the importance of optimal

sensor placement in condition monitoring system and

optimal sensor placement methods are also investigated.
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Several methods have been proposed for machinery

condition monitoring and fault diagnosis in the last dec-

ades. These methods can be categorized into model-based,

statistical, and artificial intelligence methods [1]. A model-

based method is based on the physical characteristics of

monitored machine for the establishment of an explicit

mathematical model. Various model-based diagnostic

methods have been widely used in gearboxes [6–8] and

bearings [9]. However, the model-based method is difficult

to use when the system model is complex, because such

systems are often difficult to describe with a precise

mathematical model. A statistical model assumes that

historical data can be used to represent the future mecha-

nism of mechanical failure. However, failure mechanism

changes with respect to failure evolution. Therefore, sta-

tistical methods cannot fully represent the wear process,

especially in the case of wear evolution stages [10]. Arti-

ficial intelligence techniques are suitable for addressing the

complex and large-scale nonlinear problems without any

statistical assumptions about the data [11].

Computational intelligence is a branch of artificial

intelligence and extensively used in scientific research and

engineering practice given the continuous increasing of

computational resources and size decreasing of computing

architectures. Examples of applications are quality control

[12], robot control [13], medical and biological [14], and

environmental [15]. Computational intelligence mimics

nature and human beings by using computer science and

technology; thus, it can also be called intelligent opti-

mization method. Computational intelligence can be cate-

gorized into three main groups, namely, neural

computation, evolutionary algorithms (EAs), and fuzzy

computing. In the last decades, increased attention has been

given to computational intelligence methods [16]. While

considerable achievements have been acquired, several

new computational intelligence techniques, such as fuzzy

neural network [17], deep learning network [18], and

extreme learning machine (ELM), have been proposed to

solve the practical problem [19].

In existing literature, computational intelligence tech-

niques have been investigated in the field of wave energy

[20], financial market [21], and power quality disturbance

[22, 23]. However, the published review articles about

condition monitoring and fault diagnosis have a limited

scope, by focusing either on fault feature extraction and

classification [24], or on rotating machinery prediction

techniques [5, 25]. However, few comprehensive reviews

have summarized the ongoing of computational intelli-

gence. Therefore, this paper attempts to review computa-

tional intelligence techniques and their applications for

fault diagnosis, prognosis, and optimal sensor placement

after 2009. This survey not only reviews the main primary

studies but also discusses characteristics of the methods,

which may be considered as a valuable guide for

researchers in selecting a suitable method for a specific

situation. Finally, some challenges in applying computa-

tional intelligence are discussed to draw some conclusions

from the current research and main work to focus in future

research.

The remainder of this paper is organized as follows.

Section 2 reviews the application of computational intel-

ligence in fault diagnosis. Section 3 presents the applica-

tion of computational intelligence in prognosis. Section 4

investigates the application of computational intelligence

method in optimal sensor placement. Section 5 presents a

discussion on the application situations. Section 6

describes challenges and prospects in this area. Finally,

Section 7 concludes the research.

2 Fault Diagnosis Using Computational
Intelligence

Fault diagnosis combining fault mechanism and detection

techniques; it is a subject based on the theory of signal

processing and pattern recognition. Various algorithms

based on computational intelligence for fault diagnosis are

presented in this section. Fig. 1 shows the taxonomy of the

computational intelligence techniques used as classifiers

for machinery fault diagnosis.

2.1 Artificial Neural Network (ANN)

ANN is a special case of neural computation, which is

inspired by the human brain. This neural network is a

mathematical model that can achieve distributed parallel

information processing. ANN can adjust the interconnec-

tions among internal nodes to achieve information pro-

cessing of a complex system.

Diagnostic inference can be interpreted as a solution of a

problem based on the specific mapping relationship

between fault symptoms and fault causes. For complex

mechanical systems, the mapping relationship is generally

nonlinear. Therefore, ANN has been widely used in fault

diagnosis because it can effectively approximate various

mapping relations. At present, most of fault classification

Computational intelligence 
techniques
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Fig. 1 Taxonomy of computational intelligence
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methods utilize time-frequency analysis methods as the

early feature extraction, and ANN or its optimized forms

are then employed for fault classification. Fig. 2 shows the

flowchart of fault diagnosis based on ANN. In Ref. [26],

wavelet packet transform (WPT) and ANN were integrated

to diagnose fault in internal combustion engine, in which

WPT was used to extract the fault characteristics, and

generalized recurrent neural network (RNN) was proposed

to classify various fault conditions. Lei, et al [27], proposed

an intelligent diagnosis method based on ensemble

empirical mode decomposition (EEMD) and wavelet neu-

ral network. EEMD was used to extract the characteristics

of time and frequency domains from the sensitive intrinsic

mode functions (IMFs). Wavelet neural network was

adopted to complete the pattern recognition. WPT and

empirical mode decomposition (EMD) were utilized to

preprocess and extract features, and ANN was used to

diagnose early fault in rotating machinery [28]. Cui, et al

[29], proposed a new backpropagation neural network

(BPNN) based on the coefficient entropy of wavelet packet

decomposition to realize quantitative diagnosis of fault

severity trend of rolling bearings. Saravanan, et al [30],

presented a new hybrid method based on discrete wavelet

transform (DWT) and ANN to diagnose various faults of

spur bevel gearbox. Zhao, et al [31], utilized BPNN and

improved shuffled frog-leaping algorithm (SFLA) to per-

form fault classification. The accurate selection of suit-

able features that reflect the running status of equipment in

practical application of fault diagnosis is the key point of

research. Therefore, fault feature selection based on ANN

is an important research direction.

Fault diagnosis of mechanical system based on ANN has

some limitations. First, extraction and selection of features

depend largely on the prior knowledge of signal-processing

technique and diagnosis experience, and generalization is

weak. Second, ANN adopts a shallow structure, which also

limits ANN to learn complex nonlinear structures in fault

diagnosis [32]. Deep neural network (DNN) is developed

based on deep learning theory, which can enhance the

accuracy of big data classification [33] and effectively

overcome the preceding shortcomings. Deep learning was

first introduced into the field of fault diagnosis by Tran,

et al [34], who applied deep belief network (DBN) based

on Teager energy operator to achieve fault diagnosis of

reciprocating compressor valves. A multisensor health

diagnosis method based on the DBN was presented in Ref.

[35], which classified the sensor signals collected from a

damaged structure. Guo, et al [36], developed a hierar-

chical adaptive deep convolutional neural network for

bearing fault diagnosis. Jia, et al [32], used DNN for

intelligence fault diagnosis in rotating machinery, espe-

cially in the case when the vibration data were massive.

ELM has been extensively applied and popularized in the

fault diagnosis of mechanical system in recent years. Yang,

et al [37], proposed a multilayer ELM based on represen-

tational learning for fault diagnosis. The effectiveness of

this method was successfully verified by applying a wind

turbine system. Wei, et al [38], proposed a method based

on local mean decomposition to identify the different fault

types of gearbox, combining permutation entropy and

ELM. More references on the applications of ELM in

machine fault diagnostics were provided in Refs. [39–42].

2.2 Fuzzy Logic and Neuro-Fuzzy Systems (NFSs)

Fuzzy theory is the process of imitating the way that people

logically think in dealing with fuzzy information, which is

suitable for the qualitative analysis of complex large-scale

systems. The relationship between fault and symptom is

difficult to describe using an accurate mathematical model

due to the complexity of engineering practice. Therefore,

the application based on fuzzy logic theory in fault diag-

nostics is closer to human thinking habits and language

expression. Fuzzy logic is an effective pattern recognition

method, which has been successfully used in power [43],

transmission line [44], transportation [45], and industrial

production [46]. Fuzzy logic mainly imitates human’s

logical thinking and thus has strong capability of express-

ing knowledge. ANN imitates the function of human brain

neuron, which has the strong capability of self-learning and

direct processing of data. Adaptive neuro-fuzzy inference

system (ANFIS) comprises both merits of neural network

and fuzzy logic. Zheng, et al [47], proposed a fault diag-

nosis method based on local characteristic-scale decom-

position (LCD) and fuzzy entropy (FuzzyEn) for fault

diagnosis of rolling bearings. A series of intrinsic scale

components (ISCs) was first obtained using LCD, and the

FuzzyEns of the first few ISCs that contained the main

failure information were then extracted. Finally, the Fuz-

zyEns were used as the input of the ANFIS, which
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Fig. 2 Flowchart of fault diagnosis based on ANN
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achieved the accurate classification of bearing fault types.

Zhang, et al [48], proposed an early fault diagnosis method

based on multiscale entropy and ANFIS. Tran, et al [49],

combined ANFIS with decision tree to achieve fault

diagnosis. Result indicated that the proposed method could

effectively diagnose the fault of induction motors. Wu, et al

[50], combined DWT with ANFIS to identify gear faults.

DWT was used to extract the energy spectrum feature

vector, which was regarded as ANFIS input.

2.3 EAs

Neural computation is the process of imitating the physi-

ological structure and information processing of the human

brain, whereas EA is the process of imitating the biological

evolution and group intelligence. EAs provide a new way

to address complex optimization problems, which have the

advantages of simple principle and convenient implemen-

tation, especially in the case of solving large-scale dynamic

optimization problems.

The present review of EAs used for fault diagnosis can

be broadly divided into two sections, as shown in Fig. 3.

2.3.1 Fault Feature Extraction Using EAs

The main function of EAs in fault feature extraction is to

optimize signal-processing methods. For example, EAs are

used in optimizing filtering parameters or wavelet basis

function to better extract fault features. At present, genetic

algorithm(GA) and particle swarm optimization(PSO) are

widely used in fault feature extraction. Li, et al [51], pre-

sented an adaptive cascaded stochastic resonance method

to detect the weak impulsive features submerged in noise;

the multi-parameters of this method were optimized by GA

synchronously, and results showed that the proposed

method was suitable for extracting the weak impact fea-

tures of a gearbox. Lu, et al [52], applied GA to search the

optimal multi-wavelets from an adaptive multi-wavelet

library. Combination of optimal Morlet wavelet and auto-

correlation analysis was used to extract the early stage fault

of rolling bearings, and GA was employed to optimize the

filtering parameters of the Morlet wavelet [53]. Some

related research was conducted in the author’s laboratory.

For example, Yan, et al [54], employed PSO to optimize

the structural element scale of the combined morphological

hat transformation and improved the accuracy of the

mathematical morphology operator in processing vibration

signals. The experimental results showed that the proposed

method could effectively identify the wear fault on the high

shaft of a wind turbine gearbox. Zhang, et al [55], utilized

SFLA to optimize the parameters of the Morlet wavelet and

used information entropy as the fitness function. The

optimized Morlet wavelet had superior capability in

extracting the early fault feature of rolling bearings. Yan,

et al [56] combined the optimal variational mode decom-

position (VMD) and 1.5 envelope spectrum analysis to

separate compound faults. In this current research, GA is

used to select the decomposition parameters of VMD

adaptively.

2.3.2 Fault Classification Using EAs

EAs can simultaneously search multiple regions of the

solution space, and include the computing mechanism of

parallel processing and the characteristics of self-organi-

zation and self-learning, without any other auxiliary

information. EAs are presently applied to fault diagnosis by

combining with other algorithms. EAs are used to optimize

the structural parameters of machine learning algorithm.

Ciancio, et al [57], discussed the optimization of the

structural parameters of ANN by GA, such as the number

of hidden layers, the activation function of hidden and

output layers, the number of neurons in the hidden layer,

and the training algorithm. Unal, et al [58], applied GA to

optimize ANN in fault diagnosis of rolling bearings. Shao,

et al [59], utilized PSO to determine the DBN structure and

employed the optimized DBN in the fault diagnosis of

rolling bearings. More published literature of structural

parameter optimization of ANN or support vector machine

(SVM) based on EAs can be found in Refs. [60–64].

Conversely, feature selection based on EAs combining

with classification method is used for fault diagnosis.

Therefore, a feature selection process is indeed needed

before fault classification. Considerable research has been

conducted on this issue. For example, Sadegh, et al [65],

utilized ANN to classify lubrication condition and

employed GA to search for an optimal feature space.

Saxena, et al [66], used GA to select an optimal feature set,

which was used as the input of ANN for mechanical fault

classification. GA could successfully determine the desired

number of good features in a large search space. The

superiority of the GA-ANN method was manifested in

training accuracy and classification success rate. Ahmed,

et al [67], integrated GA and ANN to select effective fault

features in reciprocating compressors. Cerrada, et al [68],

selected the optimal features of different stages based on

EAs

Fault feature 
extraction

Optimize the 
signal processing 

method

Fault classification

Select suitable 
feature

Optimize the  
classification 

method

Feature selection Classification

Fig. 3 EAs used for fault diagnosis
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GA and then combined them with ANN for gearbox fault

diagnosis to select the optimal characteristic parameters in

the time, frequency, and time-frequency domains. More

examples of EAs in feature selection are presented in Refs.

[69, 70].

2.4 SVM

Broadly, neural computation includes kernel methods, such

as SVM. However, SVM does not belong to ANN [20], and

it is a new machine-learning method based on statistical

theory.

SVM solves the optimal classification hyperplane by

using the structural risk minimization principle, overcomes

the dimensionality disaster and local minimum problem,

and has a small demand for the samples. Therefore, SVM is

particularly suitable for establishing a fault diagnosis

model. SVM, which was first introduced into the field of

fault diagnosis by Jack and Nandi [71], was used to achieve

rolling bearing fault classification. SVM has been widely

used in mechanical system fault diagnosis in recent years.

Konar, et al [72], used wavelet transform and SVM to

detect bearing faults in induction motors. Li, et al [73],

proposed a fault diagnosis method based on redundant

second-generation wavelet transform to achieve fault

diagnosis, which was combined with neighborhood rough

set and SVM. Cheng, et al [74], proposed singular value

decomposition and SVM based on EMD to perform fault

diagnosis of rolling bearings and gear. In this method,

feature vector matrix was the singular value of the sensitive

IMF component decomposed by EMD, which was regarded

as SVM input for intelligent fault diagnosis. Zhang, et al

[75], proposed a hybrid model based on permutation

entropy, EEMD, and SVM for motor bearing fault diag-

nosis. The vibration signal was initially decomposed into a

set of IMF components by EEMD. Then, the permutation

entropy feature vector of the first few IMFs was obtained,

which was regarded as the input of the optimized SVM for

achieving fault-type classification. Some improved SVM

has been proposed, such as ensemble SVM (ESVM) and

fuzzy SVM (FSVM), to solve the problem of multiple fault

classification. The ensemble classifier not only solves the

multi-fault classification problem but also significantly

improves the classification performance compared with the

single SVM [76, 77]. Zheng, et al [78], proposed composite

multiscale FuzzyEn and ESVM for rolling bearing fault

diagnosis. FSVM was also used to solve multi-classifica-

tion problems [79]. Hang, et al [80], employed EEMD to

extract fault feature vectors, and FSVM was adopted to

solve multi-classification problems in fan fault diagnosis.

Comparison of FSVM classification results with back-

propagation and standard SVM indicated that FSVM had

higher classification accuracy. More recent references of

SVM in fault diagnosis can be found in Refs. [81–88].

Although SVM has made some achievements in the

research of machinery fault diagnosis, some issues need to

be further studied, such as the following: (1) selection of

the appropriate kernel function and its parameters; (2)

selection of the appropriate multi-classification algorithm

to meet the needs of a multi-fault classifier; (3) improve-

ment of training speed to satisfy the real-time requirement

of fault diagnosis; and (4) combination of other knowl-

edge-based fault diagnosis methods, such as fuzzy logic

and neural network, with SVM for fault diagnosis.

3 Prognostics Using Computational Intelligence

Prognostic plays a vital role in predicting RUL and

optimizing machine usage in engineering practice [5].

Effective prognosis can avoid machine downtime that

results in significant losses and reduce the risk of severe

accidents [89]. The effective improvement of the perfor-

mance of degradation assessment has been a subject

undergoing intense study in academia and industry.

Prognostic methods are divided into three categories,

namely, physical model-based, data-driven, and hybrid

prediction methods [25, 90]. The methods based on

physical model describe the failure model of the system

by using mathematical theory. The failure models have

such ways as crack growth and peeling growth. However,

describing a more stochastic and complex practical sys-

tem model is difficult using these methods. In general,

these models are only suitable for a specific fault type,

and their universality is weak. Data-driven methods are

used to analyze and predict the current and future health

status of the mechanical system by using the condition

monitoring data. These methods are applied to nonlinear

reliability prediction when compared with physical model

methods, which mainly include computational intelligence

methods, statistical methods, and state space methods.

Hybrid prediction methods combine physical model-based

and data-driven methods. These methods can obtain more

accurate and reliable prediction results. However, they are

difficult to implement in practical application because of

their large computation.

A large number of prediction methods have been pro-

posed in recent years, however, establishing an efficient

prediction method remains a problem that needs to be

addressed. Compared with physical model-based methods,

data-driven methods are a good choice in describing the

complex and nonlinear degradation process. This section

focuses on the application of computational intelligence

approaches for fault prediction.
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3.1 ANN

ANN implements RUL estimation and prediction of future

health conditions by including direct or indirect observa-

tion data, independent from the failure process of a phys-

ical model. Various types of data can be used as the input

of ANN, such as some process variables, monitoring data

(vibration signals), evaluation characteristics (age and stop

time), and some historical features. The output of ANN is

RUL prediction or performance degradation assessment,

which is used for conducting effective maintenance

strategies. ANNs widely used in fault prediction include

BPNN [91–95], radial basis function network (RBFN), and

RNN [96]. Ahmadzadeh, et al [94], proposed a three-layer

feedforward BPNN for RUL estimation of grinding mill

liners, which considered degeneration and condition mon-

itoring data as the inputs of ANN, and used RUL as the

output of ANN. Rodriguez, et al [95], presented ANN (six

input layers, three hidden layers, and one output layer) to

predict and simulate the behavior of life-cycle assessment

in blades of steam turbines. In view of the shortcomings of

traditional incremental training methods in long-term pre-

diction, Malhi, et al [96], proposed an RNN based on

competitive learning method to improve the accuracy in

long-term prediction of rolling bearings. Mahamad, et al

[97], used feedforward neural network and the Levenberg-

Marquardt training algorithm to predict the RUL of rolling

bearings. Considering the complexity and nonlinearity of

the pitch system, and the difficulty of describing with

precise mathematical model, Chen, et al [98], proposed

ANFIS based on a prior knowledge, which was used to

predict wind turbine pitch faults. Existing ANN methods

predict the RUL by using failure history data, but sus-

pended historical data are rarely utilized. Hong, et al [99],

used a self-organizing map, which combined wavelet

packet and EMD for feature extraction, to estimate bearing

performance degradation. Javed, et al [100], used ELM and

fuzzy clustering to predict the degradation state and the

RUL of complex nonlinear systems. Compared with ANN,

ELM improved the algorithm efficiency by randomly

selecting hidden layer parameters. Zhang, et al [101],

proposed a multi-objective DBN ensemble method for

RUL estimation.

3.2 Fuzzy Logic

The main purpose of introducing fuzzy logic is to over-

come uncertainty and inaccuracy, and fuzzy logic has

obvious superiority in dealing with large time delay, time

variation, and nonlinear processing. This method is based

on fuzzy mathematics theory, including the appropriate

membership and fuzzy rules; then, fuzzy inference is

continued to implement fuzzy prediction. Baban, et al

[102], acquired the vibration and temperature signals of the

textile machine, evaluated the machine status-based fuzzy

logic, and implemented preventive maintenance. Stetter,

et al [103], used fuzzy logic to monitor the health status of

the pump system in an engine. Ishibashi, et al [104],

combined decision tree, fuzzy logic, and GA for RUL

prediction of aeroengine, and acquired the historical data

from the sensor on the aeroengine. Tian, et al [105], pro-

posed a fuzzy-adaptive unscented Kalman filter to improve

the prediction accuracy of nonlinear processes. Zio, et al

[106], proposed a method based on fuzzy similarity anal-

ysis to estimate system RUL. This method is subjective to

manually select membership function of fuzzy logic.

Therefore, this method is generally used in conjunction

with fault tree, expert system, and neural network.

3.3 NFSs

Neural network and fuzzy logic are important methods in

computational intelligence. The advantages of neural net-

work are its parallel processing capability, strong fault-

tolerant capability, self-learning, and self-adaptability.

However, the neural network is similar to a black box,

which lacks transparency. Expressive knowledge of

weights in the network is not easy to understand, and ANN

cannot utilize the language knowledge of experts. Fuzzy

logic make the inference process understand easily, which

can use expert knowledge directly, with lower require-

ments on the samples. Nevertheless, the disadvantages of

fuzzy logic are slow inference speed and low precision.

Adaptive learning is difficult to implement. Thus, the two

above mentioned methods are integrated to form NFSs,

which have the merits of both methods. NFSs have been

widely used in machinery performance prediction in recent

years. Zhang, et al [107], used neuro-fuzzy network to

predict tool wear and RUL, considering that tool condition

monitoring is critical to the manufacturing industry.

Gokulachandran, et al [108], used neuro-fuzzy and support

vector regression to evaluate RUL of cutting tools. The

experimental results showed that the neuro-fuzzy method

could obtain a more accurate prediction. Ali, et al [109],

combined fuzzy neural network and Weibull distribution to

predict RUL of rolling bearings. Chen, et al [110],

employed ANFIS using a prior-knowledge-based method

to predict wind turbine pitch fault. Zhao, et al [111], used

neuro-fuzzy method to predict the health condition of

bearings. Compared with the RBFN, the proposed method

is superior with respect to reliability and robustness. Chen,

et al [112], proposed a method based on NFSs and Baye-

sian algorithms to predict the health status of helicopter

gearboxes and bearings. The results showed that the pro-

posed algorithm was superior to RNN and NFSs in pre-

diction accuracy. Ramasso, et al [113], proposed a method

Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition... 787
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combining NFSs and belief function theory to evaluate the

RUL of a turbofan engine. Wang, et al [114], proposed an

evolutionary neuro-fuzzy (eNF) predictor on time-varying

dynamic systems. A newly enhanced least squares esti-

mator was used to train the linear parameters of the eNF

predictor. Experiments showed that the proposed method

could be successfully applied to mechanical condition

monitoring. The existing literature shows that the NFSs are

superior to other nonlinear prediction methods (that is,

RNN and RBFN). Recent development of NFSs based on

fault diagnosis can be found in Refs. [17, 115–122]. Nev-

ertheless, several issues still need to be considered. For

example, the number of nodes in the hidden layer is still

difficult to be determined, and the selection of fuzzy

parameters requires human intervention, all of which affect

the prediction results of NFSs.

3.4 SVM

The establishment of a suitable model under the limited

monitoring data is the key problem to estimate RUL and an

urgent need for industrial production. SVM is a machine-

learning algorithm based on Vapnik-Chervonenkis theory,

which is used to solve the problems of classification and

prediction when the sample size is small [123]. At present,

SVM research mainly focuses on algorithm solution and

model establishment. The purpose of algorithm solution is

to address a constrained optimization problem by adopting

the appropriate algorithm. The problem of model estab-

lishment includes optimization of model parameters, kernel

function selection, feature vector extraction, and unbal-

anced sample. The aforementioned factors directly affect

the model accuracy. Lu, et al [124], considered the diffi-

culty of obtaining ideal prediction results under a small

sample size. Thus, they proposed a least squares SVM

(LSSVM) to estimate the degradation trend of slewing

bearings and used PSO to optimize LSSVM parameters.

Compared with the RBFN, the LSSVM model was

demonstrated to be more accurate and effective. Dong, et al

[125], used principal component analysis (PCA) to fuse the

original features and reduce the dimension. Then, they used

the LSSVM model to predict the bearing degradation

process. Chen, et al [126], proposed an RUL prediction

method based on relative feature and multivariate SVM

(MSVM). In contrast to univariate SVM, MSVM overcame

the shortcomings of insufficient condition monitoring

information and mined potential, and useful information

from small sample size. Caesarendra, et al [127], combined

Cox proportional hazard model and SVM for failure

degradation prediction of bearings. Widodo, et al [128],

proposed a prediction method based on survival analysis

and SVM. Kaplan-Meier and probability density function

estimators were used to generate survival probability, and

the kurtosis of measured data and survival probability were

used as input and output of the SVM, respectively. The

trained SVM successfully predicted machine failure time.

Tran, et al [129], combined auto-regressive and moving

average (ARMA) model, Cox proportional hazard model,

and SVM for RUL prediction. Loutas, et al [130], used

wavelet packet nodal energies and Wiener entropy as the

feature vector, and proposed e-support vector regression

method in predicting the RUL of rolling bearings. He, et al

[131], proposed a hidden Markov-SVM to predict surface

roughness in hard turning. More published literature of

applying SVM in RUL estimation of mechanical systems

can be found in Refs. [132–137]. SVM has been success-

fully developed rapidly in recent years, with an increasing

number of studies focusing on SVM. However, SVM still

has some problems to be solved, such as feature selection

and large-scale training sample problem.

4 Optimal Sensor Placement Using Computational
Intelligence

Appropriate measurement strategy should be adopted and

sensor placement should be optimized to obtain sufficient

and effective measurement information, and improve the

diagnostic capability of a machinery system. Practical

experience shows that although sensor redundancy can

effectively reduce the loss of information, the mass of data

transmission will greatly increase the cost of data analysis

and processing, especially in long-distance transmission

network. The optimal sensor placement plays an important

role in structural model updating and structural health

monitoring. The existing literature indicates that sensor

optimization placement has been effectively applied to

various engineering systems, such as bridges [138, 139],

trusses [140–142], beams [143], plates [144], gearbox

systems [145], and manufacturing processes [146, 147].

The optimal sensor placement problem generally consists

of two aspects, as presented in Fig. 4. A multi-objective

combinatorial optimization problem is built due to the com-

plexity of the actual engineering structure. This problem is an

NP-hard problem, and computational intelligence plays an

important role in solving such a problem, among which GA is

widely applied and studied [148, 149]. Rao, et al [139], treated

Optimal sensor 
placement problem

Step1: Determine the objective function 
according to the optimal allocation 

Step 2: Solve the objective function by 
using appropriate optimization method

EAs (GA, PSO, SA, etc)

Fig. 4 Process of solving the optimal sensor placement problem
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an optimal sensor placement problem as a combinatorial

optimization problem, which was solved by using a hybrid

PSO, and this method was successfully applied to a slab

bridge.Guo, et al [141], proposedan improvedGAto solve the

optimization objective function and applied this method to

search for the optimal sensor position of the truss structure.

Mahdavi, et al [142], proposed a wavelet-based GA to search

the optimal sensor location of a 2D steel and pin-jointed truss

structure. Dutta, et al [143], combined the artificial bee colony

algorithm with the glowworm swarm optimization algorithm

to determine the optimal position of actuators and sensors in

cantilever beams. Pan, et al [145], solved an optimal sensor

placement problem using adaptive-speed PSO. Ren, et al

[146], presented a data-mining-guided evolutionary method

to address the optimal sensor location problem in a multi-

station assembly process. Based on the finite element mod-

eling andmodal analysis of gearbox, a feature-based approach

for determining the optimal sensor position in a multi-station

assembly project was proposed [147], and GAwas employed

to solve this optimization problem. Lian, et al [150], proposed

a fitness function of near-neighborhood index, and adopted

improved PSO and clonal selection algorithm to solve the

proposed fitness function. Chow, et al [151], proposed a

hybrid method integrating GA with entropy-based method to

solve the sensor location problem of transmission towers.

Some research in this field has been performed in the author’s

laboratory. For example, a new improvedSFLAwas proposed

inRef. [152] andwas applied to themulti-type sensor network

optimization problem of gearboxes. He, et al [153], proposed

an adaptiveEAbased onGA to optimize the sensor placement

for cutting process condition monitoring. In Ref. [154], an

improved SFLA based on quantitative causal graphs was

applied to address the optimal sensor placement in a single-

station multistep manufacturing process.

Optimal sensor placement is a key step in the rationality,

accuracy, long term, and economy of structural health

monitoring. Although some great progress has recently

been made in the theory of sensor optimization, it still faces

some problems, such as determining how to use the optimal

sensor placement theory directly as a guide in engineering

practice. Several researchers have focused on improving

the efficiency of the optimization algorithm and reducing

the number of iterations. The fusion of different methods

can form a new hybrid algorithm, which includes the merit

of different methods. The above mentioned aspects should

be given more focus in future research.

5 Discussion

In previous section, we have summarized several compu-

tational intelligence methods and their applications in

condition monitoring and fault diagnosis. The application

scope is decided, considering that different computational

intelligence methods have different characteristics. This

section discusses the selection of a suitable method for

special problems instead of choosing randomly.

ANN: On the basis of the literature review, ANN is one

of the most commonly used classifiers in intelligent fault

diagnosis methods, which has the capabilities of high

learning and generalizing performances. The accuracy of

ANN depends heavily on the training sample. In the case of

a limited number of sample size, ANN often shows poor

generalization capability, namely, the over-fitting problem.

Therefore, ANN is usually applied in the case of a suffi-

cient training sample size.

SVM: By contrast, SVM is based on the principle of

structural risk minimization, with an outstanding general-

ization performance. SVM is introduced into machinery

fault diagnosis and prediction according to its high accu-

racy and good generalization for a small sample size,

because a sufficient fault sample size is difficult to obtain in

practice. However, SVM comprises a few disadvantages.

For example, SVM is for binary-class classification; thus,

many SVMs need to be combined specifically for a mul-

ticlass classification problem. SVM learning is also time

consuming in dealing with large-scale data. Several

improved methods based on SVM are proposed to over-

come the aforementioned problems. The performance of

such methods is better than that of a single SVM.

DNN: ANN adopts a shallow structure, which limits its

learning of some complex nonlinear structure in fault

diagnosis and prediction. The accuracy of ANN and SVM

also depends largely on feature selection based on the prior

knowledge of signal-processing techniques. The selected

features may be suitable for special problems but not for

other problems. DNN can adaptively mine representative

information from the original data without the need for

prior knowledge because of the depth structure. Therefore,

DNN can be used for fault feature mining and intelligent

fault diagnosis. When the fault feature is difficult to

determine, DNN can be used for fault diagnosis. However,

DNN needs more training time compared with ANN due to

the depth structure. With the development of hardware

technology, DNN can be built more rapidly in the future.

Fuzzy logic: The fuzzy rule base is the key point and

bottleneck in developing fuzzy logic, which is based on

expert knowledge and experience. With the lack of self-

learning and self-adaptability, fuzzy logic is often com-

bined with other algorithms, such as neural network, fault

tree, and expert system, to achieve fault classification and

prognosis.

EAs: GA and PSO are the most widely used in fault

diagnosis. EAs have been applied to (1) extract a fault

feature by combining with other signal-processing meth-

ods, such as wavelet transform, EMD, and stochastic

Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition... 789
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resonance; (2) optimize the structural parameters of clas-

sification algorithms (such as ANN, SVM, etc.); (3) select a

suitable feature space combining with machine-learning

methods to achieve fault classification; (4) address the

objective function that is established according to the

optimal allocation criterion in the problem of optimal

sensor placement.

6 Challenges and Prospects

With the rapid development of the modern industry, the

processing approaches of condition monitoring and fault

diagnosis would be integrated with two or more intelligent

methods for enhancing the diagnosis performance, given

each computational intelligence method has its own spe-

cialty. For example, NFSs are a combination of neural

network and fuzzy logic, which has the merit of both

methods. Considering the difficulty of determining the

structural parameters of neural network, EAs are used to

optimize the neural network parameters for fault classifi-

cation and prediction. The development of computational

intelligence faces the following challenges:

(1) Computational intelligence techniques lack a robust

mathematical foundation. Although neural network

has a relatively perfect theoretical basis, EAs have

not yet perfected mathematical foundation. Theoret-

ical studies of instance, stability, efficiency, and

convergence remain in the early research stage.

Therefore, computational intelligence can be applied

to condition monitoring and fault diagnosis appro-

priately rather than instinctively if researchers have a

deep understanding of the algorithm mechanism.

(2) Further simulated or tested signals are used to verify

the effectiveness of computational intelligence meth-

ods that are difficult to be applied in engineering

practice. Computational intelligence techniques

should be further explored and improved to develop

robust and practical methods for condition monitor-

ing and fault diagnosis.

(3) Considering that computational intelligence and its

improved methods are based on iterative process,

these algorithms are correspondingly time consum-

ing. Hence, the development of fast online condition

monitoring and fault diagnosis systems based on

computational intelligence should be the focus in

future research.

With the development of industrial big data, the Internet

of Things, and intelligent manufacturing, new technique

based on computational intelligence is an important way to

implement a zero-fault and predicable production system.

The collected data are aggregated to a large data platform,

which can realize real-time monitoring, perform fault

alarm, fault prediction, asset management, intelligent ser-

vice, auxiliary research, and development, and meet some

individual requirements, thereby ultimately creating a more

practical value.

7 Conclusion Remark

(1) Recent developments and applications of computa-

tional intelligence to condition monitoring and fault

diagnosis are reviewed, following the categories of

fault diagnosis, prognosis, and optimal sensor

placement. A comprehensive references are provided

for researchers who are interested in this topic.

(2) A comparative analysis of the characteristics of

computational intelligence methods is performed,

which may be considered as a valuable guide for

researchers and practitioners in selecting a suit-

able method for a specific situation.

(3) Based on the survey and summary of recent research

on actual application of mechanical engineering,

challenges and prospects of computational intelli-

gence in condition monitoring and fault diagnosis

are discussed with emphasis on theoretical founda-

tion, algorithm efficiency, and engineering practice,

so as to show the potential researches in the further.
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